

SCEGGS Darlinghurst

2008

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks – 120

- Attempt Questions 1–10
- All questions are of equal value

BLANK PAGE

Total marks – 120 Attempt Questions 1–10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Quest	tion 1 (12 marks)	Marks
(a)	Find the value of $\sqrt{\frac{19}{4\pi}}$ correct to two decimal places.	2
(b)	Solve $x - 3(2 - x) = 0$.	2
(c)	Factorise $a^3 - 27$.	2
(d)	Write 0.526 in the form of $\frac{a}{b}$.	2

(e) Kate invests \$5500 for 3 years. The investment earns 7.5% p.a. compounded 2 annually. How much interest does Kate's investment earn after 3 years?

(f) Find a primitive function of
$$4 - \frac{1}{x^2}$$
.

Question 2 (12 marks) Use a SEPARATE writing booklet.

(a)

O is the origin, B is the point (1, 6) and C is the point (5, 0).

Copy this diagram into your writing booklet.

(i)	Find the co-ordinates of the point <i>P</i> such that <i>OBPC</i> is a parallelogram. Label this point on your diagram.	1
(ii)	Find, in its simplified form, the exact length of BC.	2
(iii)	Find the area of the parallelogram <i>OBPC</i> .	1
(iv)	Hence or otherwise, find the perpendicular distance from P to the diagonal BC .	2
(v)	Find $\angle BCO$ to the nearest degree.	2

(b) The quadratic equation $4x^2 - 3x + 1 = 0$ has roots α and β . Find:

(i)
$$\alpha + \beta$$
 1

(ii)
$$\alpha\beta$$
 1

(iii)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 2

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) Find:

(c)

(i)
$$\frac{d}{dx}(\sin 3x)$$
 2

(ii)
$$\frac{d}{dx}\left(x^2 e^x\right)$$
 2

(b) Evaluate each of the following correct to 3 decimal places:

(i)
$$\int_{0}^{1} e^{-4x} dx$$
 2
(ii) $\int_{1}^{5} \frac{dx}{\sqrt{x}}$ 2

In the isosceles triangle *ABC*, $\angle ABC = \angle ACB = \alpha$. The points *D* and *E* lie on *BC* and *AC*, so that AE = AD. Let $\angle BAD = \beta$.

(i)	Explain why $\angle ADC = \alpha + \beta$.	1
(ii)	Find $\angle DAC$ in terms of α and β . Give reasons.	1
(iii)	Hence, or otherwise, find $\angle EDC$ in terms of β .	2

Question 4 (12 marks) Use a SEPARATE writing booklet.

2

3

3

- (a) The movie theatre on the QEII is specially designed. The floor narrows from front to back so that each row of seats behind the first has two seats less than the row in front of it. The front row has 37 seats.
 (i) How many seats are in the nth row?
 - (ii) What is the greatest value *n* can take? 1

The movie theatre seats 360 people. How many rows of seats are there?

(b) A function is defined as $y = \ln x$.

(iii)

(i) Copy the table into your writing book and complete it giving answers to 3 decimal places.

x	2	3	4	5
$y = \ln x$				

- (ii) Using the trapezoidal rule, find an approximation, to 1 decimal place, of $\int_{2}^{5} \ln x \, dx$ using 4 function values.
- (iii) Sketch the graph of $y = \ln x$ and use it to explain why your approximation 2 in part (ii) will be less than the exact value of the integral.

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a) (i) Sketch
$$y = 2\sin 2x$$
 for $0 \le x \le 2\pi$.

(ii) Calculate the area bounded by the curve
$$y = 2\sin 2x$$
 and the x-axis
between $x = 0$ and $x = \frac{3\pi}{4}$.

(b) A box contains 4 red and 5 green marbles. Anna randomly selects 3 marbles one at a time and without replacement.

(i)	What is the probability that she selects green, red, green in that order?	1
(ii)	What is the probability that she selects a majority of green marbles?	2

(c) (i) If
$$f(x) = \log_e \sqrt{x}$$
 evaluate $f(e^2)$. 1

(ii) Find the equation of the tangent to the curve $y = \log_e \sqrt{x}$ at the point **3** where $x = e^2$.

2

Question 6 (12 marks) Use a SEPARATE writing booklet.

(a) For		For the curve $y = x^3 - 3x$:				
	(i)	Find the stationary points and determine the nature of these points.	3			
	(ii)	Show that $(0,0)$ is a point of inflexion.	1			
	(iii)	Sketch the curve for $-2 \le x \le 3$.	2			
	(iv)	Hence, or otherwise, evaluate $\int_{-1}^{1} x^3 - 3x dx$	1			

 (b) Carl the caterpillar woke up one morning and he was feeling very hungry. So he found himself a big leaf and started munching. After 10 minutes he had eaten 5cm of the leaf. Since his tummy was starting to fill up, in the next 10 minutes he ate 3.75 cm of the leaf. In the next 10 minutes he ate 2.8125 cm of the leaf and so on.

