

SCEGGS Darlinghurst

2006

higher school certificate
TRIAL EXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks - $\mathbf{1 2 0}$

- Attempt Questions $1-10$
- All questions are of equal value

Total marks - 120
Attempt Questions 1-10
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find the value of $\frac{3.5^{2}}{\sqrt{9.4 \times 3.7}}$ correct to two significant figures.
(b) Factorise fully: $5 x+5 y+x^{3}+y^{3}$
(c) Express the recurring decimal $0 . \dot{2} \dot{4}$ as a fraction in its lowest terms.
(d) Find p and q if $\frac{4+\sqrt{2}}{2-\sqrt{2}}=p+q \sqrt{2}$
(e) Find the values of x for which

$$
x^{2}-4 x-12<0
$$

(f) Prove that $f(x)=x e^{x^{2}}$ is an odd function.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) If $f(x)=2^{x-4}$, find:
(i) $\quad f(1) \quad 1$
(ii) $\quad x$ if $f(x)=1$
(b) Simplify fully: $\frac{3 \sec ^{2} x-3}{12 \tan x}$
(c) In the diagram below, the lines $2 x-y+5=0$ and $3 x+2 y-3=0$ intersect at the point B.

The point A has co-ordinates $(1,0)$ and the point C has co-ordinates $(-2,1)$.

(i) Show that the line $A C$ has the equation $x+3 y-1=0$.
(ii) Find the co-ordinates of B.
(iii) Find the perpendicular distance from point B to $A C$.

Leave your answer as a surd.
(iv) Find the length of $A C$. Leave your answer as a surd.
(v) Hence find the area of $\triangle A B C$.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) A pendulum of length 2 metres, sweeps out an area of $\frac{\pi}{4} \mathrm{~m}^{2}$.

(i) Find the exact value of θ in radians. 1
(ii) Hence find the length of the arc traced out by the pendulum.
(b) Differentiate:
(i) $y=x^{3}+4 x+\frac{1}{x^{2}}$
(ii) $y=\sqrt{x^{2}+4}$.
(c) Find:
(i) $\int \cos (3 x+2) d x$
(ii) $\int \frac{1}{2 x-5} d x$
(d) Find the gradient of the normal to the curve $y=\log _{e}(\sin x)$ at the point $x=\frac{\pi}{4}$.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) (i) On a number plane sketch the graph of $y=|x-1| \quad \mathbf{1}$
(ii) Solve the inequality $|x-1|<1$
(iii) Hence, or otherwise, evaluate $\int_{0}^{2}|x-1| d x$
(b) The common ratio r of a geometric progression satisfies the quadratic equation

$$
2 r^{2}-3 r-2=0
$$

(i) Solve this equation for r.
(ii) The sum to infinity of the same progression is 6 .

Explain why, in this case, r can only take on one value.
Hence state the common ratio r.
(iii) Show that the fifth term of this progression is $\frac{9}{16}$.
(c) A parabola's equation is given by $8 y=x^{2}-2 x+17$.
(i) Find the focal length. 1
(ii) Determine the co-ordinates of the vertex.
(iii) Find the co-ordinates of the focus.

Marks

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) In Australia, 45% of people have blood group O, 40% have blood group A and the remainder are neither.

Two people are chosen at random.
Find the probability that:
(i) both people have blood group A. 1
(ii) one person has blood group A and one has blood group O .
(iii) at least one person has blood group A.
(b) Solve for x :

$$
\log _{3}(x+7)-\log _{3}(x-1)=2
$$

(c) The angles of elevation of the top of a tower from the top and bottom of a building 100 metres high are 50° and 75° respectively.

Find the height of the tower, correct to the nearest metre.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Use Simpson's Rule with 5 function values to estimate $\int_{1}^{3} \log _{e} x d x$. Answer correct to 2 decimal places.
(b) Consider the curve $f(x)=-x e^{2 x}$.
(i) Show that $f^{1}(x)=-e^{2 x}(2 x+1)$.
(ii) Find the co-ordinates of the only stationary point and determine its nature.
(iii) Find the co-ordinates of any points of inflexion.
(iv) What happens to $f(x)$ as $x \rightarrow-\infty$?
(v) Sketch the curve $y=f(x)$, showing all important features.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) The area bounded by the curve $y=x^{2}+3$, the y axis and the line $y=4$ is rotated about the y axis.

