

Centre Number

SCEGGS Darlinghurst

2007
HIGHER SCHOOL CERTIFICATE
TRIALEXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks - $\mathbf{1 2 0}$

- Attempt Questions $1-10$
- All questions are of equal value

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks)
(a) Find the exact value of $\sqrt{1 \frac{32}{49}}$.
(b) Solve $(x-5)^{2}=16$.
(c) (i) State the domain of the function $y=\frac{3}{2-x}$.
(ii) Sketch the graph of $y=\frac{3}{2-x}$ showing all important features.
(d) Find the value of θ in the diagram. Give your answer correct to the nearest minute.

(e) Express $3 \sqrt{5}+\sqrt{20}$ in the form \sqrt{a}.
(f) Over 7 years, $\$ 125$ grows to $\$ 165$. Interest is compounded annually.

Find the compound interest rate as a percentage per annum.
Give your answer correct to one decimal place.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate:
(i) $\cos \left(3 x^{2}+1\right)$
(ii) $\frac{x-e^{2 x}}{e^{x}}$
(b) Find a primitive of $\sqrt[3]{(2 x+1)^{2}}$.
(c) Evaluate $\int_{2}^{3} \frac{x}{x^{2}-1} d x$

Give your answer correct to 3 significant figures.
(d) For a function $g(x)$ it is given that
$g^{\prime}(x)=3 x^{2}-4+\frac{1}{x^{2}}$ and $g(x)=4$ when $x=1$.
Find the equation $g(x)$.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a)

The point $Q(-2,1)$ lies on the line k whose equation is $9 x-2 y+20=0$.
The point $R(4,-2)$ lies on the line l whose equation is $3 x+y-10=0$.
(i) By solving simultaneously, find the point P where k and l intersect.
(ii) Find the equation of the line m which joins Q and R.
(iii) Show that the exact perpendicular distance from P to line m is $4 \sqrt{5}$ units.
(iv) Hence, or otherwise, find the exact value of the area of the triangle bounded by the three lines k, l and m.
(b) For the arithmetic progression $81,77,73, \ldots$
(i) show that the sum to n terms is given by the expression

$$
S_{n}=83 n-2 n^{2}
$$

(ii) Find the smallest value of n for which the sum to n terms would be negative.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Francesca wants to design a conical party hat for her 18th birthday party.

She folds the sector $X O Y$ so that the edges $O X$ and $O Y$ coincide to form a cone.

(i) Find the exact length of the arc $X Y$.
(ii) Find the radius of the base of the cone formed.
(b) Find the equation of the normal to the curve $y=\sin \left(2 x+\frac{\pi}{2}\right)$ at the point where $x=\frac{\pi}{4}$.
(c) The diagram below shows the first derivative $f^{\prime}(x)$ of a function.

Copy the diagram into your answer booklet and on the same axes draw a possible curve for the function $f(x)$.

Question 4 continues on page 6

Question 4 (continued)
(d) A box contains 10 chocolates all of identical appearance.

Four have caramel centres and the other six have mint centres.
Jolene randomly selects and eats three chocolates from a box.

Find the probability that Jolene eats:
(i) three mint chocolates. 1
(ii) exactly one caramel chocolate. $\mathbf{2}$
(iii) at least one mint chocolate. 1

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) A quadratic equation with roots α and β has the form

$$
x^{2}-(\alpha+\beta) x+\alpha \beta=0
$$

Hence, or otherwise, form a quadratic equation whose roots are $3+\sqrt{5}$ and $3-\sqrt{5}$.
(b)

NOT TO
SCALE
$A B C D$ is a square. P and Q are points on $A D$ and $D C$ respectively such that $P D=Q D$.

Copy the diagram into your answer booklet.
(i) Prove that $\triangle B A P$ is congruent to $\triangle B C Q$.
(ii) If $\frac{B P}{B A}=\frac{3}{2}$ find the exact value of $\tan \angle A P B$.
(c) Luigi decides to set up a trust fund for his grand-daughter Sophia. He plans to give it to her on her 21st birthday. He invests $\$ 150$ at the beginning of each month. The money is invested at 9% per annum, compounded monthly.