If the leaf was 25 cm long, would Carl finish eating the leaf for breakfast? Give reasons.

(c) (i) Find
$$\frac{d}{dx} \left(e^{\tan 2x} \right)$$
. 1

π

(ii) Hence, evaluate
$$\int_{0}^{\frac{\pi}{6}} (\sec^2 2x) e^{\tan 2x}$$
. Leave your answer in exact form. 2

Question 7 (12 marks) Use a SEPARATE writing booklet.

- (a)For the parabola $y^2 2y 4x 7 = 0$, find:(i)the co-ordinates of the vertex.(ii)the co-ordinates of the focus.(iii)the equation of the directrix.(iv)Sketch $y^2 2y 4x 7 = 0$, labelling the vertex, focus and directrix only.
- (b) The diagram shows the graph of $y = e^x 1$ and $y = e^{-x}$.

(i) Show that the curves intersect when:

$$e^{2x}-e^x-1=0$$

- (ii) Use the results in part (i) and the substitution $m = e^x$, to show that the *x* co-ordinate of the point of intersection of the curves is approximately 0.481.
- (iii) Find the area of the shaded region to 1 decimal place. 2

2

Marks

Question 8 (12 marks) Use a SEPARATE writing booklet.

(a) The graph below shows y = f'(x).

Copy the graph into your writing booklet.

Higher School Certificate Trial Examination, 2008

Mathematics

- (i) For which values of x is the curve of y = f(x) increasing. 1
- (ii) On the same axes sketch y = f(x) clearly labelling the important features 3 at x = -2, x = -1 and x = 1.

(b) (i) For what values of k does the quadratic equation $kx^2 + (k+3)x - 1 = 0$ 3 have no real roots.

(ii) Hence, explain why $y = kx^2 + (k+3)x - 1$ can never be positive definite. 1

Question 8 continues on page 10

3

Question 8 (continued)

(c) The graph is $y = \sec 2x$ from x = 0 to $x = \frac{\pi}{8}$.

- (i) The x-coordinate of A is $\frac{\pi}{8}$. Find the y-coordinate. 1
- (ii) The shaded region is rotated around the *x*-axis.Show that the volume generated by this rotation is given by:

$$\frac{\pi^2}{4} - \pi \int_{0}^{\frac{\pi}{8}} \sec^2 2x \, dx$$

and hence find the exact volume.

Question 9 (12 marks) Use a SEPARATE writing booklet.

- Solve $2\sin^2 x 3\cos x = 0$ for $0 \le x \le 2\pi$. (a)
- (b) A grain silo is constructed from a right circular cone and cylinder of equal heights "h" m. The slant edge of the cone is 9 m and the radius of the cylinder is "*r*" m.

(i) Write down the equation linking r and h .	1
(ii) Show that the volume of the silo is given by:	2
$V = 108\pi h - \frac{4}{3}\pi h^3$	
(iii) Find the height of the silo that gives a maximum volume.	3
In the Jackpot Lottery, the probability of the Jackpot prize being won in any draw is approximately 1 in 50.	
(i) What is the probability that the Jackpot prize will be won in each of three consecutive draws?	1

(ii) How many consecutive draws must be made for there to be a 50% 2 chance that at least one Jackpot prize will have been won?

(c)

Marks

3

2

1

Question 10 (12 marks) Use a SEPARATE writing booklet.

(a) A regular octagon is drawn inside a circle with centre O so that its vertices lie on the circumference. The circle has radius 1 cm.

(i) Find the area of $\triangle AOB$ and hence find the area of this octagon. (Leave your answer in surd form.)

Another regular octagon is drawn outside the circle. The altitude *OM* of $\triangle OPS$ is 1 cm.

- (ii) Find the area of $\triangle OPS$ and hence find the area of this outer octagon. 2
- (iii) By considering the results in parts (i) and (ii), show that:

$$\sqrt{2} < \frac{\pi}{2} < 4 \tan \frac{\pi}{8}$$

Question 10 continues on page 13

Question 10 (continued)

(b)

Miss calcu The I repay	Toolan decides to borrow \$400 000 to buy an apartment. Interest is alated monthly on the balance still owing, at a rate of 9.12% p.a. loan is to be repaid at the end of 25 years with equally monthly yments of \$ <i>M</i> . Let \$ A_n be the amount owing after the n^{th} repayment.	
(i)	Derive an expression for A_{300} .	2
(ii)	Find the value of <i>M</i> .	2
(iii)	Calculate the amount still owing, to the nearest dollar, after 10 years of payments at this rate.	1
(iv)	At the end of 10 years, the interest rate is increased to 12% p.a. and Miss Toolan changes her repayments to \$3800 per month.	2

How many months are needed to pay off the remainder of the loan?