Find the exact volume of the solid formed.
(b) The roots of the equation $m x^{2}-n x+1=0$ are α and β.

Show that $\frac{1}{\alpha}+\frac{1}{\beta}=n$.
(c) $P Q R S$ is a quadrilateral with equal length diagonals that meet at A. Also, $P Q=S R$.

(i) Show that $\triangle P Q S \equiv \triangle S R P$.
(ii) Hence show that $\triangle P A S$ is isosceles.
(iii) Hence explain why $\triangle Q A R$ is also isosceles.
(iv) Prove that $P S \| Q R$.

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) Louise borrows $\$ 80000$ to start a business. The interest is calculated monthly at a rate of 2% per month. Louise intends to repay the loan with interest in 5 annual instalments of $\$ M$, at the end of each year.
(i) Write an expression for A_{12} the amount Louise owes after 12 months,

1

2

$$
A_{60}=80000(1.02)^{60}-M\left(1+1.02^{12}+\ldots+1.02^{48}\right)
$$

(iii) Find the value of M correct to the nearest dollar.
(b) Find a primitive function of 3^{x}.
(c) A gardener found the probability that a planted passionfruit vine will eventually bear fruit was 0.26 .
(i) If she planted 5 vines, what is the probability that no vines will bear fruit?
(ii) If she planted n vines, what is the probability that no vines will bear fruit?
(iii) How many vines must be planted to be at least 99% certain that at least one seedling will bear fruit?

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Find the co-ordinates of the points of intersection of the curves $y=x^{2}+4$ and $y=x+6$.
(ii) Hence find the area bounded by these two curves.
(b) Solve $2 \sin ^{2} x+5 \sin x-3=0,0 \leq x \leq 2 \pi$.
(c) (i) State the domain of the curve $y=\frac{x^{2}}{\log _{e} x}$.
(ii) Find the exact value of the x co-ordinate where the tangent to the curve 3 $y=\frac{x^{2}}{\log _{e} x}$ is horizontal.

Question 10 (12 marks) Use a SEPARATE writing booklet.
(a) The logo for Livingstone's Lawns is to be made by inscribing a rectangle of maximum area inside a quadrant of fixed radius, $r \mathrm{~cm}$, as shown below.

The length and width of the rectangle are x and $y \mathrm{~cm}$ respectively and $x^{2}+y^{2}=r^{2}$.
(i) Show that the area of the rectangle is given by:

$$
A=x \sqrt{r^{2}-x^{2}}
$$

(ii) Show that

2

$$
\frac{d A}{d x}=\sqrt{r^{2}-x^{2}}-\frac{x^{2}}{\sqrt{r^{2}-x^{2}}}
$$

(iii) Hence show that the maximum area of the rectangle is $\frac{1}{2} r^{2}$.
(b) (i) Sketch $y=1+\sin 2 \pi x$ in the domain $0 \leq x \leq 3$.
(ii) Show that $\int_{0}^{n}(1+\sin 2 \pi x) d x=n$ for all positive integers, n.
(iii) Hence, shade a region on your graph in part (i) that is bounded by the curve $y=1+\sin 2 \pi x$ and has an exact area of 1 square unit.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

MATHEMATICS TRIAL
EXAMINATION
Monday $7^{\text {th }}$ Angust 2006
Solutions 4 Morking Cunoblanes
Question 1: (12 monds)
(a) $2.077166 \ldots$.
$\vdots 2.1$ correct to 2 sig fig
(b)

$$
\begin{aligned}
& 5 x+5 y+x^{3}+y^{3} \\
= & 5(x+y)+(x+y)\left(x^{2}-x y+y^{2}\right) \\
= & (x+y)\left(5+x^{2}-x y+y^{2}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
0.24 & =0.242424 \ldots \\
\operatorname{Lit} x & =0.2424 \ldots \\
\therefore 100 x & =24.2424 \ldots \\
\therefore 99 x & =24 \\
x & =\frac{24}{99}=\frac{8}{33}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \frac{4+\sqrt{2}}{2-\sqrt{2}} \times \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{8+4 \sqrt{2}+2 \sqrt{2}+2}{4-2} \\
&=\frac{10+6 \sqrt{2}}{2} \\
&=5+3 \sqrt{2} \\
& \therefore p=5 \text { and } q=3
\end{aligned}
$$

