SCEGGS Darlinghurst

2009
HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

BLANK PAGE

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks)
(a) Evaluate $\sqrt{\pi^{2}-1}$ correct to 3 significant figures. 2
(b) Solve $|4-2 x|=12$.
(c) An arc of 2 cm subtends an angle of θ at the centre of a circle of radius 14 cm . Find the value of θ correct to the nearest degree.
(d) Differentiate $3 x^{2}-\sin 2 x$.
(e) Simplify $\frac{1}{x^{2}-1}-\frac{1}{x+1}$.
(f) Sketch the curve $y=e^{x}-1$.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Solve $\tan ^{2} x=3$ for $0 \leq x \leq \pi$
(b) Differentiate with respect to x :
(i) $x \tan x$
(ii) $\frac{\ln x}{x^{2}}$
(c) Find:
(i) $\int \frac{2 x-1}{x^{2}-x} d x$
(ii) $\int_{0}^{\pi} \sin \frac{x}{2} d x$
(d) Given α and β are the roots of the equation $3 x^{2}-2 x+6=0$, find 2

$$
\alpha^{2}+\beta^{2}
$$

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a)

$O A B C$ is a parallelogram. Points O, A and C are $(0,0),(2,6)$ and $(4,2)$ respectively.
(i) Find the length of the interval $O C$.
(ii) Find the equation of the line passing through O and C in general form.
(iii) Find the midpoint of $A C$.

1
(iv) Hence or otherwise, find the co-ordinates of B.
(v) Find the perpendicular distance from A to $O C$.
(vi) Find the area of the parallelogram $O A B C$.

Question 3 continues on page 5

Question 3 (continued)
(b)

NOT
 TO
 SCALE

O is the centre of the circle radius 10 cm .
(i) Prove the triangle $O A B$ and $O D C$ are congruent.
(ii) If $\angle A O B=\frac{\pi}{5}$, find, in exact form, the area of the sector $O B C$.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Express the equation of the parabola 2

$$
x^{2}+2 x+25=8 y
$$

in the form $(x-h)^{2}=4 a(y-k)$.
(ii) Hence, find the focus and the equation of the directrix of the parabola.
(b)

NOT
TO
SCALE

The curve $y=x^{2}-2 x$ and the straight line $2 x-y-3=0$ intersect at the points A and B as shown.
(i) Find the x co-ordinates of A and B.
(ii) Find the area contained between the straight line and the curve.
(c) Prove that the equation of the tangent to the curve $y=\ln 2 x$ at the point where $x=e$ is given by the equation

$$
x=e(y-\ln 2)
$$

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Find the approximation to the area bounded by the curve $y=\ln (x-2)$ between $x=3$ and $x=5$, correct to 2 decimal places.

Use the Trapezoidal Rule and 4 subintervals.
(b) The mass $M \mathrm{~kg}$ of a radioactive substance present after t years is given by the equation

$$
M=M_{0} e^{-k t}
$$

where k is a positive constant.
After 50 years the substance has been reduced from 20 kg to 10 kg in mass.
(i) Show that $\frac{d M}{d t}=-k M$.
(ii) State the value of M_{0}.
(iii) Find the exact value of k.
(iv) Find the time taken for the substance to lose $\frac{4}{5}$ of its original mass.

Answer to the nearest year

Question 5 continues on page 8

(c)

The shaded region is bounded by the y axis, $y=x$ and the curve $y=\sec x$ from $x=0$ to $x=\frac{\pi}{4}$.

Find the volume formed when this region is rotated about the x axis. Answer in exact form.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Find the condition for the equation $k x^{2}-4 x+k=0$ to have equal roots.
(b)

NOT
 TO
 SCALE

$A B C D$ is a rectangle and $\angle A G E=\angle C B F=\alpha$.
Use similar triangles to prove: $\quad \mathrm{AG} \times \mathrm{FC}=\mathrm{AE} \times \mathrm{BC}$
(c) The third term of a geometric progression is 12 and the seventh term is 192.

Find the first four terms of any sequence for which this is true.
(d) A box contains 6 cards. Each card is labelled with a number. The numbers on the cards are $0,1,2,2,3,3$. Ruby draws the first card then a second card at random, without the first card being replaced.
(i) Find the probability that she draws a " 3 " followed by a " 2 ".
(ii) Find the probability that the sum of the two cards is at least 5 .
(iii) Find the probability that the second card withdrawn is a "2".

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) The exterior angle of a regular polygon is $\frac{\pi}{10}$ radians.
(i) What is the size of each interior angle in radians?
(ii) How many sides does this regular polygon have?

1

1
(b) A student decides to save money over one year. In her first week she puts aside 10c. In the second week 40c, in the third week 70c, and so on with constant increases over time.
(i) What amount will she put aside in her 52nd week? (Answer in dollars.)
(ii) How much has she saved altogether over the year? (Answer in dollars.)