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

NOTE: $\ln x = \log_e x$, x > 0

			: [
2008 Trial HSC MATHEMATILS - Sol-tions			 		\$
Q1 a) 1.23 / d1 for correct rounding.	Done very well		M B p		many stratutes did at
b) $x - 3(2 - n) = 0$	Quik a few students			en Haurt I altra,	This is why chidents a
$\chi - 6 + 3\chi = 0$	made silly errors.	· · · · · · · · · · · · · · · · · · ·		n an	asked to copy n m
42-6=0	The most energing was				place ! Many students a
4n=6	Minking it was a		¥ `./	7	they were dealing -in
<u>n=6</u>	quadratic (x-3/2-x)=0			 tem temporary intermediated and provide the second provided and the second provided and the second sec	chambes (second it 100
-3 1	· · · · · · · · · · · · · · · · · · ·				liked one) The diagona
		;)	P(6,6)		of the shape do NOT 5
c) $a^{3}-27=(a-3)(a^{2}+3a+9)$	Don fairly well,				at right ages. A frew
	most common mistake		$BL = \int (5-1)^{1} + (0-6)^{1}$	<u> </u>	students did tot under
	a ² +ba+9		$= \int 4^2 + (-6)^2$		that the vartices should
d) let x = 0.5262622	Done well. Most		= 110+36		histed cyclusly and pl
10x=5.262626 (1)	errors came from not		= \52		P. the wrong position
1000x = 526.262626 (j)	aligning the excurring	+++	= 2,13 units		
(2) - 0 990n = 521	decumals			n.) renova	
$- \frac{\gamma = 521}{990} $	<u>re. 52.6</u>	()	A=l+h		Many responses were ver
	526 . 2		= 5×6		bry and complicated. B
			= 30 units /		guand by the naiting
$e) A = P(1 + \frac{r}{100})$	Most common misteke			·	scheme.
$= 5500 \left(1 + \frac{75}{100} \right)^{-1}$	was not reading the	iv)	Area of Mogram OBPC = A	Na DOBL + ARA DUBP	Som stidents who us
= 6832.63	question. It asked		$+$ $30 = 2 \times Am$	DUBP DOBL = DUBP	me distance or other
$T_{n} = 6832.63 - 5500$	for the interest not		$\frac{30}{2} = 2 \times 1 \times 5$	(x bldist Lonp v	for miles, made careless
÷ 1332.63	how much it was work		h dist from P = 30		substitution errors
Kale receives \$1232.63 interst.	n - 1			its. Reas-2	an i ng panlaki talagit i antat i an
·			- J	а с начати начат с ламатичного се н	Many students introduc
f) 4n + n''		v)	Sin LEBP = 15		an angu O without upd
$= 4m + 1 + C \qquad (alc - 2)$	Done well		5		st on their diagram. T
······			= 56 (nevert	degree)	nater has no knowled
			LBLO = 56 (alterna	angues in parallel these)	of ulmene Q is . S.m. lar
				Keas - 2	very her students correct
				· · · · · · · · · · · · · · · · · · ·	he secter and iden
					> 7