(e)

$$
\begin{aligned}
& x^{2}-4 x-12<0 \\
& (x-6)(x+2)<0 \\
& \therefore-2<x<6
\end{aligned}
$$

(f)

$$
\begin{aligned}
f(x) & =x e^{x^{2}} \\
-f(-x) & =-\left(-x e^{(-x)^{8}}\right) \\
& =--x e^{x^{3}} \\
& =x e^{x^{2}}=f(x) \quad \therefore \text { An ootd }
\end{aligned}
$$

(a) $f(x)=2^{x-4}$
(i)

$$
\begin{aligned}
f(1) & =2^{1-4} \\
& =2^{-3} \\
& =\frac{1}{8}
\end{aligned}
$$

(ii) $1=2^{x-4}$

$$
\begin{aligned}
\therefore x-4 & =0 \\
x & =4
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{3 \sec ^{2} x-3}{12 \tan x} & =\frac{3\left(\sec ^{2} x-1\right)}{12 \tan x} \\
& =\frac{3 \tan ^{2} x}{12 \tan x} \\
& =\frac{\tan x}{4}
\end{aligned}
$$

(c)
(i)

$$
\begin{align*}
& m_{a c}=\frac{1-0}{-2-1}=-\frac{1}{3} \\
& \therefore y-0=-\frac{1}{3}(x-1) \\
& 3 y=-x+1 \\
& \therefore x+3 y-1=0
\end{align*}
$$

(ii) $\left\{\begin{array}{l}3 x+2 y-3=0 \\ 2 x-y+5=0\end{array}\right.$
(2) $x 2: \quad 4 x-2 y+10=0$
(1) + (6) :

$$
\begin{align*}
7 x+7 & =0 \\
\therefore x & =-1 \\
y & =3
\end{align*}
$$

(iii) $\quad d=\frac{|-|x|-3 \times 3-1|}{\sqrt{1^{2}+3^{2}}}=\frac{7}{\sqrt{10}}$
(iv) $d=\sqrt{(-2-1)^{2}+(1-0)^{2}}=\sqrt{10}$
(v) $A=\frac{1}{2} \times \sqrt{10} \times \frac{7}{\sqrt{6}}=3^{\frac{1}{2}}$ unis 2
(a) (1)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
\frac{\pi}{4} & =\frac{1}{2} \cdot 2^{2} \cdot \theta \\
\therefore \theta & =\frac{\pi}{8}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
1 & =-\theta \\
& =2 \times \frac{\pi}{8}=\pi / 4 m
\end{aligned}
$$

(b)

$$
\text { (i) } \begin{aligned}
y & =x^{3}+4 x+x^{-3} \\
\therefore y^{\prime} & =3 x^{2}+4-2 x^{-3} \\
& =3 x^{2}+4-\frac{x}{x^{3}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\sqrt{x^{3}+4}=\left(x^{2}+4\right)^{1 / 4} \\
y^{\prime} & =\frac{1}{2}\left(x^{2}+4\right)^{-1 / 4} \times 2 x \\
& =\frac{x}{\sqrt{x^{2}+4}}
\end{aligned}
$$

(6)

$$
\begin{aligned}
\text { (i) } & \int \cos (3 x+2) d x \\
= & \frac{4}{3} \sin (3 x+2)+C
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& \int \frac{1}{2 x-5} d x \\
= & \frac{1}{2} \int \frac{2}{2 x-5} d x \\
= & \frac{1}{2} \log e(2 x-5)+C
\end{aligned}
$$

(a)

$$
\begin{aligned}
& y=\log _{8}(\sin x) \\
& y^{\prime}=\frac{\cos x}{\sin x}
\end{aligned}
$$

At $x=\pi / 4, y^{\prime}=\frac{\cos \pi / 4}{\sin \pi / 4}=1$
\therefore Gradient of the narmal $=-1$

Be conefule of negaticie indicis whew integrating.

One madk for $+C$.

