

Centre Number

SCEGGS Darlinghurst

2006

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks – 120

- Attempt Questions 1–10
- All questions are of equal value

BLANK PAGE

Total marks – 120 Attempt Questions 1–10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

MarksQuestion 1 (12 marks) Use a SEPARATE writing booklet.(a) Find the value of
$$\frac{3.5^2}{\sqrt{9.4 \times 3.7}}$$
 correct to two significant figures.(b) Factorise fully: $5x + 5y + x^3 + y^3$ (c) Express the recurring decimal 0.24 as a fraction in its lowest terms.(d) Find p and q if $\frac{4 + \sqrt{2}}{2 - \sqrt{2}} = p + q\sqrt{2}$

(e) Find the values of
$$x$$
 for which 2

$$x^2 - 4x - 12 < 0$$

(f) Prove that
$$f(x) = xe^{x^2}$$
 is an odd function. 2

Question 2 (12 marks) Use a SEPARATE writing booklet.

(a) If $f(x) = 2^{x-4}$, find: (i) f(1)(ii) x if f(x) = 12

(b) Simplify fully:
$$\frac{3\sec^2 x - 3}{12\tan x}$$
 2

(c) In the diagram below, the lines 2x - y + 5 = 0 and 3x + 2y - 3 = 0 intersect at the point *B*.

The point A has co-ordinates (1, 0) and the point C has co-ordinates (-2, 1).

(i)	Show that the line AC has the equation $x + 3y - 1 = 0$.	
(ii)	Find the co-ordinates of <i>B</i> .	2
(iii)	Find the perpendicular distance from point <i>B</i> to <i>AC</i> . Leave your answer as a surd.	1
(iv)	Find the length of AC. Leave your answer as a surd.	1
(v)	Hence find the area of $\triangle ABC$.	1

Marks

Marks

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) A pendulum of length 2 metres, sweeps out an area of $\frac{\pi}{4}$ m².

(i) Find the exact value of θ in radians.
(ii) Hence find the length of the arc traced out by the pendulum.
1

(b) Differentiate:

(i)
$$y = x^3 + 4x + \frac{1}{x^2}$$
 1

(ii)
$$y = \sqrt{x^2 + 4}$$
. 2

(c) Find:

(i)
$$\int \cos(3x+2) dx$$
 2

(ii)
$$\int \frac{1}{2x-5} dx$$
 2

(d) Find the gradient of the normal to the curve
$$y = \log_e (\sin x)$$
 at the point $x = \frac{\pi}{4}$. 3

Question 4 (12 marks) Use a SEPARATE writing booklet.

- (a) (i) On a number plane sketch the graph of y = |x 1| 1
 - (ii) Solve the inequality |x-1| < 1

(iii) Hence, or otherwise, evaluate
$$\int_{0}^{2} |x-1| dx$$
 2

(b) The common ratio r of a geometric progression satisfies the quadratic equation

$$2r^2 - 3r - 2 = 0$$

- (i) Solve this equation for r. 1
- (ii) The sum to infinity of the same progression is 6.
 2 Explain why, in this case, r can only take on one value.
 Hence state the common ratio r.

(iii) Show that the fifth term of this progression is
$$\frac{9}{16}$$
. 2

(c) A parabola's equation is given by
$$8y = x^2 - 2x + 17$$
.

(i)	Find the focal length.	1
(ii)	Determine the co-ordinates of the vertex.	1
(iii)	Find the co-ordinates of the focus.	1

Higher School Certificate Trial Examination, 2006 Mathematics Marks

Question 5 (12 marks) Use a SEPARATE writing booklet.		
(a)	In Australia, 45% of people have blood group O, 40% have blood group A and the remainder are neither.	
	Two people are chosen at random.	
	Find the probability that:	
	(i) both people have blood group A.	1
	(ii) one person has blood group A and one has blood group O.	2
	(iii) at least one person has blood group A.	2
(b)	Solve for <i>x</i> :	3

$$\log_3(x+7) - \log_3(x-1) = 2$$

(c) The angles of elevation of the top of a tower from the top and bottom of a building 100 metres high are 50° and 75° respectively.

Find the height of the tower, correct to the nearest metre.

Marks

Question 6 (12 marks) Use a SEPARATE writing booklet.