$(\alpha_{2}, \alpha_{1}, \beta_{1}) \times + \beta = -\frac{\beta}{4}$			c) i) exterior angle of	a triage equals	iplected to say the w
= -(-3)	annan anusiteeteete		the sum of the ti	to apposite where anythis	pposite to get the no
= 3 /	······································			Conn-1	Other variations of
$\frac{i}{a} d\beta = c$	· · · · · · · · · · · · · · · · · · ·		(i) $\angle DAC = 180 - (x + B + 2)$) (angle son of a	the answer the mark
		·····	$= 180 - (2 + \beta)$	triangle is 180°)	was awarded as low
$\frac{1}{\chi^2} = \frac{\chi^2 + \beta^2}{\mu^2}$	Fere students could hand!			Comm-1	as it was explained
αP	the algebra many had		$iii)$ $\angle ADE = 180 - LDAL$		ii) well done as long a
$= (\alpha + \beta)^{2} - 2\alpha\beta$	learned off that		2		correct reason cas gi
(4 2)	(a+p)2 = x + p2 - 2 ap 1 + has		= 180 - [180 -	2x+p]	and it was attempted.
$= \left(\frac{3}{4}\right)^{2} - 2 \times \frac{1}{4}$	no idea have to apply it !		2		iii) In knot p'ne
$\left(\frac{1}{4}\right)^{L}$			$= 2d + \beta$		the solution should be
= 9 - 12	· · · · · · · · · · · · · · · · · · ·		= x + B		this ten.
16			: LEDL = LADL - LAD	E	Aist of non-alterphi
= 1			$= \alpha + \beta - (\alpha + \beta)$)	Here udicates one
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		= <u>B-</u> <u>B</u>	Recs-2	can in carlier part
(32 a); $(3n 3n)$	On the whole well		= ₽ /		to help with the sold
din	done. Som mix -p		2		
= 3(=>3x	with integration	Q	ra) i) No of such = 37+3	5 + 33+	
V V	From to see "+ c"		trus	is an A.P.	
ii) $d(\chi^2 e^{\chi}) = \chi^2 e^{\chi} + 2\chi e^{\chi} \sqrt{2}$	at this question		,)	ha=37	Well dow - se carel
$\frac{\partial n}{\partial n} = e^{n} \left(n^{2} + 2n \right) \sqrt{\frac{Calc - 4}{Calc - 4}}$	well down	1		d=2	d=-2
			\therefore To = a + (n-1)d		,
b);) $\int e^{-4\pi} d\pi = -1e^{-4\pi}$	Did not malate to	T .	= 37 + (n-1)x -	2	
4],	3 decimal alsus		= 37 - 22 +2		
-4 $3= -1e + 1e$	Pale 1 mark lost of		= 39-20	(own = 2	1 V Andrewski Karatan (1999) and a gradient of g
$\frac{4}{4}$	dans in half on h		1: 0th 402 39-20		
$4e^{4} 4$ = 0:245.					n an a' channan an a
			ii) find a T. So		Re constil with
(i) $\int dn = \int x^{-\frac{1}{2}} dn$			39-7.70	alpan	analy -ale of -
J. The JI	Identil, 1 = x - 2		2~ 4 39	Reas-1	U
$= \begin{bmatrix} 2\pi^{1/2} \end{bmatrix} \qquad (a) - 4$	Some caratum arrows		n E 19.5	1	
$= [2\sqrt{n}]^{5} = 2\sqrt{5} - 2\sqrt{1}$	with smallfun	·	hand had had a	1 cm 2 12 19 1	
= 2.472 \	suchiteding		+. greeks- veine n		<u>, , , , , , , , , , , , , , , , , , , </u>

Most students could iii) find n unn 5n = 360 - Learn for mula sketch this $S_{n} = A \left[2\alpha + (n-1)d \right]$.: 360 = 0 [2×37 + (n-1)×-2] Be careful of 720 = n(74 - 2n + 2)substitution. 720= n (76-2n) $720 = 76n - 2n^2$ Shouts who made the graph of yohn is concurre down, therefore 72 - 761 + 720 = 0 reference to their sket the area of the trapezia will be less than Algebra - factorising let abl of students 1 - 381 + 3L0 =0 the actual wear. This leads to an underestimation or displayed their (n - 18)(n - 20) = 3/ of the integral. V Comm-2 reason on their sketch god fre ner 1=18 1=ZO Mist be trapezia snu the greatest value for a 1319 Q5-a);) ho-gh! ten n=18 V for anoliticar V for period .: 18 rows of seats. Reas - 3 You mat chearly label the range values on the E4 1 2 2 T T 2 T 2 T 2 T
 x
 z
 3
 4
 5

 y=hn 0.693
 1.099
 1.386
 1.699
 well done y-axos. Don't assume Comm-2 the lines on your page cont as one unit. $= \int_{1}^{2} 2sn 2n dn + \int_{2}^{2} 2sn 2n dn$ ii) $\int_{2}^{5} 4nn \, dn = \frac{3-2}{2} \left[f(2) + f(3) \right] + \frac{4-3}{2} \left[f(3) + f(4) \right] + \frac{5-4}{2} \left[f(4) + f(5) \right] \checkmark$ Don't confige Poorly done. The total Trapezoidel ruh $I = \left[-\frac{\cos 2n}{1} + \left[\left[-\frac{\cos 2n}{1} \right]_{\text{E}}^{1} \right] \right] \sqrt{\frac{1}{2}}$ area should be split uiter Surpson's $= \frac{1}{2} \left[\frac{f(2) + 2xf(3) + 2f(4) + f(5)}{2} \right]$ no pieces with absol = (1+1) + (0-1) = (1+1) + (0-1) = (1-1) + (0-1) = (1-1) + (0-1) = (1-1) + (0-1)value wound my area $= \underbrace{1}_{2} \left[0.693 + 2 \times 1.099 + 2 \times 1.396 + 1.609 \right]$ that his selaw the 2 xrest does not x-&xis.___ mean 2x 1.386x 1.609 = 3.6 (to 1 d.p.) / Cale-3 Cuck the standard One decimal place. $\begin{array}{c} (5) i \\ (5) i \\$ ntegrals when fuding (25m2ndu