Calc 4
this was mot a proovet.
mone work needed on this type of question.
Don'l waste time ferdening the equakion of romal Calc 3

Question $4:(12$ maws)

* (a) This question was poorly done.
(ai) $60 \pi 1$
(a) (i)

(ii) $0<x<2$
(iii) $\int_{0}^{2}|x-1| d x$

$$
=2 \times\left(\frac{1}{2} \times 1 \times 1\right)
$$

$$
=1 \operatorname{sinit}^{2} .
$$

(b) (i)

$$
\begin{aligned}
& 2 r^{2}-3 r-2=0 \\
& (2 r+1)(r-2)=0 \\
& \therefore r=-\frac{1}{2} \text { or } 2
\end{aligned}
$$

(ii) If a limiting sion exist, the

$$
|r|<1 . \therefore r \neq 2
$$

\therefore Common ratio is $-\frac{1}{2}$.
(iii)

$$
\begin{aligned}
T_{5} & =a r^{4} \\
S_{\infty} & =\frac{a}{1-r} \\
\therefore 6 & =\frac{a}{1--\frac{1}{2}} \\
\therefore a & =9 \\
\therefore T_{5} & =9 \approx\left(-\frac{1}{2}\right)^{4}=\frac{9}{16}
\end{aligned}
$$

(c)

$$
\begin{gathered}
8 y-17=x^{2}-2 x \\
\therefore 8 y-16=(x-1)^{2} \\
4 \cdot 2 \cdot(y-2)=(x-1)^{2}
\end{gathered}
$$

(i) Focal leapt is is 2
(ii) Vertex is $(1,2)$
(iii) Focus is $(1, i+)$
(i) When graphing - always use a ruler \& label all intercepts.
(i) The answer to this question is NOT: ' $x>0, x<2$ ' or ' $x>0$ or $x<2$ ' If you are going to (aii)Calc 12 split it up they need AND'
to be joined by an 'AND ie. $x>0$ AND $x<2$.
(iii) The absolute value signs are there for a reason. You cant just get rid of them. You need to recall the relationship loetweer integrals \& areas.
(b) (i) Well dena
(ii) Be careful
$\mid r k 1$ or $-1<r<1$ is $(b i j) \operatorname{los} 12$ the some as $0<|r|<1$ or $|r| \leq 1$ or $-1 \leq r \leq 1$.
(iii) You can mot start with what you are trying to prove! You must start with what you are given (ie. $S_{\infty}=6$ \& $\quad r=-1 / 2)$

* (c) Poorly done.
(i) When finding the focal length You must take out all factors

$$
(x-)^{2}=4 \times a \times(u)
$$ corf of $y=1$.

(ii) If you draw a picture you are less likely to get the $x \& y$ coordinates mixed up.

Question 5: (12 mantis)
(a)

(i) $0.4 \times 0.4=0.16$
(ii)

$$
\begin{aligned}
& P(A, 0)+P(0, A) \\
= & 0.4 \times 0.45+0.45 \times 0.4 \\
= & 0.36
\end{aligned}
$$

(iii) $P(0, A)+P(A$, any ting $)+P($ native,$A)$

$$
\begin{aligned}
& =0.18+0.4+0.15 \times 0.4 \\
& =0.64 .
\end{aligned}
$$

(b)

$$
\begin{gathered}
\log _{3}(x+7)-\log _{3}(x-1)=2 \\
\log _{3}\left(\frac{x+7}{x-1}\right)=2 \\
\therefore \frac{x+7}{x-1}=3^{2} \\
x+7=9 x-9 \\
8 x=16 \\
\therefore x=2
\end{gathered}
$$

(c)

$$
\begin{aligned}
& \frac{x}{\sin 140}=\frac{100}{\sin 25} \\
& \therefore x
\end{aligned}=\frac{100 \sin 140}{\sin 25} \doteq 152.19 \text { } \begin{aligned}
\therefore \quad \sin 75 & =\frac{h}{152.1} \\
\therefore h & =146.9139 \ldots \\
& \div 147 \text { metres }
\end{aligned}
$$

It is a lot easier if you draw a probability tree end work in decimals!

Without the tree this pant was meany difficult.