2
(c) (i) Prove the identity

$$
\frac{1}{\sin \theta+1}-\frac{1}{\sin \theta-1}=2 \sec ^{2} \theta
$$

(ii) Hence find $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left(\frac{1}{\sin \theta+1}-\frac{1}{\sin \theta-1}\right) d \theta$ correct to 1 decimal place.
(d) Solve $x^{-4}-3 x^{-2}-4=0$.

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) Given $y=f(x)$ is an odd function, evaluate $\int_{-a}^{a} f(x) d x$. Give a reason for your answer.
(b) A school basketball team has a probability of 0.75 of losing or drawing any match and a probability of 0.25 of winning any match.
(i) Find the probability of the team winning at least one of 4 consecutive matches. (Answer to 2 decimal places.)
(ii) What is the least number of matches the team must play to be 95% certain of winning at least one match?
(c) Jasper borrowed $\$ 20000$ from a finance company to purchase a car. Interest on the loan is calculated quarterly at the rate of 10% p.a. and is charged immediately prior to Jasper making his quarterly repayment of $\$ M$.
(i) Write an expression A_{1} for the amount owing after 1 payment has been made.
(ii) Show that $A_{n}=20000 \times 1.025^{n}-40 M\left(1.025^{n}-1\right)$.
(iii) If the loan were to be paid out after 7 years what would the value of M be?
(iv) If Jasper were to pay $\$ 1282.94$ per quarter in repayments, how long

1

2 would it take to pay out his loan?

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) Consider the curve $y=x \ln x+2$.
(i) Find any stationary points and determine their nature.
(ii) Find $\lim _{x \rightarrow 0} x \ln x+2$.

1
(iii) Sketch the curve showing important details.
(b) Simplify $\log _{b} a^{m} \div \log _{m} a$ as a single expression with a logarithm of base b.

2
(c) Consider the geometric series

$$
2+2 \sin ^{2} x+2 \sin ^{4} x+\ldots \text { for } 0<x \leq \frac{\pi}{4}
$$

(i) Show that the limiting sum exists.
(ii) Find the limiting sum if $x=\frac{\pi}{4}$.

Question 10 (12 marks) Use a SEPARATE writing booklet.
(a) Copy or trace the diagram of $y=f^{\prime}(x)$ given below into your answer booklet.

Below this diagram, sketch $y=f(x)$ given that it passes through the points $(0,0)$ and $(4,-2)$. Show clearly any turning points or points of inflexion.

(b) $A B C$ is a triangle with $A B=A C=x$ metres and $A B+B C+C A=1$ metre.
D is the midpoint of $B C$.
Draw a diagram and hence prove that the perpendicular height is given by:

$$
A D=\frac{\sqrt{4 x-1}}{2} \text { metres. }
$$

Question 10 continues on page 14

Question 10 (continued)
(c)

TO
SCALE
SCALE

NOT

I have a rectangular sheet of paper 12 cm wide by 20 cm long.
I take the vertex labelled P and place it on the side $A B$.
P now lies on top of P_{1}.
NOT

TO
SCALE

At the bottom left of the rectangle there is a small triangle $A K P_{1}$.
Let the length of $K A$ be $x \mathrm{~cm}$.
(i) Explain why $K P_{1}$ is $(12-x) \mathrm{cm}$ long.

1
(ii) Show that the area of $\triangle A K P_{1}$ is given by $A=x \sqrt{36-6 x}$
(iii) Hence show that when x is one-third the length of $P A$ the area 3 of $\Delta A K P_{1}$ is a maximum.

End of Paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=1 \mathrm{n} x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $1 \mathrm{n} x=\log _{e} x, \quad x>0 \mathrm{c}$

2009 Trial Examination - Mathematics Question $\quad \frac{\text { Calc }}{2} \frac{\text { Comm Leas }}{2}$
a) $2.98 \quad \checkmark$ correct answer $\checkmark 3$ sig figs
b)

$$
\begin{array}{rlrl}
4-2 x & =12 & -4+2 x & =12 \\
-2 x & =8 \\
x & =-4 & 2 x & =16 \\
x & =8
\end{array}
$$

c) $l=2 \mathrm{~cm} \quad r=14 \mathrm{~cm}$

$$
l=r \theta
$$

most students arrived at $\theta=\frac{1}{7}$
but than made silly errors counting
radians to dengrecer.

$$
2=14 \times \theta
$$

radians to degrees.

$$
\theta=0.143 \text { radians } \quad \theta=8^{\circ}
$$

$\theta=0.143$ radians $\theta=8^{\circ}$
d) $\frac{d}{d x} 3 x^{2}-\sin 2 x=6 x^{2}-2 \cos 2 x$ Talc 2
e) $\frac{1}{x^{2}-1}-\frac{1}{x+1}=\frac{1}{(x-1)(x+1)}-\frac{1}{(x+1)}$

Stuart who found the $=\frac{1-(x-1)}{\text { louse common denominator }}$
were more sucerifil them $=\frac{2-x}{(x-1)(x+1)}$
f) $y=e^{x}-1$

Comm 2

Mot student kew the shape of Ane graph but did not give enough the asymptote

$$
\text { at } y=-1
$$

You need to drawl a horizontal dashed lux passing through y $y=-1$
and have the grep approach it.
and have the graph approving it.