 $(\varphi(\alpha))$ $(\varphi = \chi^3 - 3\chi)$ The students shoudress a clear free diagram dy = 3x2-3 : for stationery points dy =0 had the greatest success 3-1-3=0 in this part. Don't 3(x2-1)=0 forgel DEP(E) El SO 3(n-1)(n+1)=0 much about the validity of your assuer N=1 N=-1 $\frac{y=-2}{d^2y} = 6\pi$ Several students did no P(Mapril of green) = P(2GIR) + P(3G) find the y-coordinate $\frac{1}{2} = \frac{1}{2} = \frac{1}$ Calc-lator errors not A point requires a pair = 3× (5+4+4)+5×++3 perchad here but of coordnaks. test (-1,2) d'y =-620 The :. (-1,2) is a max. E.p. / if you got it wrong, please practise your calc-lettor steps. Calc = 3 ii) when n=0 dig = 6x0 Comm-2 Many students appear to not understand that the c);) $f(e^2) = \log_e \sqrt{e^2}$ X -1 0 1 second derivatives shows = lage e Cale - 1 concauly should us : change of concaunty <u>--- x -1 0 1</u> : (0, 0) is a point of influxion. dey - 6 0 6 Turs 15 Notapai ii) y= lag. Th Very poorly done, <u>5i) x=-2 y=-2</u> = 1 loge M V which was surprising show poor understanding $\frac{d_{y}}{dm} = \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{2m}$ $\frac{2m}{2m} = \frac{1}{2e^{2}} + \frac{1}{(e^{2}, 1)}$ $\frac{d}{du}\left(\log_{2}f(u)\right) = \frac{1}{f(u)} \times f'(u)$ x=3 y=18 (3,18) and make the examinar very suspicious. $\frac{d}{dn} \left(\log_{2} n^{1/2} \right) = \frac{1}{n^{1/2}} \times \frac{1}{2} n^{-1/2}$ (-1,2) MRX, 2.0. Students must result the p.o.4 = $\frac{1}{2n}$ temptation to add extra $\frac{y-1}{2e^{2}y-2e^{2}} = x-e^{2}$ p. s. i's in their graph. Calle - 3 <u>(-2,-2)</u> (1, -2) my. Lp Alwaysdraw smooth wru. x-2e'y+1=0 Comm-2 not a straight line. Alue walcate udponts. Do diagrams in percel.