The trust fund matures at the end of the month of his final investment, 21 years after his first investment. This means that Luigi makes 252 monthly investments.
(i) After 21 years, what will be the value of the first $\$ 150$ invested?
(ii) By writing a geometric series for the value of all Luigi's investments, the final value of Sophia's trust fund.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Consider the function defined by $f(x)=x^{3}(2-x)$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Find the coordinates of any point of inflexion.
(iii) Sketch the graph of $y=f(x)$ for $-1 \leq x \leq 2$.
(iv) For the given domain $-1 \leq x \leq 2$ when is the curve concave up?
(b) Calculate the exact volume generated when the arc of the curve

$$
y=2 \sec \frac{x}{2}
$$

between $x=\frac{\pi}{3}$ and $x=\frac{\pi}{2}$ is rotated about the x axis.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Solve the equation: $\mathbf{2}$

$$
9^{x}-4.3^{x}+3=0
$$

(b) The point $P(x, y)$ moves such that its distance from the point $R(-1,0)$ is always twice its distance from the point $S(2,0)$.
(i) Show that the equation of the locus of point P is given by $x^{2}-6 x+y^{2}+5=0$.
(ii) Describe the locus geometrically.

2
(c) For the curve $y=2 \sin x-1$.
(i) Find the roots of the equation $2 \sin x-1=0$ for $0 \leq x \leq 2 \pi$.
(ii) Sketch the curve for $0 \leq x \leq 2 \pi$ showing all important features and points of intersection with the x axis.
(iii) Find the area under the curve that lies above the x axis in the given domain.

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) (i) For what values of x will the geometric progression $\quad \mathbf{1}$

$$
1+(x-2)+(x-2)^{2}+\ldots
$$

have a limiting sum?
(ii) If this series has a limiting sum of 2 , find the value of x.

2
(b) Consider the curve $f(x)=\frac{e^{x}}{x}$.
(i) State the domain of $y=f(x)$.
(ii) Show that $f^{\prime}(x)=\frac{e^{x}(x-1)}{x^{2}}$.
(iii) Find the co-ordinates of the stationary point and determine its nature.
(iv) Explain why $y=f(x)$ has no x-intercepts.
(v) What happens to $f(x)$ as $x \rightarrow-\infty$.
(vi) Sketch the curve $y=f(x)$, showing all important features.

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) Find the co-ordinates of the vertex and the focus of the parabola

$$
y=x^{2}-6 x+10
$$

(b) (i) Use Simpson's rule with five function values to evaluate $\int_{1}^{3} 5^{2 x} d x$ correct to three decimal places.
(ii) The region bounded by the curve $y=5^{x}$, the lines $x=1$ and $x=3$ is rotated about the x-axis. Using part (i) or otherwise, find an estimate for the volume of revolution formed.
Answer correct to three decimal places.
(c) Luke has made up a new game for one person that is played with two dice. He rolls both dice and if he rolls a difference of 0 or 1 he wins but if he rolls a difference of 4 or 5 he loses. Any other difference means he rolls the dice again.
(i) What is the probability that Luke will win on his first roll of the dice?
(ii) Calculate the probability that a second throw is needed.
(iii) What is the probability that Luke wins on his first, second or third throw? Leave your answer unsimplified.
(iv) Calculate the probability that Luke wins the game.

Question 10 (12 marks) Use a SEPARATE writing booklet.
(a)

In the diagram above, $A B D$ and $A E D$ are isosceles triangles with $A D=B D=A E$, and $B D$ bisects $\angle A B C$. Let $\angle A B C=\angle C B D=\theta$ and let $\angle D C B=\alpha$.
(i) Show that $\angle E A B=\alpha$, giving reasons.
(ii) Hence show that $\triangle A B E \| \mid \triangle C B D$.
(iii) Deduce that $A E^{2}=B E \times C D$.

Question 10 continues on page 13

Question 10 (continued)
(b) Devendra is a motorcycle stunt bike rider in an upcoming Bollywood feature film.

He will be required to ride from a wall onto a beam, which passes over a second lower wall b metres high and located a metres from the first wall.

Let the length of the beam by y metres, the angle the beam makes with the horizontal be α and x the distance from the foot of the beam to the smaller wall.