- (a) Use Simpson's Rule with 5 function values to estimate $\int_{1}^{3} \log_{e} x \, dx$. **3** Answer correct to 2 decimal places.
- (b) Consider the curve $f(x) = -xe^{2x}$.

(i)Show that
$$f^1(x) = -e^{2x}(2x+1)$$
.1(ii)Find the co-ordinates of the only stationary point and determine its nature.3(iii)Find the co-ordinates of any points of inflexion.2(iv)What happens to $f(x)$ as $x \to -\infty$?1

(v) Sketch the curve y = f(x), showing all important features. 2

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) The area bounded by the curve $y = x^2 + 3$, the y axis and the line y = 4 is 4 rotated about the y axis.

Find the exact volume of the solid formed.

(b) The roots of the equation $mx^2 - nx + 1 = 0$ are α and β .

Show that
$$\frac{1}{\alpha} + \frac{1}{\beta} = n$$
.

(c) PQRS is a quadrilateral with equal length diagonals that meet at A. Also, PQ = SR.

(iv) Prove that $PS \parallel QR$. 1

Marks

Question 8 (12 marks) Use a SEPARATE writing booklet.

(a)	Louise borrows \$80 000 to start a business. The interest is calculated monthly at a rate of 2% per month. Louise intends to repay the loan with interest in 5 annual instalments of $\$M$, at the end of each year.		
	(i) Write an expression for A_{12} the amount Louise owes after 12 months, immediately after her first repayment.	1	
	(ii) Show that	2	
	$A_{60} = 80000(1.02)^{60} - M(1 + 1.02^{12} + + 1.02^{48})$		
	(iii) Find the value of <i>M</i> correct to the nearest dollar.	2	
(b)	Find a primitive function of 3^x .	2	
(c)	A gardener found the probability that a planted passionfruit vine will eventually bear fruit was 0.26.		
	(i) If she planted 5 vines, what is the probability that no vines will bear fruit?	1	

- (ii) If she planted *n* vines, what is the probability that no vines will bear fruit? 1
- (iii) How many vines must be planted to be at least 99% certain that at least 3 one seedling will bear fruit?

Question 9 (12 marks) Use a SEPARATE writing booklet.			Marks
(a)	(i)	Find the co-ordinates of the points of intersection of the curves $y = x^2 + 4$ and $y = x + 6$.	2
	(ii)	Hence find the area bounded by these two curves.	3
(b)	Solv	We $2\sin^2 x + 5\sin x - 3 = 0$, $0 \le x \le 2\pi$.	3
		2	

(c) (i) State the domain of the curve
$$y = \frac{x^2}{\log_e x}$$
. 1

(ii) Find the exact value of the *x* co-ordinate where the tangent to the curve
$$y = \frac{x^2}{\log_e x}$$
 is horizontal.

Question 10 (12 marks) Use a SEPARATE writing booklet.

(a) The logo for Livingstone's Lawns is to be made by inscribing a rectangle of maximum area inside a quadrant of fixed radius, *r* cm, as shown below.

The length and width of the rectangle are x and y cm respectively and $x^2 + y^2 = r^2$.

(i) Show that the area of the rectangle is given by:

$$A = x\sqrt{r^2 - x^2}$$

(ii) Show that

$$\frac{dA}{dx} = \sqrt{r^2 - x^2} - \frac{x^2}{\sqrt{r^2 - x^2}}$$

(iii) Hence show that the maximum area of the rectangle is
$$\frac{1}{2}r^2$$
. 4

(b) (i) Sketch
$$y = 1 + \sin 2\pi x$$
 in the domain $0 \le x \le 3$.

(ii) Show that
$$\int_{0}^{n} (1 + \sin 2\pi x) dx = n$$
 for all positive integers, *n*. 3

(iii) Hence, shade a region on your graph in part (i) that is bounded by the 1 curve $y = 1 + \sin 2\pi x$ and has an exact area of 1 square unit.