(i) Some $y_1 = x^{3-2n}$, we are odd finited as the series of the formation of the series of the s					C.
i) Som $y \in \mathbb{R}^{2}$ som in an odd forekan. $-\int y = 2y + 2^{2} - 2y + 2 $					÷۲
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	iv) Suce y= n3-3n is a odd function	Very few students understoo	Q7 a)i)y2-2y-4x-720		Careliss mistatus
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\int x^3 - 3x dx = 0 V$	Ju di flerner between an	y2-2y = dx+7		with completing the
b) Arout since $S + 2 + 3 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3$	Pecs - 1	integral and an area. Moss	$y_{-2y+1}^{2} = 4n \pm 8$		squar.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		shients noceally found	$(y-1)^{2} = 4(n+2)$		Some students had
$\frac{1}{1 + \frac{1}{2}}$ $\frac{1}{1 + \frac{1}{2}}$ $\frac{1}{2 + \frac{1}{2}}$ $\frac{1}$	b) Amount ector = 5+3.75+2.8125+	he area.	: vertax (-2,1)	<u> </u>	no idea
$\frac{1}{1 + \frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}$					Marles cared forward
$\frac{1}{1-\frac{1}{2}}$ $\frac{1-\frac{1}{2}}{2}$ $\frac{1-\frac{1}{2$	GP 4=5	Best are us - seal lumbra	ii) 4a=4		from number raide
$\frac{1-\frac{3}{4}}{20}$ $\frac{1-\frac{3}{4}$		sun atter answers that	16 = 1		(i d)
$\frac{1}{20}$	1-32 Rear-2		f_{-1} (-1)	/	
$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$	= 20				
$\frac{ a ^{2}}{ a ^{2}}$	· Su Zarize (c.) + line h		ii) in al directory n-	-3 /	
$\frac{1}{2} \int_{0}^{1} \left(e^{\frac{1}{2} - e^{\frac{1}{2}}} \right) e^{\frac{1}{2} - e^{\frac{1}{2}}} = \frac{1}{2} \int_{0}^{1} \left(e^{\frac{1}{2} - e^{\frac{1}{2}}} \right) e^{\frac{1}{2} - e^{\frac{1}{2}}} = \frac{1}{2} \int_{0}^{1} \left(e^{\frac{1}{2} - e^{\frac{1}{2}}} \right) e^{\frac{1}{2} - e^{\frac{1}{2}}} e^{\frac{1}{2} - e^{\frac{1}{2}}} = \frac{1}{2} \int_{0}^{1} \left(e^{\frac{1}{2} - e^{\frac{1}{2}}} \right) e^{\frac{1}{2} - e^{\frac{1}{2}}} e^{\frac{1}{2} - e^{$	V. f				
$(-)) d (e^{inter})$ $= 2 \sec^{2} 2n e^{2} 2n e^{$					Multobel 3 Cata
$\frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_$	c)i) d (e terter)	· · · · · · · · · · · · · · · · · · ·		generation and a star and a second	ad have correct
$= \frac{2 \tan^{2} \ln x}{\ln \pi}$ $= \frac{2 \tan^{2} \ln x}{\ln \pi}$ $= \frac{2 \tan^{2} \ln x}{\ln \pi}$ $= \frac{1}{2} \int \frac{(2 \tan^{2} \ln x)}{\ln \pi} e^{-\frac{1}{2} \ln \pi}$ $= \frac{1}{2} \int \frac{(2 \tan^{2} \ln x)}{\ln \pi} e^{-\frac{1}{2} \ln \pi}$ $= \frac{1}{2} \left[\frac{(2 \tan^{2} \ln x)}{\ln \pi} e^{-\frac{1}{2} \ln \pi}$ $= \frac{1}{2} \left[\frac{(2 \tan^{2} \ln x)}{\ln \pi} e^{-\frac{1}{2} \ln \pi} e^{-\frac{1}{$					ducha al accat
$\frac{1}{10} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} dx$ $= \frac{1}{12} \int \frac{1}{(2 \operatorname{sec}^{1} \operatorname{kn})} e^{\frac{1}{10} \operatorname{kn}} e^{\frac{1}{10} $	$=$ $2 c_1^2 c_2^2 c_1 c_2^2$	Many students old not pay	(-1,1)	/ for arcom	- Civerin of J. J.
$\frac{1}{12} \int \frac{1}{(2 \tan^2 \ln) \ln^2} dn$ $= \frac{1}{2} $		adequate attention to		.J	
$i \int \int (\sec \ln b) e^{-\pi \ln b} e^{-\pi $	The second a	detail and omitted 2			
$\frac{1}{2} = \frac{1}{2} \int_{0}^{1} (2scc^{2}su) e^{-itt} du$ $= \frac{1}{2} \int_{0}$	$\frac{1}{1} \int \frac{(\sec(-2\pi))e}{1} dx$	n 2suc ln c			••••••••••••••••••••••••••••••••••••••
$= \frac{1}{2} \begin{bmatrix} 22ee 2n \\ e^{2} e^{2} \\ $, f (, z) tantr .		(X=-3]	(Pmm-2	
$= \frac{1}{1} e^{2m} e^{2m}$ $= \frac{1}{1} e^{2m} e^{2m$	$= \frac{1}{2} \int (2xc^2n)c dn$	many could not relate			1. mai
$= \frac{1}{2} \frac{1}{2}$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - e^{\frac{1}{2}} - \frac{1}{2} \right]$ $= \frac{1}{2} \left[\frac{1}{4} \ln \pi i_3 - \frac{1}{2} + \frac{1}{2} \ln \pi i_3 + 1$	Jan 2n July	the parts and neoscatty			
$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$ $= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{$	= $1e$ 2 2 3	ford 20 minsteed	(b) i) to find the point of	- phrsection solue	First nark most
$= \frac{1}{1}(e^{-e^{-1}})$ $= \frac{1}{2}(e^{-e^{-1}})$ $= \frac{e^{45}-1}{2}$ Culc - 3 Culc	(fan Tilz teno)	of le	gun litereorsy y= e		students got havene
$= \frac{1(e^{2} - e)}{2}$ $= \frac{e^{3} - 1}{2}$ Culc - 3 Culc	= 1e - e / 2	. 14 Mai Main (ý =e	$\frac{1}{1}$	most hidged to sho.
$\frac{2^{N-1}}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2} = e^{N-1}$ $\frac{1}{2} = e^{N-1}$ No idea what is $e^{2N-e^{N}-1=0}$ $\frac{1}{2} = e^{N-1}$ No idea what is $e^{2N-e^{N}-1=0}$ $\frac{1}{2} = e^{N-1}$	$= \frac{1}{2} \left(\frac{e}{e} - e \right)$	· · · · · · · · · · · · · · · · · · ·	$\therefore e^{-1} = e^{-1}$	Lander and the second sec	equetion realiting in
$\frac{1}{2^{2n}-e^n} - 1=0$	$= \frac{e^{13}-1}{2}$ Cult-3	. · ·	$\frac{1}{2} = e^{n} - 1$		no 2nd nork.
e ²ⁿ -e ⁿ -1=0 / (omm-2 do after luting 2 equations aquel each other.			$1 = e^{2\pi} - e^{2\pi}$		No idea what to
equations aquet each other.	······································	-	<u>e²</u> -e ⁻ -1=0	/ (omm-2	do after litting 2
					equations agart each
					other.
				İ	