(i) Show that $y=a \sec \alpha+b \operatorname{cosec} \alpha$.
(ii) Show that

$$
\frac{d y}{d \alpha}=\frac{-b \cos ^{3} \alpha+a \sin ^{3} \alpha}{\sin ^{2} \alpha \cos ^{2} \alpha}
$$

(iii) Hence show that if $\frac{d y}{d \alpha}=0$ then $\tan \alpha=\sqrt[3]{\frac{b}{a}}$.
(iv) Hence show that the shortest beam that can be used is given by:

$$
y=a \sqrt{1+\left(\frac{b}{a}\right)^{\frac{2}{3}}}+b \sqrt{1+\left(\frac{a}{b}\right)^{\frac{2}{3}}}
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

(Q3) a) cont'.
iii) $P(0,10)$ line $x+2 y=0$

$$
\begin{aligned}
p d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\left|\frac{0+2 \times 10}{\sqrt{1^{2}+2^{2}}}\right| \\
& =\frac{20}{\sqrt{5}} \\
& =\frac{20}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{20 \sqrt{5}}{5} \\
& =4 \sqrt{5} \text { units. }
\end{aligned}
$$

iv)

$$
\begin{aligned}
Q R & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-2-4)^{2}+(1+2)^{2}} \\
& =\sqrt{(-6)^{2}+3^{2}} \\
& =\sqrt{36+9} \\
& =\sqrt{45} \\
& =3 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Area } \Delta & =\frac{1}{2} \times \text { base } \times \text { perp. height } \\
& =\frac{1}{2} \times 3 \sqrt{5} \times 4 \sqrt{5} \\
& =\frac{1}{2} \times 12 \times 5 \\
& =30 \text { units }{ }^{2}
\end{aligned}
$$

(b) $A P$ $81,77,73, \ldots$

$$
\begin{aligned}
& a=81 \\
& d=-4
\end{aligned}
$$

i)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[162+(n-1) \times-4] \\
& =\frac{n}{2}[162-4 n+4] \\
& =\frac{n}{2}[166-4 n] \\
& =83 n-2 n^{2}
\end{aligned}
$$

well Done.

Well Done

Careless errors with multiplication
(33) b) ii) $S_{n}<0$

$$
\begin{aligned}
& 83 n-2 n^{2}<0 \\
& n(83-2 n)<0
\end{aligned}
$$

$n<0$ is not a valid solution

$$
\begin{aligned}
\therefore n & >41.5 \\
n & =42
\end{aligned}
$$

(Q4) a) $\theta=120^{\circ}$

$$
=\frac{2 \pi}{3} \text { radians }
$$

$$
l=r \theta
$$

$$
x y=20 \times \frac{2 \pi}{3}
$$

$$
=\frac{40 \pi}{3} \mathrm{~cm}
$$

The points $x y$ join vp to form the base of the hat, so the $\operatorname{arc} x y$ is the circumference of the base of the nat.

$$
\begin{aligned}
2 \pi r & =\frac{40 \pi}{3} \\
r & =\frac{40 \pi}{3 \pi} \\
r & =\frac{20}{3} \mathrm{~cm}
\end{aligned}
$$

- This is a quadratic inequality, you MUST do a sketch to solve this
- MUST state that $n<0$ is not a valid solution
- Answer the question asked: $n=42$
the dentin $4 \sqrt{5}$ go from $\frac{20}{\sqrt{5}}$ to $4 \sqrt{5}$
- this is necessary as $4 \sqrt{5}$ is given to you

Well Done
-this was dane poor 4 and thin - as due to manly candidates not long hie formula for the crecorfermu of a col.

- here was also many
silly errors
(24) b)

$$
\begin{aligned}
y & =\sin \left(2 x+\frac{\pi}{2}\right) \\
y^{\prime} & =\cos \left(2 x+\frac{\pi}{2}\right) \times 2 \\
& =2 \cos \left(2 x+\frac{\pi}{2}\right)
\end{aligned}
$$

when $x=\frac{\pi}{4}$
tangent $m_{1}=2 \cos \left(2 \times \frac{\pi}{4}+\frac{\pi}{2}\right)$

$$
=2 \cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)
$$

normal $m_{2}=\frac{1}{2}$

$$
\begin{aligned}
y & =\sin \left(2 x \frac{\pi}{4}+\frac{\pi}{2}\right) \\
& =\sin \pi \\
& =0 \quad\left(\frac{\pi}{4}, 0\right)
\end{aligned}
$$

- dere farly well by most ceadidates but

$$
=2 \cos \pi
$$

$$
=-2
$$

when $x=\frac{\pi}{4}$ thee are still some ydo aned to praction worky wh radions -it was plearingt sue reccly all students knew the relationsty betuen between graduats and perpendicter lues.
Equation of normal

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=\frac{1}{2}\left(x-\frac{\pi}{4}\right) \\
& y=\frac{1}{2} x-\frac{\pi}{8} \\
& x-2 y-\frac{\pi}{4}=0
\end{aligned}
$$

c)