End of Paper

Marks

1

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

Comment kea, 2 MATHENATICS TRIAL EXAMINATION Monday 7 August 2006 Solutions + Marking Guide hirs QUESTION 1: (12 marks) Many students could not round off to 2 sig. figs. (a) 2.077166 = 2.1 correct to 2 sig fig / Many could not factorise sum of 2 cubes! (b) $5x + 5y + x^3 + y^3$ $= 5(x+y) + (x+y)(x^{2} - xy+y^{2})$ $= (x+y)(5+x^2-xy+y^2)$ (c) 0.24 = 0.242424...Well done but many did not simplify the let x = 0.2424.... 100 x = 24.2424 ... partion .. 99x = 24 $x = \frac{24}{99} = \frac{8}{33}$ (d) $\frac{4+\sqrt{2}}{2-\sqrt{2}} + \frac{2+\sqrt{2}}{2+\sqrt{2}} = \frac{8+4\sqrt{2}+2\sqrt{2}+2}{4-2}$ Please remember to finish with p=5 and q=3. = 10 + 652= 5+35 / . . p= 5 and q= 3 Many could factorise but (e) $x^2 - 4x - 12 < 0$ (x-6)(x+2) < 0could not give the .. - 2 < x < 6 V $(f) \quad f(x) = x e^{x^2}$ Alternatively, show f(-x) = -f(x). $-f(-x) = -(-xe^{(-x)^{k}})$ Don't fudge ! (Reas 2) $= -xe^{x^{2}}$ $= xe^{x^{2}} = f(x) / \text{ function}$

QUESTION 2: (12 marks)	Comments Reas 12
(a) $f(x) = 2^{x-4}$ (i) $f(1) = 2^{1-4}$ $= 2^{-5}$ $= \frac{1}{8}$ (ii) $1 = 2^{x-4}$ $\therefore x-4 = 0$ x = 4	Accept either index notation or Gerhan or decimal. A few careless errors eg 1-4 = 3 !
(b) $\frac{3 \sec^2 x - 3}{12 \tan x} = \frac{3(\sec^2 x - 1)}{12 \tan x}$ = $\frac{3 \tan^2 x}{12 \tan x}$ = $\frac{3 \tan^2 x}{12 \tan x}$ = $\frac{4 \tan x}{4}$	(b) Poorly done. Identify the x = see se - 1 was not well known. Learn then all very coeffully for the HSC.
(c) (i) $m_{AC} = \frac{1-0}{-2-1} = -\frac{1}{3}$	(c) Overall, well done.
$3y = -x + 1$ $3y = -x + 1$ $x + 3y - 1 = 0$ (ii) $\begin{cases} 3x + 2y - 3 = 0 \\ 2x - y + 5 = 0 \\ 2x - y + 5 = 0 \\ 3x + 2y + 10 = 0 \\ 3x + 3y + 7 = 0 \end{cases}$ (b) +(5): $7x + 7 = 0$	
$\begin{array}{ccc} \therefore x = -1 & & \\ y = 3 & & \\ (iii) & d = \frac{ -1 \times 1 - 3 \times 3 - 1 }{\sqrt{1^2 + 3^2}} = \frac{7}{\sqrt{10}} & \\ (iv) & d = \sqrt{(-2 - 1)^6 + (1 - 0)^6} = \sqrt{10} & \\ (v) & A = \frac{1}{2} \times \sqrt{10} \times \frac{7}{\sqrt{10}} = 3\frac{1}{2} \text{ with } & \\ \sqrt{10} & \sqrt{10} & \sqrt{10} & \sqrt{10} & \\ \sqrt{10} & \sqrt{10} & \sqrt{10} & \sqrt{10} & \\ \sqrt{10} & \sqrt{10} & \sqrt{10} & \sqrt{10} & \sqrt{10} & \\ \sqrt{10} & $	Latch minus signs in these two formulae.