		i I	
i) let n = en	Basic use of '-b'	b) i) for no real nots & <0	
M ² -M-1=0	form a + nony	$\Delta = b^2 - 4\pi c$	Dre fairly well.
$\therefore M = -(-1) \pm J(-1)^2 - 4 \times 1 \times -1$	stidents nade	$= (k+3)^2 - 4xkx - \sqrt{2}$	Althom some studen
2×1	careless errors	= 12+6k+9+4h	solved (2+9)(2+1) 21
$= 1 \pm \sqrt{1+4}$		= k2 + 10 k + 9	as 12-1 122-9
2		: k2+10k+920	
2125	· · · · · · · · · · · ·	(k+9)(k+1) 20	
snue en 20	only one sola. a)	: - 9 2122-1 (Comm - 3	
hen e = 1+55	et 70		
:. n = 1 (1+15)	sharts did not	ii) for position definite A 20 and a 20	Very poorly explained
[2] Recs - 2	fud (125)	now a=k	Most students didn'
= 0.481	(-2)	since k has to be between -9 and -1	que enorgh detail.
0-42		for sop it will never be position	You had to relate
$\frac{1}{100} A = \int e^{-N} e^{N} + 1 dn$	This part could be	: a to / com-1	atok.
	complited in these arsunes	i il can nur y portu delata	e 1924 -
=-e ⁻ⁿ -e ⁿ +n	above parts correctly		-
oL	Be careful of signs	()) X = T 4 = Sec T	
$= \left(-\frac{e}{2} - \frac{e}{2} + \frac{10}{481} - \left(-\frac{e}{2} - \frac{e}{2} + \frac{10}{2} \right) \right)$	$e^{-n} - (e^{n} - 1)$		Done mell!
= 0.2 Jata /	=e ⁻ , -e ⁺ +1	چى ب ا د <i>ە</i> ن	
<u>Calc-2</u>	Learn how to integral		to be a manual to the second
· · · · · · · · · · · · · · · · · · ·	exponenticls.	= 12 1	· · ····
$(38 a)$; $\chi c - 2$ ($Calc - 1$		$\therefore A(\pi, \overline{\iota})$	•
* max tp.	Need to be careful		
i.e.9	with accuracy of	inVolume of solid = volume of dise - Tr (fm)) on	Most students didn
	the skelous.		know how to derive
	- A fue students draw	= TTr2h - T { sec 2n dn	his equation but it
	the point of influxion		was pleasing to see
hori V	at m=-1 as a horizontal	$= \Pi \times (J\overline{z}) \times \Pi - \Pi \int_{z}^{z} scc^{2} n dn $	/ that they then went
r	P-3.1		on to get the
I for correct concarry	A few students	$= \Pi^2 - \Pi \left(\int_{-\infty}^{\infty} s_{12} dn \right)$	correct volume
vr for upportant fecture	New the derivation	<u>+</u> <u>Jo</u>	
	graph.		2