Question $2 \quad$ Call Comm Keas
a) $\quad \tan ^{2} x=3 \quad 0 \leqslant x \leqslant \pi$
$\tan x= \pm \sqrt{3}$
*) many students forgot \pm
\Rightarrow That is a very basic mistake
that you can't afford to make.

Note because the domain is $0 \leq x \leq \pi$, this makes the answer a bit tricky (Quads 1\& 2 only)

$$
\left.\begin{array}{c|c}
\tan x=\sqrt{3} & \tan x=-\sqrt{3} \\
\text { (Quads 1 \& 3) } & \text { (Quads 2 4 4) } \\
\Rightarrow \begin{array}{c}
\text { Quad 1 only Since } \\
0 \leq x \leq \pi
\end{array} & \Rightarrow \text { Quad } 2 \text { only since } \\
0 \leq x \leq \pi
\end{array}\right] \quad \begin{gathered}
x=\frac{\pi}{3}-\frac{\pi}{3} \\
=\frac{2 \pi}{3}
\end{gathered}
$$

Not many students really thought about the restricted domain carefully enough. If you didn't have \pm Then you don't get to consider the negative case.
b) i)

$$
\begin{array}{ll}
u=x & v=\tan x \\
u^{\prime}=1 & v^{\prime}=\sec ^{2} x
\end{array}
$$

Canc 2
Using the product rule

$$
\begin{aligned}
y^{\prime} & =v u^{\prime}+u v^{\prime} \\
& =\tan x+x \sec ^{2} x
\end{aligned}
$$

This is an easy question and was generally very well done.
ii)

$$
\begin{array}{ll}
u=\ln x & r=x^{2} \\
u^{\prime}=\frac{1}{x} & v^{\prime}=2 x
\end{array}
$$

Using the quotient rule

$$
\begin{aligned}
& y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{x^{2} \cdot \frac{1}{x}-2 x \ln x}{\left(x^{2}\right)^{2}} \\
& =\frac{x-2 x \ln x}{x^{4}} \\
& =\frac{x(1-2 \ln x)}{x^{4}} \\
& =\frac{1-2 \ln x}{x^{3}} \sqrt{ } \\
& \text { most students } \\
& \text { were able to } \\
& \text { use the } \\
& \text { quotient rule } \\
& \text { competently. } \\
& \text { Second mark } \\
& \text { awarded for } \\
& \text { correct algebraic } \\
& \text { manipulation } \\
& \text { and canceling. } \\
& \begin{array}{l}
\text { This was surprisingly } \\
\text { ditricult for some }
\end{array} \\
& \text { difficult for some. }
\end{aligned}
$$

You should automatically recognise $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln f(x)+c$
c) 1

$$
\text { i) } \begin{aligned}
\int \frac{2 x-1}{x^{2}-x} d x & =\ln \left(x^{2}-x\right)^{+(x)}+c \\
\text { ii) } \int_{0}^{\pi} \sin \frac{x}{2} d x & =\left[-2 \cos \frac{x}{2}\right]_{0}^{\pi}<\underbrace{\text { Look at the }}_{\substack{\text { talc } 4 \\
\text { must have } \\
+c \text { for this } \\
\text { mark }}}
\end{aligned}
$$

d)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\frac{4}{9}-2 \times 2 \\
& =-3 \frac{5}{9}
\end{aligned}
$$

Peas 2
This is an easy question! You must know these of by heart

$$
\begin{array}{|l|}
\alpha+\beta=-\frac{b}{a} \\
\alpha \beta=\frac{s}{a} \\
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta
\end{array}
$$

Question 3
a) i)

$$
\begin{aligned}
O C & =\sqrt{4^{2}+2^{2}} \\
& =2 \sqrt{5}
\end{aligned}
$$

i)

$$
\begin{aligned}
M_{o c} & =\frac{1}{2} & & \text { General form best without } \\
y-0 & =\frac{1}{2}(x-0) & & \text { fractions. This gives less } \\
2 y & =x & & \text { problems in part }(v) \\
0 & =x-2 y & &
\end{aligned}
$$