QUESTIONS 3: (12 marks)	Comments Calc 10
(a) (i) $A = \frac{1}{2}r^{2}\Theta$ $\frac{\pi}{4} = \frac{1}{2}\cdot2^{2}\cdot\Theta$ $\therefore \Theta = \frac{\pi}{8}$ (ii) $f = r \Theta$ $= 2 \times \frac{\pi}{8} = \frac{\pi}{4}rrr$ (b) (i) $y = x^{3} + 4x + x^{-2}$ $\therefore y' = 3x^{2} + 4 - 2x^{-3}$	Be caneful of negative induces when interestics
$= 3x^{2} + 4 - \frac{2}{x^{3}}$ (ii) $y = \sqrt{x^{2} + 4} = (x^{2} + 4)^{1/2}$ $y' = \frac{1}{2} (x^{2} + 4)^{1/2} \times 2x$ $= \frac{x}{\sqrt{x^{2} + 4}}$ (c) (i) $\int \cos(3x + 2) dx$ $= \frac{1}{3} \sin(3x + 2) + (\sqrt{x^{3}})$	One make for + C.
(ii) $\int \frac{1}{2x-5} dx$ = $\frac{1}{2} \int \frac{2}{2x-5} dx$ = $\frac{1}{2} \log e(2x-5) + C$	(Calc 14)
$y' = \frac{\cos x}{\sin x}$ $A + x = T_{4}, y' = \frac{\cos T_{4}}{\sin T_{4}} = 1$ $\therefore Gradient of the normal = -1$	this was not a product. More work needed on this type of question. Don't waster time finding the equation of normal (Calc 13)

QUESTIONS 4: (12 marks)	Comments Com 13 Calc 12
(a) (i) y *	(h) This question was poorly done. (ai) 6 - 1)
	i) When graphing - always use a ruler & label all intercepts.
(ii) 0 < x < 2.	ii) The answer to this question is NOT: ' 270, 2<2' or '270 or 2<2'
$(iii) \int x-i dx$ = 2 x (4 x 1x1)	If you are going to (aiii) Cak '2) split it up they need to be joined by an 'AND' ie. XXO AND X <z.< td=""></z.<>
$= 1 \text{ unit}^2.$ (b) (1) $2r^2 - 3r - 2 = 0$	(iii) The absolute value signs are there for a reason. You can't just get rid of them. You need to recall the relationship between
(2r+1)(r-2) = 0 $\therefore r = -\frac{1}{2} \text{ or } 2 \qquad \qquad$	(b) (i) Well done
(ii) If a limiting sum exists, then $ r < 1$. $r \neq 2$. \therefore common ratio is $-\frac{1}{2}$.	(ii) Be careful IrICI or -ICrCI is Notifican 12 the same as OCIVICI or IVISI or -ISVSI.
(iii) $T_5 = ar^4$ $S_{\infty} = \frac{a}{l-r}$ $\vdots 6 = \frac{a}{l\frac{1}{2}}$	(iii) You cannot start with what you are trying to prove! You must start with what you are given (ie. $S_{\infty} = 6$ & $r = -\frac{1}{2}$)
(c) $8y - 17 = x^2 - 2x$ $\therefore 8y - 16 = (x - 1)^2$ $4 \cdot 2 \cdot (y - 2) = (x - 1)^2$	(c) Poorly done. (i) when finding the focal length You must take out all factors $(x -)^2 = 4x a \times (y -)$ coeff of $y = 1$.
(i) Focal length is 2 (ii) Verlex is (1,2) (iii) Focus is (1,4)	(ii) If you draw a picture you are less likely to get the x & y coordinates mixed up.

QUESTION 5: (12 marks)	Comments Read 3
(a) 0.45 0 0.45 0.45 0 0.45 0 0.45 neither 0.15 neither 0.45 0 neither 0.45 0 0.45 A 0.45 A 0.4	It is a lot easier if you draw a probability tree and work in decimals!
(1) $0.4 \times 0.4 = 0.16$ (ii) $P(A,0) + P(0,A)$ $= 0.4 \times 0.45 + 0.45 \times 0.4$ = 0.36 (iii) $P(0,A) + P(A, anything) + P(neither, A)$ $= 0.18 + 0.44 + 0.15 \times 0.44$	without the tree this part was very difficult
$= 0.64.$ (b) $\log_3(x+7) - \log_3(x-1) = 2$ $\log_3(\frac{x+7}{x-1}) = 2$ $\frac{2c+7}{x-1} = 3^2$	dearn the log laws!
5c + 7 = 9x - 9 8x = 16 .'. = 2	b)Reas 3
$\frac{100}{15^{\circ}} \frac{100}{75} = \frac{100}{5i \cdot 25}$ $\frac{100}{5i \cdot 140} = \frac{100}{5i \cdot 25}$ $\frac{100}{5i \cdot 25} = \frac{100}{5i \cdot 25}$ $\frac{100}{5i \cdot 25} = \frac{1}{152 \cdot 1}$ $\frac{100}{5i \cdot 25} = \frac{1}{152 \cdot 1}$	Shis part was very valuey done! It is only question 5 so it was not rearly as difficult as many made it. always rechaw the diagram and taket with your letters you use for your solution
= 147 metros	

.