			}		*ر.
					3
$= \pi^2 - \pi \left[1 + \tan 2n \right]^{\frac{1}{1}}$	ининининининининининининининининининин		108π - 4πh ² = 0		Be careful soling
4 12 -0	-		4TTL = 108 TT	n	for h - careless
= TT2 - TT [1 tan TT - 1 tan 0]			h ² = 27		errors being nade
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	·		$h = \pm 3\sqrt{3}$		
4 (2) /			suce a represents o	heyer	
$= \pi^2 - \pi$			h=35		
4 2.		ks	1 d2V = - 8Th		Text V" to text &
= $\pi^2 - i\pi$ units / Calc-3			The when h= 3/3		h for now. volum
+	· · · · · · · · · · · · · · · · · · ·		$d^2 V = -8$	<u>11</u> ×3J3	Renewar his a
			dh" = -2	151TLO V Calc-3	position value.
$(q_1, q_2) = 2s_1n^2 n - 3s_2 s_2 n = 0$	Alst of variations		1. h=353 ques a	maxium volume.	
$2(1-\cos^{3} N) - 3\cos n = 0$	for sn2n		· · · · · ·		
2-2(=52 × - 3(>7) = 0	Be careful to assure	(ز (ی	$P(3w) = (1)^{3}$	ł	Well done.
2100 (n+3100n-2=0	0474217.		(50)		
(2003n-1X 003n+2)=0			° 1	· · · · · · · · · · · · · · · · · · ·	
(0)n=1 (09n=-2	·		125000	- 	10 MIL 10
L No. solution as -16(00m61			}		, n v
RETT OF NEST Record		(<i>i</i> i)	P(at herd one un) =	1 - P(no wn)	Alst of students
3 3			i fuda sich that.		didn't know how
b);) r2+12 q2 by Py magoras' Mm	Very easy wark		1-(49	1 20.5	to set this up.
$(^{2} = S - w^{2})$	· /		(59	1	
5= JEI-12 63 5>0	when asked to show		(49)	1 ≤ 0.5	Very similar questio
	don't 'findage' to get		50	$r \leq h(0.5)$	avento you in the
ii) Volum of sib = TTr2h + 1 Tr2h	answer.		50		Last assessment.
$= 4 \operatorname{Tr}^{2} h$	Alst of statutes did		2/2/	$49) \neq \ln(0.5)$	
$\frac{3}{4\pi(81-h^2)h}$ (am-2)	and know the volume			$\frac{50}{2}$ (1) (0.5)	IT you are comme
3 = 10817h - 417h ³	of con formula.			$h(\frac{22}{2})$	art who a regation
3				> 34.3096	soldion ."Alambell
iii) max volum accurs when dV =0	Most students carried		∴n=35		shall be sounding
dh	forward (i) correctly		it would require	35 draws.	some modeles be
dV = 108π - 4π μ -	to gain this nork.				made !
Th	J			Reas - 2	

19 a) i) LAOB = 2T	F 400 000 (1.0076) - M(1+1.0076)
i A and a Linker shat Most stade is didn't	$A_3 \neq A_2 \neq 0.76 A_2 = M$
= 1 cm² realize they readed	$= \left[400000(1.0076)^{2} - 11.0076M - M \right] 1.0076 - M$
i area of the ostage = 8x 1 A=1abone	= 400 000 (1.0076 - 1.0076 - 1.0076M -M
= a Nony stude 1s - sud	= 400 000 (1.0076) - M (1+ 1.0076 + 1.00762)
$= 2.52 \text{ cm}^2 \checkmark A = \frac{1}{2} (2 \text{ (9-suo)})$	continuing the pattern
	A = 400 000 (1.0076) - M (1+1.0076++1.0076)
$\frac{1}{8} = \frac{1}{8} = \frac{1}$	(2mm - 2
and OM is an altitude) provides students	$\frac{1}{10} \frac{1}{100} = 0$
B OM Grade drie was recovered	
$\therefore PM = +m_{TT}$	r=1.0071 to nanipich
: Area D POS= 1xbxh	400 200 (1.0076) - Mx ((1.0076 -1) = 0 / Sn formla -1
$= \frac{1}{2} \times 2 \tan \pi \times 1$	1-0076-1 fu corract vi
· Area of the orthogon & Site F	$M_{1,0076} = 40000 (1.0076) M.$
	$M = 4.00000 (1.0016) \times 0.0076$
iii) Area of small octage & area of crach & area of	1 (1
lingtage	= 3389.72
252 < 1741 < Start	monstry nego ments are \$3389-12
252 L TT 4 8 to 5 Reas-5	Rec 2
$\frac{\sqrt{2}}{2} \leq \frac{1}{2} \leq \frac{4}{8} + \frac{1}{8}$	(iii) And Ano when M= 3389.72
	$\frac{ 120}{ 120 } = 2356 = 10 (110 - 116) = 10$
5) 9.12% p.a = 0.76% pm when the question	$= 400 000 (1.0076)^{120} - 3384.77 \times 1. (1.0076)^{120} - 1) $ [second it]
: A = 400 000 + 0.76 + 400 000 - M Says derive you and	1-21-20-1
= 400 000 (1.000) - M to show the relationship	=\$331863 (to rearest dolla)
A2 = A1 + O-7L A1 - M between A1, A2 and A3	(omm - 1
= A, (1.0076) - M [Le. establish a pattern.	
= [400000(1.0076) - M](1.0076) - M	
= 400002(1.0076) - 1.0076M - M V	

iv) 12 % pc = 1 % pm An= 331863 (1.01) - 3800 (1+1.01+....+1.01)) $= 331563 (1.01)^{-3800} \times 1((1.01)^{-1}) \checkmark$ For the students who altempted this = 331863(1.01) - 380000 (1.01-1) question, silly now An = 0 Numerical errors made ··· 331863(1.01) - 380000 (1.01) -1) =0 1) difficilt to arrive 331863 (1.01) - 390 000 (1.01) + 380000 =0 at the correct 48 137 (1.01) = 380000 vele. $(1-21)^{2} = 7.894...$ n = 1n (7-894) 12 (1-01) - 207.64... It would require a further 208 menters Recs -2