Talc Comm Reas
iii) M.P. $(A C)=\left(\frac{2+4}{2}, \frac{6+2}{2}\right)$
iv) $B(6,8)=(3,4)$
v) $A(2,6) \quad 0=x-2 y \quad$ This was not well done

$$
\begin{aligned}
\text { P.dist } & =\frac{1 \times 2-2 \times 6+0}{\sqrt{1+4}} \\
& =\frac{10}{\sqrt{5}}=2 \sqrt{5}
\end{aligned}
$$

vi)

$$
A=2 \sqrt{5} \times 2 \sqrt{5}
$$

$$
=20 u^{2} \quad \text { this techrigue and the }
$$ formula.

b) i) $\angle A O B=\angle D O C$ (Vertically opposite angles are equal) $O A=O B=O C=O D$ (radii; of the same circle are equal)

$$
\therefore \quad \triangle O A B=\triangle O O C \quad(S A S)
$$

Reas 2
ii)

$$
\begin{array}{rlrl}
\angle B O C & =\pi-\frac{\pi}{5} & A & =\frac{1}{2} r^{2} \theta \\
& =\frac{4 \pi}{5} \quad & & =\frac{1}{2} \times 100 \times \frac{4 \pi}{5} \\
& =40 \pi u^{2}
\end{array}
$$

Read question!
Mo marks if <Boo not found.

Question 4
a) i)

$$
\text { i) } \quad \begin{aligned}
x^{2}+2 x+1 & =8 y-25+1 \\
(x+1)^{2} & =8(y-3)
\end{aligned}
$$

ii) vertex $(-1,3)$ fil $a=2$

b)
i)

$$
\begin{array}{r}
x^{2}-2 x=2 x-3 \\
x^{2}-4 x+3=0 \\
(x-3)(x-1)=0 \\
x=1,3
\end{array}
$$

ii)

$$
\begin{aligned}
\text { Aren } & =\int_{1}^{3}(2 x-3)-\left(x^{2}-2 x\right) d x \\
& =\int_{1}^{3}\left(4 x-3-x^{2}\right) d x \\
& =\left[2 x^{2}-3 x-\frac{x^{3}}{3}\right]_{1}^{3} \sqrt{3} \\
& =(18-9-9)-\left(2+3-\frac{1}{3}\right) \\
& =4 \frac{1}{3} a^{2}
\end{aligned}
$$

$\sim 1^{4}$ ($\left.-1,3\right) \quad$ fil $-a=2$
 $7 \quad 1$共
c)

$$
\begin{aligned}
& y=\ln 2 x \\
& y^{\prime}=\frac{2}{2 x}=\frac{1}{x} \sqrt{r} \\
& \text { at } x=e \quad y=\ln 2 e \quad \rightarrow \quad \ln 2+\ln e \\
& m=\frac{1}{e}
\end{aligned}
$$

Eqn: $y-\ln 2 e=\frac{1}{e}(x-e)$

$$
\begin{aligned}
& e[y-(\ln 2+1)]=x-e \\
& e y-e \ln 2-e=x-e \\
& e(y-\ln 2)=x
\end{aligned}
$$

Most students were able to get 3 marks here. The $4^{\text {th }}$ was given for correctly using \log laws for the y-value

$$
\text { ie. } \quad \begin{aligned}
y & =\ln 2 e \\
& =\ln 2+\ln e \\
& =\ln 2+1
\end{aligned}
$$

Question 5 Calc Comm Reas
3 6
a) $y=\ln (x-2) \quad x \quad y$ factor Total

$$
h=\frac{1}{2}
$$

$3.5 \ln 15 \times 2$
Very poor!
$4 \ln 2 \times 2$ Learn this technique.
$4.5 \ln 2.5 \times 2$
$5 \ln 3 \times \underset{~+a b l e}{1}$

$$
\begin{array}{rlrl}
\text { Area } & \doteq \frac{1}{2} \div 2 \times 5.128 \quad \text { Total } & =5.128 \\
& \doteq 1.28 u^{2}
\end{array}
$$

OR by formula $A \div \frac{1}{2} \div 2[(\ln 1+\ln 3)+2(\ln 1.5+\ln 2+\ln 2.5)]$

$$
\doteq 1.28 u^{2}
$$

b) i) $M=M_{0} e^{-k t}$

Peas 6

$$
\begin{aligned}
\frac{d M}{d t} & =-k \times M_{0} e^{-k t} \\
& =-k M
\end{aligned}
$$

ii) $M_{0}=20 \mathrm{~kg}$
iii) $t=50$ yes $\quad M=10, M_{0}=20$

$$
\begin{aligned}
10 & =20 \times e^{-k \times 50} \\
\frac{1}{2} & =e^{-50 k} \\
\log _{e} \frac{1}{2} & =-50 k \\
\log _{e} \frac{1}{2} & =k
\end{aligned}
$$