Slope diagram.

$$
+0+0-
$$ of the graph:

- It is really inportent students ty to be as reat as posurble w.th then- graphs i.e. the up thome the may t-p's and pooi AND LABEL!!!
Horizontal POI max TP. concavity correct - nost cemen mirtelu was slutichey, the dervatu-f ANDLABEL!.
(4)d)
- Done farly well by cend.dates sthergh quik a for d.d.' reclise themere o neperts
- Qili a for stadents didn't realis there wos 3 ortcom, her not

$$
2 \text { atenns. }
$$

iii) $P($ at least one $M)$

$$
\begin{aligned}
& =1-P(n o m) \\
& =1-P(c c c) \\
& =1-\left(\frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}\right) \\
& =\frac{29}{30}
\end{aligned}
$$

- Din fary well.

$$
\text { i) } \begin{aligned}
P(\text { MMM }) & =\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} \\
& =\frac{1}{6}
\end{aligned}
$$

ii) P (exactly one C)

$$
\begin{aligned}
& =P(C M M)+P(M C M)+P(M M C) \\
& =\left(\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}\right) \times 3 \\
& =\frac{1}{2}
\end{aligned}
$$

$$
r-r-1
$$

Q5: Reas $/ 7$ Comm/3

Very poorly done, despute the fact that all the required theory was given in the question!

$$
\therefore \frac{\text { Equation }}{x^{2}-6 x+4=0}
$$

$$
\text { Must have }=0
$$

b)

Given

$A B C D$ is a square
$P D=Q D$

1) In $\triangle B A P$ and $\triangle B C Q$
$A B=B C \quad$ (equal sides of a square) $\angle B A P=\angle B C Q=90^{\circ} \quad$ ($A B C D$ is a square)

Since $A D=D C$ (sides in a square)
and $P D=Q D$ (given)
$\therefore \quad A P=A D-P D$
$Q C=D C-Q D$
$\triangle B A P \equiv \triangle B C Q$

$$
\frac{B P}{B A}=\frac{3}{2}
$$

Find $A P$ by Pythagoras.
$A P^{2}=3^{2}-2^{2}$

$$
\begin{aligned}
& A P=5 \\
& =\sqrt{5}
\end{aligned}
$$

$\therefore \tan \angle A P B=\frac{2}{\sqrt{5}}$

No one picked up on the fact that AP turned out to be longer than the side of the square!
... other than that it was well done.
(II)
(6) a) is

$$
\begin{aligned}
& f(x)=x^{3}(2-x) \\
& f(x)=2 x^{3}-x^{4}
\end{aligned}
$$

i)

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-4 x^{3} \\
& f^{\prime \prime}(x)=12 x-12 x^{2}
\end{aligned}
$$

Stationary points $f^{\prime \prime}(x)=0$

$$
\begin{aligned}
& 6 x^{2}-4 x^{3}=0 \\
& 2 x^{2}(3-2 x)=0 \\
& x=0 \\
& 3-2 x=0 \\
& \begin{aligned}
2 x & =3 / 2
\end{aligned}
\end{aligned}
$$

when $x=0$

$$
\begin{aligned}
& x=0 \\
& y=0
\end{aligned} \quad(0,0)
$$

when $x=\frac{3}{2}$

$$
\begin{aligned}
y & =2 \times\left(\frac{3}{2}\right)^{3}-\left(\frac{3}{2}\right)^{4} \\
& =1 \frac{11}{16} \quad\left(1 \frac{1}{2}, 1 \frac{11}{16}\right)
\end{aligned}
$$

Qb: $\mathrm{Comm} / 3$ Talc $/ 8$

Overall, quite poorly done. Incorrect application of the product rule to differentiate $x^{3}(2-x)$ caused many grief! Note that it is MuCH easier to expand first

Test nature
when $x=0$

$$
y^{\prime \prime}=0
$$

\therefore Concavity changes, so there is a
when $x=1 \frac{1}{2}$
(6)a) ii) Points of inflexion $f^{\prime \prime}(x)=0$

$$
\begin{aligned}
12 x-12 x^{2} & =0 \\
12 x(1-x) & =0 \\
x=0 \quad x & =1
\end{aligned}
$$