Question
 6: (12 marks)
 Comments
 Control 12

 (a)
 x: 1
 1.5
 2
 2.5
 3

 f(x): 0
 0.0405
 0.413
 0.019
 Some intercet values in this car.

 (b)

$$f(x) = -xe^{2x}$$
 $f(x) = -xe^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (i)
 $Mz = -x$
 $v = e^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (ii)
 $Mz = -x$
 $v = e^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (i)
 $Mz = -x$
 $v = e^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (iii)
 $Mz = -x$
 $v = e^{2x}$
 $w = e^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (iii)
 $Skitonag pb = 3f'(x) = 2e^{2x}$
 $w = e^{2x} - 2xe^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (iii)
 Skitonag pb $=3f'(x) = 2e^{2x}$
 $w = e^{2x} - 2xe^{2x}$
 Wath values for 'L' - width of each subinbunt.

 (iii)
 Skitonag pb $=3f'(x) = 0$
 method wavally worket although value $exe(rs)$ missiculation.
 $f(x) = -2e^{2x}(1+2x)$

 (iii)
 Skitonag pb $=3f'(x) = e^{3x} 2$
 $= -4e^{2x}(1+2x)$
 $x = -\frac{1}{2}$

 (iiii)
 $x = -\frac{1}{2}$
 $f'(x) = -4e^{2x}(1+$

Queb (wont): (iii) Possible Pol ⇒ f"/x)=0 $0 = -4e^{2x}(1+x)$ -x = -1, $f(x) = \frac{1}{e^{\frac{1}{2}}}$ x -1.1 -1 -0.9 f"(x) + 0 Many studets forget to . Change in wheavily V denorstreke a change fillale 13 in concavity! $(-1, \frac{1}{e^2})$ is a point Male 1 poorly done. (iv) As $x \rightarrow -\infty$, $f(x) \rightarrow 0$ North Contraction Many graphs did not agree (v) when x=0, y=0. with previously drawn conclusions eg if you have only found one max t.p. in part (ii), make (-1, 吉) // sure there is only one max t.p. a your graph! (Com 2)

QUESTION 8: (12 marks)	Com /3 Comments calc /2 Reas /3
$(a)_{(i)} A_{12} = 80000 (1.02)^{12} - M $	Read the question carefully! Interest gets paid <u>monthy</u> & payments are made yearly
(ii) $A_{24} = A_{12} \times (1 \cdot 02)^{12} - M$ $= (\$0000 (1 \cdot 02)^{12} - M) 1 \cdot 02^{12} - M$ $= \$0000 (1 \cdot 02)^{12} - M$ $= (\$0000 (1 \cdot 02)^{12} - M) \times (1 \cdot 01)^{12}$ $= \$0000 (1 \cdot 02)^{12} - M (1 \cdot 02)^{12} - M) \times (1 \cdot 01)^{12}$ \vdots $A_{60} = \$0000 (1 \cdot 02)^{82} - M (1 \cdot 02)^{14} - M (1 \cdot 02)^{12}$ $= \$0000 (1 \cdot 02)^{80} - M (1 \cdot 02)^{18} + 1 \cdot 02^{12} + \dots + 1 \cdot 02^{12}$ $= \$0000 (1 \cdot 02)^{60} - M (1 \cdot 02)^{18} + 1 \cdot 02^{12} + \dots + 1 \cdot 02^{10}$ $M = \frac{\$00000 (1 \cdot 02)^{60}}{\$ \cdot 036 \cdot \dots = \$ 30000 (1 \cdot 02)^{60}}$ $M = \frac{\$00000 (1 \cdot 02)^{60}}{\$ \cdot 5036 \cdot \dots = \$ 300 \cdot 3 \cdot \dots = \$ 300 \cdot 3 \cdot \dots = \$ 300 \cdot 3 \cdot \dots = \$ 300 \cdot 36 \cdot \dots = 100 \cdot 36 \cdot \dots = 100 \cdot 30 \cdot \dots = 100 \cdot 30 \cdot \dots = 100 \cdot 300 \cdot \dots = 1000 \cdot 300 \cdot \dots = 1000 \cdot \dots = 100 \cdot \dots = 1000 \cdot \dots = 1000 \cdot \dots = 1$	You are not <u>SHOWING</u> anything if you simply copy the pattern given for A ₆₀ for A ₁₂ , A ₂₄ etc. Neither are you showing anything if you simply write a formula for An & plug in 60. To <u>show</u> it to be true, you need to show how the terms given in the 1.02 ¹⁴ + 1.02 ¹² + 1) (<i>iii</i>) was very poorly done & was marked teniently - don't expect the marking scheme to be nice in the HSC! (<i>iii</i>) The series $1 + 1.02^{12} + \cdots + 1.02^{48}$ has a ratio of 1.02^{12} & has 5 terms. Many people would have done better if they simply added the five terms on their calculator! [this is not such a stupid idea]