$$
\frac{1}{2}=e^{-r o k} \quad \int \quad \text { Sign was a problem in this }
$$

$$
\log _{e} \frac{1}{2}=-50 k \quad \text { question. Do not lose it!! }
$$

iv) lose $\frac{4}{5}$ means $\frac{1}{5}$ remains This concept is

$$
\begin{aligned}
& \frac{1}{5}=e^{\frac{\log _{e} \frac{1}{2}}{50} \times t} \\
& \log _{e} \frac{1}{5}=\frac{\log _{e} \frac{1}{2}}{50} \\
& \frac{50 \log _{e} \frac{1}{5}}{\log _{e} \frac{1}{2}}=t
\end{aligned}
$$

$$
t=116 \text { years }
$$

c) $V=\pi \int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-x^{2}\right) d x \quad \operatorname{calc} 3$
$=\pi\left[\tan x-\frac{x^{3}}{3}\right]_{0}^{\frac{\pi}{4}} \quad$ Quite well done by

$$
=\pi\left[\left(\tan \frac{\pi}{4}-\frac{\pi^{3}}{192}\right)-(\tan 0-0)\right]\left(\frac{\pi}{4}\right)^{3}=\frac{\pi^{3}}{64}!!
$$

$$
=\pi\left(1-\frac{\pi^{3}}{192}\right) u^{3}
$$

There were a few Algebra errors.
OR Find each volume seperately then subtract.

$$
\begin{array}{rlrl}
V_{1} & =\pi \int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x & V_{2}=\pi \int_{0}^{\frac{\pi^{4}}{4}} x^{2} \\
& =\pi[\tan x]_{0}^{\frac{\pi}{4}} & & =\pi\left[\frac{x^{3}}{3}\right]_{0}^{\frac{\pi}{4}} \\
& =\pi\left(\tan \frac{\pi}{4}-\tan 0\right) & & =\pi \times \frac{\pi^{3}}{192} \\
& =\pi & & \text { Total Volume }=\pi-\frac{\pi^{4}}{192} u^{3}
\end{array}
$$

Question 6
a)

$$
\begin{aligned}
& k x^{2}-4 x+k=0 \\
& \Delta=0 \text { for equal roots } \\
& b^{2}-4 a c=0 \\
& 16-4 \times k \times k=0 \\
& 16=4 k^{2} \\
& 4=k^{2}
\end{aligned}
$$

$$
\pm 2=k \quad r \quad \text { Remember the } \pm
$$

b)

$$
\begin{aligned}
& \angle A G E=\angle C B F \quad \text { (given) } \quad \text { Leas } 2 \\
& \angle G A E=\angle B C F \text { (vertices of a rectangle }=90^{\circ} \text {) }
\end{aligned}
$$

$$
\therefore \triangle A G E I I \triangle C B F \text { (equiangular) }
$$

This line must be written as you are asked to prove
$\begin{aligned} \therefore \quad \frac{A G}{C B} & =\frac{A E}{C F} \text { (corresponding sides of similar triangles } \\ A G \times C F & =A E \times C B\end{aligned}$
many reasons were poorly written, please take the time to get this right
c)

$$
\begin{aligned}
T_{3}=12 \quad T_{3} & =192 \\
12=a r^{2} \quad 192 & =a r^{6} \\
a=\frac{12}{r^{2}} \Rightarrow 192 & =\frac{12}{r^{2}} \times r^{6} \\
16 & =r^{4} \\
\pm 2 & =r \quad \text { again the } \pm
\end{aligned}
$$

I solution: $3,6,12,24$ either
2 solution: $\quad 3,-6,12,-24$
d) $0,1,2,2,3,3$
1)

$$
\begin{aligned}
P(3,2) & =\frac{2}{6} \times \frac{2}{5} \\
& =\frac{2}{15}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { sum } \geqslant 5 \quad & \begin{array}{c}
\left.\frac{2}{6} \times \frac{2}{5}\right)+ \\
3,2 \\
3,3 \\
3,3
\end{array}\left(\begin{array}{l}
\left.\frac{2}{6} \times \frac{2}{5}\right)+ \\
\left.\frac{2}{6} \times \frac{1}{5}\right)
\end{array}\right. \\
\text { total }= & \frac{1}{3}
\end{aligned}
$$

iii) Second card a two
lIst option: 2,2
and option: $\overline{2}, 2$

$$
\begin{aligned}
& P=\left(\frac{2}{6} \times \frac{1}{5}\right)+\left(\frac{4}{6} \times \frac{2}{5}\right) \\
& P=\frac{1}{3}
\end{aligned}
$$

A common mistake in both parts ii and iii was to repeat the same outcomes too many times. Remember when you have a probability of $\frac{2}{6}$ means out of 6 there a two possibilities, do not duplicate this. ie $\frac{2}{6}+\frac{2}{6}$