Learn the log laws!.
(b)Reas 13

This pant was very badly done! It is only question 5 so it was not nearly as difficult as many made it. always redi-aur the deagnan and havel mitt your letters you rise far your solution

(a)

$$
\begin{array}{rlcccc}
x: & 1 & 1.5 & 2 & 2.5 & 3 \\
f(x): & 0 & 0.405 & 0.693 & 0.916 & 1.099 \\
k: & 1 & 4 & 2 & 4 & 1 \\
k \times f(x): & 0 & 1.62 & 1.386 & 3.664 & 1.099 \\
\sum \doteq 7.769 \\
\therefore \int_{1}^{3} \log _{e} x d x & \doteq \frac{1}{3} \times 0.5 i x 7.769 \\
& & 1.29 \%(\text { or } 1.30)
\end{array}
$$

(b) $\quad f(x)=-x e^{2 x}$
(i)

$$
\begin{aligned}
& \mu=-x \quad v=e^{2 x} \\
& \mu^{\prime}=-1 \quad \quad^{\prime}=2 e^{2 x} \\
& \therefore f^{\prime}(x)=-e^{2 x}+\left(2 e^{2 x} x^{2 x}-x\right) \\
&=-e^{2 x}-2 x e^{2 x} \\
&=-e^{2 x}(1+2 x)
\end{aligned}
$$

(ii) Stationary ph $\Rightarrow f^{\prime}(x)=0$

$$
\begin{aligned}
& 0=-e^{2 x}(1+2 x) \\
& \therefore x=-\frac{1}{2} \\
& f(x)=\frac{1}{2 e}(\doteqdot 0.1839 \ldots) \\
& f^{\prime \prime}(x)=-2 e^{2 x}(1+2 x)-e^{2 x} \times 2 \\
&=-4 e^{2 x}(1+x)
\end{aligned}
$$

when $x=-\frac{1}{2}, \quad f^{\prime \prime}(x)=-4 \cdot e^{-1}\left(\frac{1}{2}\right) \quad \rightarrow$ or use of table:
.<0

$$
\therefore\left(-\frac{1}{2}, \frac{1}{2 e}\right) \text { is a max }
$$

Table method was most successful. Some incorrect values in this row.

Water values for ' h ' - width of each subinterval.

NB Product Rule.!"
method usually correct although sone careless miscalculation,

* make sure you indicate which derivative you are substituting int!
sic 3

Qu $6(\operatorname{son} t):$
(iii) Passible $\mathrm{PO} \Rightarrow f^{\prime \prime}(x)=0$

$$
\begin{gathered}
0=-4 e^{2 x}(1+x) \\
\therefore x=-1 \quad, f(x)=\frac{1}{e^{2}}(\div 0.135) \\
x \\
\hline f^{\prime \prime}(x) \\
\hline-1.1 \\
\hline
\end{gathered}
$$

\therefore Change in wonsavily

$$
\therefore \quad\left(-1, \frac{1}{e^{2}}\right) \text { is a poi }
$$

(iv) As $x \rightarrow-\infty, f(x) \rightarrow 0$
(v) when $x=0, y=0$.

Many student forget to denantrite a change \{ricak! in concavity!
poorly done.

Many graphs did not agree with previously drawn carclusios eg if you have only found one max tip. in port (ii), make sure there is only one max tip. a your graph! (Com

(b)

$$
\begin{aligned}
& m x^{2}-n x+1=0 \\
& \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta} \\
&=\frac{\frac{n}{m}}{\frac{1}{m}} \\
&=n
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
& P Q=5 R \quad(\text { given }) \\
& P Q=5 Q \quad(\text { giva }- \text { diganaly mal })
\end{aligned}
$$

$P S$ is cammo.

$$
\therefore \triangle P Q S \equiv \triangle S R P(55 S)
$$

(ii) $\angle P S Q=\angle S P R$ (corresp. ang ier in magrat A
are $=1$
. \triangle PAS is isosceden
(iii) Diagomals are equal: P 作 $=5 Q$ and $P A=S A\left(<o p p_{a}\right.$ sudes in ises $\Delta=$)

$$
\therefore Q A=A R
$$

$\therefore \quad \triangle a A B$ is usoscanes

Draw a graph to olitain comect Limí́s!
worpet limin $\rightarrow 1$
correct expresion $\rightarrow 1$
Read the greshoir carfuely. This question involued aotation about the of axis.