Que 8 (cont): (c) 0.26 Fruit < F NF 0. 74 no fruit SF (1) (0.74) (ii) (0·74) (iii) P (at least one bears fruit) = 1 - P (none bear fruit) ·· 1 - (0.74) 2 0.99 (0.74) \$ 0.01 $(n (n 0.74) \leq ln (0.01)$ $(1 - 2) = \frac{\ln(0.01)}{\ln(0.74)}$ 7, 15.294 16 vines must be planted to be at least 99% certain.

(i) & (ii) done well.

(iii) · 1- (0.74) ≠ 0.26

- Many people who used the inequality sign got confused when & when not to flip it.
 In particular, log 0.74 < 0
 & so when you divide by it you need to flip the sign!
- Many people who solved the equality incorrectly rounded the answer of 15.294... down to 15 in the last step.

(ciii) Rea, 13

QUESTION 10: (12 marks)	Comments Call 12 Ress 14
(a) y y y	* Some good attempts made at this question, although many students need to work on their time management!
(i) $x^{2} + y^{2} = r^{2}$ (given) $\therefore y = \sqrt{r^{2} - x^{2}}$ Area = $x \cdot y$ $= x \sqrt{r^{2} - x^{2}}$	(1) 6 - 1)
(ii) Product rule $u = x \qquad v = (r^{2} - x^{2})^{1/2}$ $u^{1} = 1 \qquad v^{1} = \frac{1}{x}(r^{2} - x^{2})^{1/2} \overline{x} \overline{x} v$ $= \frac{-x}{\sqrt{r^{2} - x^{2}}}$	E a feur minus signs missing
$\frac{dA}{dx} = 1 \times (r^2 - x^2)^2 + x \times -x}{\sqrt{r^2 - x^2}}$ $= \sqrt{r^2 - x^2} - \frac{x^2}{\sqrt{r^2 - x^2}}$	(ii) Calc 12
(iii) Max =) $\frac{dA}{dx} = 0$ $0 = \int r^{2} - x^{4} - \frac{x^{4}}{\sqrt{r^{2} - x^{4}}} - \frac{x^{4}}{\sqrt{r^{2} - x^{4}}}$ $\frac{x^{4}}{\sqrt{r^{4} - x^{4}}} = \int r^{2} - x^{4}$ $x^{4} = r^{2} - x^{4}$ $2x^{4} = r^{4}$ $x^{4} = r^{4}$	Grrect method, although some careless errors with J
$x = \frac{1}{\sqrt{2}} (since x \neq 0)$ $because it is a$ $leigth)$	

• .

e

.

$$Teshing:$$

$$\frac{x}{2} = \frac{0.6r}{\frac{f_{x}r}{2}} = \frac{0.8r}{\frac{6.20}{0.4r}} = \frac{0.8r}{0.4r}$$

$$\frac{dA}{dre} = \frac{0.8r}{0.4r} = \frac{0.35r}{0.4r} = -0.4cr$$

$$z = \frac{1}{\sqrt{2}} = \frac{1}{2} = 0.4cr$$

$$z = \frac{1}{\sqrt{2}} = \frac{1}{2} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2$$