Question 7
Calk Comm Reas 25
a) $E_{x}+L=\frac{\pi}{10}$
i)

$$
\ln t \angle=\pi-\frac{\pi}{10}
$$

$$
=\frac{9 \pi}{10} \quad \int \text { Learn formulae. }
$$

ii)

$$
\begin{aligned}
n & =2 \pi \div \frac{\pi}{10} \\
& =20 \text { sides }
\end{aligned}
$$

b) $10,40,70, \ldots$
i)

$$
\begin{aligned}
a & =10, \quad d=30 \\
T_{52} & =10+51 \times 30 \\
& =\$ 15.40
\end{aligned}
$$

ii)

$$
\begin{aligned}
S_{52} & =26 \times(0.10+15.40)^{r} \text { Well done } \\
& =\$ 403
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& \angle H S=\frac{1}{\sin \theta+1}-\frac{1}{\sin \theta-1} \quad \text { Peas } 2 \\
&=\frac{\sin \theta-1-\sin \theta-1}{\sin ^{2} \theta-1} / \sin ^{2}+\cos ^{2}=1 \\
&-\cos ^{2} \theta=\sin ^{2} \theta-1
\end{aligned}
$$

ii) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left(2 \sec ^{2} \theta\right) d \theta \quad \operatorname{colc} 2$

$$
\begin{aligned}
& =[2 \tan \theta]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \\
& =(2 \times \sqrt{3})-(2 x-\sqrt{3}) \\
& =4 \sqrt{3}
\end{aligned}
$$

d)

$$
\begin{array}{cc}
x^{-4}-3 x^{-2}-4=0 & \text { Reas } 3 \\
\text { let } u=x^{-2} \\
=\frac{1}{x^{2}} \quad \text { Too many stu } \\
u^{2}-3 u-4=0 \quad \text { omitted the } \\
(u-4)(u+1)=0 \\
u=4, u=-1 \\
\\
\frac{1}{x^{2}}=4 \quad \frac{1}{x^{2}}=-1 \\
x^{2}=\frac{1}{4} \quad x^{2}=-1 \\
x= \pm \frac{1}{2} \quad \text { no solution } & \\
x
\end{array}
$$

must have
both

Question 8
a.)

$$
\int_{-a}^{a} f(x) d x=0
$$

Cal $\underset{2}{\text { Comm Teas }}$
Comm 2
since $f(x)$ is an odd function it has rotational symmetry about the origin. This means that the area bounded by the curve and the x-axis from $x=-a$ to $x=0$ will be equal in magnitude to thearea from $x=0$ to $x=a$ but opposite in sign hence resulting in a value of 0 .
Not well done! Many students thought they had to explain how to find the area rather than the value of. He integral. Look for the Key words
6 underlined above

$$
\begin{aligned}
\text { Lose }=0.75 \text { win } & =0.25 \quad \text { Peas } 3 \\
\text { i) } P(\text { win at hast } 1 \text { of } 4) & =1-P(\text { no wins from } 4) \\
& =1-(0.75 \times 0.75 \times 0.75 \times 0.75) \\
& =1-0.75^{4} \\
& =0.68
\end{aligned}
$$

ii)

$$
\begin{aligned}
P(\text { win at least }) & =0.95 \\
1-0.75^{n} & =0.95 \\
0.75^{n} & =0.05 \\
n \log 0.75 & =\log 0.05 \\
n & =\frac{\log 0.05}{\log 0.75} \\
n & =10.4
\end{aligned}
$$

\therefore they must play at least 11 games
c) i)

$$
\begin{aligned}
P=20000, r & =0.1 \text { pa. } \\
& =0.025 \mu . q \\
A_{1} & =20000 \times 1.025-\mathrm{M}
\end{aligned}
$$

ii)

$$
\begin{aligned}
A_{2} & =(20000 \times 1.025-M) \times 1.025-M \\
& =20000 \times 1.025^{2}-M(1.025+1) \\
A_{3} & =\left[20000 \times 1.025^{2}-M(1.025+1)\right] \times 1.025-M \\
& =20000 \times 1.025^{3}-M\left(1.025^{2}+1.025+1\right) \\
A_{n} & =20000 \times 1.025^{n}-M\left(1.025^{n-1}+1.025^{n-2}+\cdots+1\right)
\end{aligned}
$$

lIst mark given for the \quad ap with $a=1, r=1.025, n$ expession An with the series $S_{n}=\frac{1\left(1.025^{n}-1\right)}{0.025}$
written. and mark br written. Ind mark for
an expression for $S_{n} \rightarrow \quad S_{n}=40\left(1.025^{n}-1\right)$

$$
\therefore A_{n}=20000 \times 1.025^{n}-40 \mathrm{M}\left(1.025^{n}-1\right)
$$