Horizontal point of inflexion at $(0,0)$ from part (i)
when $x=1$

$$
\begin{aligned}
x & =1 \\
y & =2-1 \\
& =1
\end{aligned} \quad(1,1)
$$

check concavity change $\cdot y^{\prime \prime}=12 x-12 x^{2}$

$x=\frac{1}{2}$	$x=1$	$x=1 \frac{1}{2}$
3	0	$-9 \longleftarrow$ must have
+	0	-

Sivice concavity changes, there is a point of inflexion at $(1,1)$
iii) Endpoints
\therefore possible horizontal point of inflexion. Check concavity change $y^{\prime \prime}=12 x-12 x^{2}$

$x=-1$	$x=0$	$x=1 / 2$
-24	0	3
-	0	+

$x=-1$
$y=-2-1$ $=-3$
$(-1,-3)$
$x=2$
$y=2 \times 8-2^{4}$

$$
=16-16
$$

$$
=0
$$

$$
(2,0)
$$

.. horizontal point of inflexionat (0,0)

$$
\begin{aligned}
y^{\prime \prime} & =12 \times 1 \frac{1}{2}-12 \times\left(1 \frac{1}{2}\right)^{2} \\
& =-9
\end{aligned}
$$

$y^{\prime \prime}<0$ concave down
\therefore A maximum turning point at $\left(1 \frac{1}{2}, 1116\right)$
Also, when determining the nature of an S.P or checking concavity changes you must substitute actual values, simply writing + or - is not enough.

- Many forgot to check for a change in concauty
- Note that the number you choose to substitute here 7

$$
x^{\downarrow}=?|x=1|
$$

has to be between $0 \& 1$
(6) b) Volume about the xaxis

$$
\begin{aligned}
V & =\pi \int_{a}^{b} y^{2} d x \\
& =\pi \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left(2 \sec \frac{x}{2}\right)^{2} d x \\
& =\pi \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left(4 \sec ^{2} \frac{x}{2}\right) d x \\
& =4 \pi\left[\frac{1}{\frac{1}{2}} \tan \frac{x}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\
& =4 \pi\left[2 \tan \frac{x}{2}\right]_{\pi / 3}^{\pi / 2} \\
& =8 \pi\left\{\tan \frac{\pi / 2}{2}-\tan \frac{\pi}{2}\right\} \\
& =8 \pi\left\{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}\right\} \\
& =8 \pi\{\{1
\end{aligned}
$$

Q7 a)

$$
\begin{gathered}
9^{x}-4.3^{x}+3=0 \\
\left(3^{x}\right)^{2}-4.3^{x}+3=0
\end{gathered}
$$

Let $m=3^{x}$

$$
\begin{array}{ll}
m^{2}-4 m+3=0 \\
(m-3)(m-1)=0 \\
m=3 & m=1 \\
3^{x}=3 & 3^{x}=1 \\
x=1 & x=0
\end{array}
$$

b) P
$P(x, y) \quad R(-1,0) \quad S(2,0)$

$$
\begin{aligned}
& P R=2 P S \\
& P R^{2}=4 P S^{2}
\end{aligned}
$$

* Many incorrectly squared $\left(2 \sec \frac{x}{2}\right)^{2}$ to $4 \sec ^{2 x} / 4$ which meant they eventually could not find a neat exact form of the volume.
* Many forgot to divide by the $\frac{1}{2}$

$$
\text { ii) } \quad x^{2}-6 x+9+y^{2}=-5+9
$$

$$
(x-3)^{2}+y^{2}=4
$$

* Note $\frac{\pi / 2}{2}=\pi / 4$, not $\frac{\pi}{2} \times 2=\pi$

Cak/3

QT: | Rear $/ 2$ | |
| :--- | :--- |
| | $\operatorname{Comm} / 4$ |
| | Talc $/ 2$ |

This question was really well done. Good work $\ddot{ }$
\therefore the locos is a circle with
c) i)

$$
\begin{aligned}
\therefore x & =\frac{\pi}{6}, \frac{\pi-\frac{\pi}{6}}{} \\
x & =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

ii)

Read the sentence carefully.
It says that

$$
P R=2 P S .
$$

Don't forget to square the 2, and don't try to fudge the answer.

Rear $/ 2$
When completing the square, don't forget to add to both sides. centre $(3,0)$ and radius 2 .