Les 2
(i) $26 n$

The draganito wear guies equal. This daes ot mean thot A is the mexpoint. $\left\langle\begin{array}{c}(i i)-(i v) / 4 \\ \text { Rems }\end{array}\right\}$ This asmumption meant that it was oiffecicer to ncone nantes.

$$
\begin{aligned}
& \text { (iii) } A_{60}=0 \\
& \therefore 0=80000(1.02)^{60}-M\left(1+1.02^{12}+\cdots+1.02^{48}\right)
\end{aligned}
$$

$$
M\left(1+1.02^{12}+\cdots+1.02^{48}\right)=80000(1.02)^{60}
$$

$$
\begin{aligned}
M & =\frac{80000(1.02)^{60}}{8.5036 \cdots} \\
& =\$ 30867.083 \cdots \\
& \doteqdot \$ 30867 \quad \text { (to nearest } \$ \text {) }
\end{aligned}
$$

Part (ii) was very poorly done \& was marked teniently don't expect the marking

$$
M\left[\frac{1\left(\left(1.02^{12}\right)^{5}-1\right)}{\left(1.02^{12}\right)-1}\right]=80000(1.02)^{60}
$$ scheme to be rice in the HSC!

(iii)

The series

$$
1+1.02^{12}+\cdots+1.02^{48}
$$

has a ratio of 1.02^{12} \& has 5 terms.
Many people would have done better if they simply added the five terms on their calculator! [this is not such a stupid idea]

Qu 8 (cont) :
(b)

$$
\begin{aligned}
& \frac{d y}{d x}=3^{x} \\
& y=\frac{3^{x}}{\log _{e} 3}(+c)
\end{aligned}
$$

or:

$$
\begin{aligned}
\frac{d y}{d x} & =3^{x} \\
& =\left(e^{\log _{e} 3}\right)^{x} \\
& =e^{x \log _{e} 3} \\
y & =\frac{e^{x \log _{e} 3}}{\log _{e} 3}(+c) \\
& =\frac{3^{x}}{\log _{e} 3}(+c)
\end{aligned}
$$

(b) Call 12

This question was ven y poorly done.

* 'Find a primitive' does Nor mean differentiate
* $\int 3^{x} d x$ does not equal $\frac{3^{x+1}}{x+1}+c$
\& it certainly does not equal $x 3^{x-1}!!!$
neither does it equal any of these other interesting responses:

$$
\begin{aligned}
& \log _{e} 3 \times 3^{x}+c \\
& 3^{x}+c \\
& \log _{x} 3+c \\
& \frac{3^{2 x}}{2}+c \\
& \frac{x^{2}}{2} \times 3^{x}+c \\
& \frac{1}{4} 3^{x}+c \\
& \frac{1}{x}+c \\
& \log _{e} 3+c \\
& \frac{\log _{e} 3^{x}}{3^{x}}+c
\end{aligned}
$$

\& the list goes on ...bon.

Que $8(\operatorname{con} t):$
(c)

(i) $(0.74)^{5}$
(ii) $(0.74)^{n}$
(iii) P (at least one bears fruit)

$$
\therefore \quad 1-(0.74)^{n} \geqslant 0.99
$$

$$
(0.74)^{n} \leq 0.01
$$

$$
\therefore \cap(10.0 .74) \leqslant \ln (0.01)
$$

$$
\therefore n \geqslant \frac{\ln (0.0)}{\ln (0.74)}
$$

$$
\geqslant 15.294 . \ldots
$$

$\therefore 16$ vines must be planted to be at hest 99% certain.
(i) \& (ii) done well.
(iii) $1-(0.74)^{n} \neq 0.26^{n}$

- Many people who used the inequality sign get confused when \& when not to flip it. In particular, $\log 0.74<0$ \& so when you divide by it you need to flip the sign!
- Many people who solved the equality incorrectly rounded the answer of $15.294 \cdots$ down to 15 in the last step.
Question $9:(12$ mandes)
(a) (i) $y=x^{2}+4$
$y=x+6$
$\therefore x^{3}+4=x+6$
$x^{2}-x-2=0$
$(x-2)(x+1)=0$
$\therefore x=-1,2$
$y=5,8$
\therefore Pol are $(-1,5)$ and $(2,8)$
(ii)

Area $=\int_{-1}^{2}(x+6)-\left(x^{2}+4\right) d x$
$=\int_{-1}^{2} x+6-x^{2}-4 d x$
$=\int_{-1}^{2} x+2-x^{2} d x$

$$
=\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2}
$$

$$
=\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)
$$

$$
=3 \frac{1}{3}+1 \frac{1}{6}
$$

$$
=4 \frac{1}{2} \quad 4 \sin ^{2} .
$$

$\left[0, \quad A_{1}=\frac{39}{2}\right.$

$$
\begin{aligned}
O R & =\frac{3}{2} \\
A_{2} & =\left[\frac{x^{3}}{3}+4 x\right]_{-1}^{2}=15 \\
\therefore A_{1}-A_{2} & \left.=4 \frac{1}{2} \text { unith}^{2}\right]
\end{aligned}
$$

* Remember to state. * the coordinates of the points.