iii) 7 years $=28$ quarters

$$
\begin{aligned}
O & =20000 \times 1.025^{28}-40 M\left(1.025^{28}-1\right) \\
40 M & =\frac{20000 \times 1.025^{28}}{1.025^{28}-1} \\
M & =\$ 1001.76
\end{aligned}
$$

iv)

$$
\begin{aligned}
& M=\$ 1282.94 \\
& O=20000 \times 1.025^{n}-40 \times 1282.94\left(1.025^{n}-1\right) \\
& 5 / 317.6\left(1.025^{n}-1\right)=20.000 \times 1.025^{n} \\
& 51317.6 \times 1.025^{n}-51317.6=20000 \times 1.025^{n} \\
& 1.025^{n}(51317.6-20000)=51317.6 \\
& 1.025^{n}=1.63861854 \\
& n \log 1.025=\log 1.63861854 \\
& n=20.00005 \text { quarters }
\end{aligned}
$$

$\therefore 20$ quarters or 5 years
Not well done, practice there!

Question 9
Talc Comm Reas
$4 \quad 2 \quad 4$
a) $y=x \ln x+2$

$$
\begin{array}{ll}
u=x & v=\ln x \\
u^{\prime}=1 & v^{\prime}=\frac{1}{x}
\end{array}
$$

using the product rule

$$
\begin{aligned}
y^{\prime} & =v u^{\prime}+u v^{\prime} \\
& =\ln x+x \cdot \frac{1}{x} \\
& =\ln x+1
\end{aligned}
$$

$$
y^{\prime}=\ln x+1
$$

This part was poorly done.
Things to notice.

- The derivative of 2 is zero. It's gone!
- The original question does
not say $y=x \ln (x+2)$
There would clearly be a bracket if that was meant to be the function.

Stat pis when $y^{\prime}=0$

$$
\begin{gathered}
\ln x=-1 \\
\log _{e} x=-1
\end{gathered}
$$

By definition

$$
\begin{gathered}
e^{-1}=x \\
\therefore x=\frac{1}{e} \\
\vdots 0.37 \\
y=\frac{1}{e} \ln e^{-1}+2 \\
=-\frac{1}{e}+2 \\
=2-\frac{1}{e} \\
\vdots 1.6
\end{gathered}
$$

many students got stuck at this line. Change it to base e and then use the definition to find x.

$$
\begin{aligned}
\log _{a} x & =N \\
a^{N} & =x
\end{aligned}
$$

Test nature

method 1: using $y^{\prime \prime}=\frac{1}{x}$	method 2: using $y^{\prime}=\ln x+1$			
at $x=\frac{1}{e}$				
$y^{\prime \prime}=e$	x	$\frac{1}{5}$	$\frac{1}{e}$	1
$y^{\prime \prime}>0$ concave up U	$y^{\prime} \mid-0.609$	0	2	
		1	0	+

ㄱ. Minimum Turning point at $\left(\frac{1}{e},-\frac{1}{e}+2\right) \div(0.4,1.6)$

$$
\text { ii) } \begin{aligned}
& \lim _{x \rightarrow 0} x \ln x+2\left\{\begin{array}{l}
\lim _{x \rightarrow 0} x=0 \\
\lim _{x \rightarrow 0} \ln x=\infty
\end{array}\right. \\
& \therefore \text { use logic to }_{\text {think about }}^{\text {each part }} \begin{array}{l}
\text { separately }
\end{array} \\
& \therefore \lim _{x \rightarrow 0} x \ln x=0 \\
& \therefore \lim _{x \rightarrow 0} x \ln x+2=2 \quad
\end{aligned}
$$

This part was very challenging for most students You have to show your firidings to the graph you draw in part iii make sure to link your ideas.

Before drawing the graph, here are some considerations

- One minumum TP at $\left(\frac{1}{e}, 2-\frac{1}{e}\right)$
- No possible P.O.I since $y^{\prime \prime}=\frac{1}{x} \neq 0$ for any x. This means no change in concavity.
- The domain of $\ln x$ is $x>0$ so your graph cannot have any part drawn left of the taxis.

The graph has an open circle at $(0,2)$ because the limit of the curve is 2 as $x \rightarrow 0$ (from part ii)

A number of students thought this meant a horizontal asymptote $y=2$ as $x \rightarrow \infty$ which is incorrect.
As $x \rightarrow \infty$, the curve $\rightarrow \infty$.