Comm /2

$$
\begin{gathered}
2 \sin x-1=0 \quad \text { for } \quad 0 \leqslant x \leqslant 2 \pi \\
\sin x=\frac{1}{2}
\end{gathered} \quad
$$

\sin is positive in $Q 1 \times Q 2$
must show

Range is $-3 \leq y \leq 1$
Period is 2π.
If you got this wrong, practise as many trig -graphs as you can. This is a standard question.
iii)

$$
\begin{aligned}
A & =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}(2 \sin x-1) d x \\
& =[2 \cos x-x]^{\frac{5 \pi}{6}} \\
& =\left\{-2 \cos \frac{5 \pi}{6}-\frac{5 \pi}{6}\right)^{\frac{\pi}{6}}-\left(-2 \cos \frac{\pi}{6}-\frac{\pi}{6}\right) \\
& =\left\{-2 x-\frac{\sqrt{3}}{7}-\frac{5 \pi}{6}\right)-\left(-\frac{2 \sqrt{3}}{6}-\frac{\pi}{6}\right) \\
& =\sqrt{3}-\frac{5 \pi}{6}+\sqrt{3}+\frac{\pi}{6} \\
& =2 \sqrt{3}-\frac{5 \pi}{6}+\frac{\pi}{6} \\
& =2 \sqrt{3}-\frac{2 \pi}{3} \quad v^{2} \xrightarrow{O R}=1.37 v^{2}
\end{aligned}
$$

Lots of students could integrate property but Then couldn't evaluate. You must be able to evaluate exact trig. ratios $\frac{\text { un any quadrant. }}{\cos \frac{\pi}{6} \text { (quad) }}$
$=\frac{\sqrt{3}}{2}$
$\cos \frac{5 \pi}{6}($ mad 2$)$ $\cos \frac{5 \pi}{2 \pi}$
$=-\frac{\sqrt{3}}{2}$
-
b) i) $f(x)=\frac{e^{x}}{x}$
domain: all real x where $x \neq 0$
ii)

$$
\begin{aligned}
u=e^{x} \quad v=x \\
u^{\prime}=e^{x} \quad v^{\prime}=1 \\
\begin{aligned}
f^{\prime}(x) & =\frac{x e^{x}-e^{x}}{x^{2}} \\
& =\frac{e^{x}(x-1)}{x^{2}}
\end{aligned}
\end{aligned}
$$

iii) Stat. pt. when $f^{\prime}(x)=0$

$$
\begin{aligned}
& \frac{e^{x}(x-1)}{x^{2}}=0 \\
& e^{x}(x-1)=0
\end{aligned}
$$

$$
\left.\begin{array}{l}
e^{x}=0 \text { has no solution } \\
x-1=0 \\
x=1
\end{array}\right\}
$$

at $x=1, y=e$
test nature at $(1, e)$

$$
\begin{array}{l|c|c|c}
x & \frac{1}{2} & 1 & 2 \\
\hline f^{\prime}(x) & -3.3 & 0 & +1.8 \\
\text { a minimum turning point of }(1 . e)
\end{array}
$$

iv) $e^{x} \neq 0$ for all real x and $x \neq 0$
hence $\frac{e^{x}}{x} \neq 0$ for all real x

- may ." students dido" writ" all neal x
-dove will and clearly set out

v) as $x \rightarrow-\infty$

$$
\begin{aligned}
& e^{x} \rightarrow 0 \\
\therefore & \frac{e^{x}}{x} \rightarrow 0
\end{aligned}
$$

-don well

Comm/1
vi)

Must show

- asymptote at $x=0$
- correct shape
- stat. pt. at $(1, e)$ min.

Comm /2

- very poorly dan. It was surprise that struts who did the algebra will co-ldr it contemp it into graph y the function correctly

Qq
a)

$$
\begin{aligned}
& y=x^{2}-6 x+10 \\
& x^{2}-6 x=y-10 \\
& x^{2}-6 x+9=y-1 \\
& (x-3)^{2}=y-1
\end{aligned}
$$

vertex $(3,1)$

$$
f . l .=\frac{1}{4} \quad \therefore \text { focus }\left(3,1 \frac{1}{4}\right)
$$

bi) $\int_{1}^{3} 5^{2 x} d x \quad h=\frac{3-1}{4}=\frac{1}{2}$

Well Pone

- be careful with your calculations and substitution into the formula

Cakc/2

Q10)
ai)

$$
\begin{aligned}
\text { ai) } \angle A D E= & \theta+\alpha(\text { exterior of } \triangle B C D=\text { sum of } \\
& 2 \text { opposite interior } \angle s) \\
\angle A E D= & \theta+\alpha(\angle s \text { opposiik }=\text { sides in an isosedes } \\
& \Delta \text { are equal }) \\
\angle A E D= & \angle E A B+\angle A B E\binom{\text { ext. } \angle \text { of } \triangle A B E}{=\text { sum opp. int } \angle s} \\
\therefore \angle E A B= & \angle A E D-\angle A B E \\
= & \theta+\alpha-\theta \\
= & \alpha
\end{aligned}
$$