Draw a diagram and woe it to answer the question!

Many subtracted un the wrong order

Qu $9\left(00^{4}\right):$
(b)

$$
\begin{aligned}
& \text { (b) } \quad 2 \sin ^{2} x+5 \sin x-3=0 \\
& \text { let } m=\sin x \\
& 2 m^{2}+5 m-3=0 \\
&(2 m-1)(m+3)=0 \\
& \therefore m=\frac{1}{2} \text { or }-3 \\
& \therefore \sin x=\frac{1}{2} \text { or } \sin x=-3 \\
& \therefore x=\frac{\pi}{6} \text { or } \frac{5 \pi}{6} \quad \text { nossin. }
\end{aligned}
$$

(c) (i) $x>0$

$$
\begin{aligned}
& \text { (ii) } y=\frac{x^{2}}{\log _{e} x} \quad \begin{array}{l}
u=x^{2} \\
\quad{ }^{\prime}=2 x x^{\prime}=\frac{1}{x} x \\
x
\end{array} \\
& \frac{d y}{d x}=\frac{2 x \ln x-x}{(\ln x)^{2}}
\end{aligned}
$$

Honzantel tanget meand $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \therefore 0= \frac{x(2 \ln x-1)}{(\ln x)^{2}} \\
& \therefore 0=x(2 \ln x-1) \\
& \therefore x=0 \quad \infty \quad \ln x=\frac{1}{2} \\
& \quad \therefore x=e^{1 / 2}
\end{aligned}
$$

but doman is $x>0$
\therefore Tonget is harizoul at $x=\sqrt{2}$

Veoy difficiente to solve if you dont reduce to a quadratie.
very poooly answered
$*(\ln x)^{2} \neq 2 \ln x$
Leam log laws.
(c) Real 14

Must indicate 2 solns lo $0=x(2 \ln x-1)$ but because of the domain $x=\sqrt{e}$
(a)

(0)

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \quad(g \operatorname{sen}) \\
& \therefore y=\sqrt{r^{2}-x^{2}} \\
& \text { Area }=x y \\
&=x \sqrt{r^{2}-x^{2}}
\end{aligned}
$$

comment
Com ra Call T2
Rose 14
*Some good attempt mole at this question, although many. students need to work on their time managesent!
(1) 60011
(ii) Prodinct rule

$$
\begin{aligned}
& u=x \quad v \\
&=\left(r^{3}-x^{2}\right)^{1 / 2} \\
& A^{3}=1 \quad v^{\prime} \\
&=\frac{1}{x^{2}}\left(r^{2}-x^{2}\right)^{-1 / x} \\
&=\frac{-x}{\sqrt{r^{2}-x^{2}}} \\
& \therefore \frac{d A}{d x}=1 \times\left(r^{2}-x^{2}\right)^{1 / 2}+x \frac{x-x}{\sqrt{r^{2}+x^{2}}}
\end{aligned}
$$

$$
=\sqrt{r^{2}-x^{2}}-\frac{x^{2}}{\sqrt{r^{2}-x^{3}}}
$$

(iii) $\max \Rightarrow \frac{d A}{d x}=0$

$$
\begin{aligned}
& 0=\sqrt{r^{2}-x^{2}}-\frac{x^{2}}{\sqrt{r^{2}-x^{2}}} \\
& \frac{x^{2}}{\sqrt{r^{2}-x^{2}}}=\sqrt{r^{2}-x^{2}} \\
& x^{2}=r^{2}-x^{2} \\
& 2 x^{2}=r^{2} \\
& x^{2}=\frac{r^{2}}{2} \\
& x=\frac{r}{\sqrt{2} \quad(\operatorname{sincs} x>0} \\
& \text { becosseitis a }
\end{aligned}
$$