$$
\begin{aligned}
& \log _{b} a^{m} \div \log _{m} a \\
& \begin{array}{l}
=m \log _{b} a \times \frac{\log _{b} a}{\log _{b} m} \\
=m \log _{b} a \times \frac{\log _{b} m}{\log _{b} a}
\end{array} \\
& =\frac{m \log _{b} m}{\text { If you go further }} \\
& \begin{array}{l}
\quad \text { If you go further } \\
=\log _{b} m^{m} \quad\left(n_{0} t \log _{b} m^{2}\right)
\end{array} \\
& \text { for change of base } \\
& \text { The new base must be } \\
& \text { clearly shown. } \\
& \text { This question highlights } \\
& \text { the need to learn the } \\
& \log \text { laws properly. } \\
& \frac{\log a}{\log b} \neq \log a-\log b \\
& \log \left(\frac{a}{b}\right)=\log a-\log b
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& 2+2 \sin ^{2} x+2 \sin ^{4} x+\ldots \\
& r=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\sin ^{2} x
\end{aligned}
$$

for $0<x \leqslant \frac{\pi}{4}$

$$
\begin{aligned}
\sin ^{2} 0 & <\sin ^{2} x
\end{aligned}
$$

One mark awarded for $r=\sin ^{2} x$ and

$$
-1<r<1
$$

Second mark awarded for correct inequality

$$
0<\sin ^{2} x \leq \frac{1}{2}
$$ limiting sum exists.

If you start with $-1<r<1$

$$
-1<\sin ^{2} x<1
$$

you have to go into more detail and think logically.

- $\sin ^{2} x$ is always positive $\therefore \sin ^{2} x \geqslant 0$
but $r=0$ has no meaning $\therefore \sin ^{2} x>0$
- for $0<x<\frac{\pi}{4} \quad \sin ^{-2} \frac{\pi}{4}=\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=\frac{1}{2}$ is the highest value for $\sin ^{2} x$

$$
\therefore 0<\sin ^{2} x \leqslant \frac{1}{2}
$$

ii)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{2}{1-\sin ^{2} \frac{\pi}{4}} \\
& =2 \div \frac{1}{2} \\
& =4
\end{aligned}
$$

Question 10
Cal Comm Reas 633

Com 3
a)

This was don poorly by moot ctedent and this need to be revised as the wort for this war- dom sour tine aga!
It "also important the level pouts. .i. turning points
b)

$B D=\frac{1-2 x}{2} \vee \quad$ Leas 3
$\triangle A B C$ is isosceles, since $A B=A C$ since the bisector of the base of on isosceles triangle is perpendicular

$$
\begin{aligned}
A D^{2} & =A B^{2}-B D^{2} \\
A D^{2} & =x^{2}-\left(\frac{1-2 x)^{2}}{}\right. \\
& =x^{2}-\frac{1+4 x-4 x^{2}}{4} \\
& =x^{2}-\frac{1}{4}+x-x^{2}
\end{aligned}
$$

$$
A D^{2}=x-\frac{1}{4}
$$

$$
A D=\sqrt{\frac{4 x-1}{4}}
$$

$$
A D=\frac{\sqrt{4 x-1}}{2}
$$

c) i)

$$
\left.\begin{array}{rl}
P A & =12 \mathrm{~cm} \\
P K & =P K \\
P K & =12-x
\end{array}\right\}
$$

Rear 3
Make sure when answering 'show' questions. that you cotvally explain how yo arrive at your answer. This is especially important when if is an obvias question.
ii)

$$
\begin{aligned}
A P_{1}^{2} & =(12-x)^{2}-x^{2} \\
& =144-24 x+x^{2}-x^{2} \\
A P_{1}^{2} & =144-24 x \\
A P_{1} & =2 \sqrt{36-6 x} \\
A & =\frac{1}{2} \times A K \times A P_{1} \\
& =\frac{1}{2} \times x \times 2 \sqrt{36-6 x} \\
& =x \sqrt{36-6 x}
\end{aligned}
$$

iii) a max when $A^{\prime}=0 \quad$ Calc3

$$
\begin{aligned}
& u=x \quad v=(36-6 x)^{\frac{1}{2}} \\
& A^{\prime}=\sqrt{36-6 x}-\frac{3 x}{\sqrt{36-6 x}} \\
& u^{\prime}=1 \quad v^{\prime}=-3(36-6 x)^{-\frac{1}{2}} \\
& \text { if } A^{\prime}=0 \\
& \frac{3 x}{\sqrt{36-6 x}}=\sqrt{36-6 x} \\
& 3 x=36-6 x \\
& 9 x=36 \\
& x=4 \\
& \text { nim a difficult diffecentiationtis } \\
& \text { important to take your the so ai not } \\
& \text { to rates algebravio eros. }
\end{aligned}
$$

Remember it is far more efficient
test nature when $x=4$ to un the first derwationtest for

x	3	4	5
A^{\prime}	$\sqrt{18}-\frac{9}{\sqrt{8}}$	0	$\sqrt{11}-\frac{25}{\sqrt{11}}$

since 4 is $\frac{1}{3}$ of 12 \therefore a maximum max when x is $\frac{1}{3}$ of $P A$