There is more than one way to do this question. You must make sure your reasons are clear and concise. You must have a clear reason for each of the 3 steps. Learn The correct terminology.
Comm /3

Here's another way you could do it.

$$
\begin{aligned}
\angle B D C & =180^{\circ}-(\angle D B C+\angle D C B) \\
& \left.=180^{\circ}-(\theta+\alpha) \quad \text { (Angle sum } \triangle B D C=180^{\circ}\right) \\
\angle B O A & \left.=180^{\circ}-\angle B D C \quad-(\theta+\alpha)\right) \quad \text { (Angle sum of a straight } \\
& =180^{\circ}-\left(180^{\circ}-\left(\theta+\alpha \quad \text { line is } 180^{\circ}\right)\right. \\
& =180^{\circ}-180^{\circ}+\theta+\alpha \quad \\
& =\theta+\alpha
\end{aligned}
$$

$$
\begin{aligned}
\angle A E D & =\angle E D A \\
& =\theta+\alpha
\end{aligned}
$$

(Angles opposite equal sides in an isosceles Δ are equal.)

$$
\begin{aligned}
& =\theta+\alpha \\
\angle B E A & =180^{\circ}-\angle A E D \\
& =180^{\circ}-(\theta+\alpha) \\
& =180^{\circ}-\theta-\alpha
\end{aligned}
$$

(Angle sum of a straight line is 180°)
ii)

$$
\begin{aligned}
& \angle A B E=\angle C B D \quad \text { (given) } \\
& \angle B A E=\angle B C D \text { (proven in (i)) } \\
& \therefore \triangle A B E \| \triangle C B D \text { (equiangular) }
\end{aligned}
$$

iii) $\frac{A E}{C D}=\frac{B E}{B D} \quad \begin{gathered}\text { (corr. sides in sim } \Delta s \text { are in } \\ \text { the same ratio) }\end{gathered}$

$$
A E_{x} B D=B E_{x}(D
$$

since $B D=A E$ (given)

$$
A E^{2}=B E \times C D
$$

This part can be done independent of part ii.
Please use the word equiangular not the abbreviation (AA) Read 11)

You have to write the reason as well as the ratio to get this mark.
(b)

$$
\begin{array}{c|l}
\tan \alpha=\frac{b}{x} \\
x=\frac{b}{\tan \alpha} & \text { (1) }
\end{array} \quad \begin{aligned}
& \cos \alpha=\frac{x+a}{y} \\
& \therefore y=\frac{x+a}{\cos \alpha}
\end{aligned}
$$

Substitute (1) into (2)

$$
\begin{aligned}
& y=\frac{b}{\tan \alpha}+a \\
& \cos \alpha \\
&=\frac{b}{\tan \alpha \cos \alpha}+\frac{a}{\cos \alpha} \\
&=\frac{b}{\frac{\sin \alpha}{\cos \alpha} \times \cos \alpha}+a \sec \alpha \\
&=\frac{b}{\sin \alpha}+a \sec \alpha \\
&=\cdot b \operatorname{cosec} \alpha+a \sec \alpha
\end{aligned}
$$

(Angle sum $\triangle A B E=180^{\circ}$)
ii)

$$
y=a \sec \alpha+b \operatorname{cosec} \alpha
$$

(21)

$$
=\frac{a}{\cos \alpha}+\frac{b}{\sin \alpha}
$$

$$
=a(\cos \alpha)^{-1}+b(\sin \alpha)^{-1}
$$

using the chain rule

$$
\begin{aligned}
\frac{d y}{d \alpha} & =-a(\cos \alpha)^{-2} x-\sin \alpha \\
& =\frac{a \sin \alpha}{\cos ^{2} \alpha}-\frac{b \cos \alpha}{\sin ^{2} \alpha}
\end{aligned}
$$

common denominator.

$$
=\frac{a \sin ^{3} \alpha-b \cos ^{3} \alpha}{\sin ^{2} \alpha \cos ^{2} \alpha}
$$

iii)

$$
\begin{gathered}
\frac{a \sin ^{3} \alpha-b \cos ^{3} \alpha}{\sin ^{2} \alpha \cos ^{2} \alpha}=0 \\
a \sin ^{3} \alpha=b \cos ^{3} \alpha \\
\frac{\sin ^{3} \alpha}{\cos ^{3} \alpha}=\frac{b}{a} \\
\tan ^{3} \alpha=\frac{b}{a} \\
\tan \alpha=\sqrt[3]{\frac{b}{a}}
\end{gathered}
$$

The chain Rule is.

$$
\frac{d}{d x}(f(x))^{n}=n f(x)^{n-1} \times f^{\prime}(x)
$$

Note that
$\{a$ is a constant $\{\alpha$ is a variable. If you use the quotient rule on each part $\left.\begin{array}{lll}\frac{e q}{a}\left(\frac{a}{c o s}\right) & u=a & v=\cos \alpha \\ \frac{a}{d \alpha}(\cos \alpha\end{array}\right) \quad \begin{array}{lll}u^{\prime}=0 & v=-\sin \alpha\end{array}$

Because a is a constant its derivative is ono 1 .

This part was done wen by those who attempted it.

Leas 1)
iv) $\min _{r}$ when $\tan \alpha=\sqrt[3]{\frac{b}{a}}$

$$
y=a \sec \alpha+b \operatorname{cosec} \alpha
$$

since $\sec ^{2} \alpha=\tan ^{2} \alpha+1$

$$
\sec x=\sqrt{\tan ^{2} x+1}
$$

also
Congratulations if you made it this far and got this question out!

$$
\begin{gathered}
\text { also } \left.\begin{array}{c}
\operatorname{cosec}^{2} \alpha=1+\cot ^{2} \alpha \\
\operatorname{cosec} \alpha=\sqrt{1+\cot ^{2} \alpha} \\
\therefore y=a \sqrt{1+\tan ^{2} \alpha}+b \sqrt{1+\cot ^{2} \alpha} \\
\text { since } \tan ^{2} \alpha=\left(\left(\sqrt[3]{\frac{b}{a}}\right)^{2}\right)^{2} \cot ^{2} \alpha=\left(\frac{b}{a}\right)^{-\frac{2}{3}} \\
\therefore \tan ^{2} \alpha=\left(\frac{b}{a}\right)^{\frac{2}{3}} \quad \cot ^{2} \alpha=\left(\frac{a}{b}\right)^{\frac{2}{3}} \\
\therefore y
\end{array}\right)
\end{gathered}
$$

Keas 2
Heres another way to do iv i

$\tan \alpha=\frac{\sqrt[3]{b}}{\sqrt[3]{a}}$	$\sqrt{a^{2 / 3}+b^{2 / 3}} / \sqrt[3]{b}=b^{1 / 3}$		
$\sec \alpha=\frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{a^{1 / 3}}$			
$\sqrt[3]{a}=a^{1 / 3}$		\quad	
:---:			
Notitmat			
$\sqrt{x^{2}+y^{2}} \neq x+y$			
and $(x+y)^{2} \neq x^{2}+y^{2}$			

$$
\operatorname{cosec} \alpha=\frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{b^{1 / 3}}
$$

Note mat

$$
\sqrt{x^{2}+y^{2}} \neq x+y
$$

$$
\text { and }(x+y)^{2} \neq x^{2}+y^{2}
$$

Sone basic algebriac mistakes were sean in the arisweus to this part.

$$
y=a \sec \alpha+b \operatorname{cosec} \alpha
$$

$$
=a \times \frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{a^{2 / 3}}+b \times \frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{b^{1 / 3}}
$$

$$
=a^{2 / 3} \sqrt{a^{2 / 3}+b^{2 / 3}}+b^{2 / 3} \sqrt{a^{2 / 3}+b^{2 / 3}}
$$

$$
=a^{2 / 3} \sqrt{a^{2 / 3}\left(1+\left(\frac{b}{a}\right)^{2 / 3}\right)}+b^{2 / 3} \sqrt{\left.b^{2 / 3}\left(\frac{a}{b}\right)^{2 / 3}+1\right)}
$$

$$
=a^{2 / 3} \times a^{1 / 3} \sqrt{1+\left(\frac{b}{a}\right)^{2 / 3}}+b^{2 / 3} \times b^{1 / 3} \sqrt{1+\left(\frac{a}{b}\right)^{2 / 3}}
$$

$$
=a \sqrt{1+\left(\frac{b}{a}\right)^{2 / 3}}+b \sqrt{1+\left(\frac{a}{b}\right)^{2 / 3}}
$$

