SCEGGS Darlinghurst

2010
 HIGHER SCHOOL CERTIFICATE
 TRIALEXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks)
(a) Evaluate $\ln 27$ correct to 2 decimal places.
(b) Solve $|x+4|=3$.

2

2
(c) Simplify $\frac{3}{x-1}-\frac{5}{x+1}$.
(d) Solve: $\sqrt{3} \tan x=-1$ for $0 \leq x \leq 2 \pi$.

2
(e) Rationalise the denominator of $\frac{1}{\sqrt{3}-2}$.
(f) Find a primitive function of $2+\frac{1}{x}$.

End of Question 1

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate:
(i) $y=e^{2 x}(3 x-2)$.
(ii) $\quad y=\log _{e}\left(2 x^{2}+5\right)$.
(b) Find $\int \sec ^{2} 3 x d x$.
(c) Find the equation of the normal to the curve $y=x^{2}-4 x$ at the point $(1,-3)$.
(d) Evaluate $\sum_{r=1}^{3}(-1)^{r}(r+2)^{2}$.
(e) Find the value of k if the sum of the roots of $x^{2}-(k-1) x+2 k=0$ is equal to the product of those roots.

End of Question 2

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the points $A(-5,5)$ and $C(1,3)$ and $D(-4,-2)$. B is a point on the y-axis.
(i) Find the gradient of $A C$.
(ii) Find the midpoint of $A C$
(iii) Show that the equation of the perpendicular bisector of $A C$ is $3 x-y+10=0$.
(iv) Find the co-ordinates of B given that B lies on $3 x-y+10=0$.
(v) Show that the point $D(-4,-2)$ lies on $3 x-y+10=0$.
(vi) Show that $A B C D$ is a rhombus.
(b) (i) On the same set of axes sketch the graphs $y=4-x^{2}$ and $y=3$.
(ii) The graph $y=3$ cuts the parabola at A and B. Find the co-ordinates of A and B.
(iii) Calculate the area enclosed by the graphs $y=4-x^{2}$ and $y=3$.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Write down three inequalities to describe the shaded region shown below.

(b) Consider the function defined by $f(x)=x^{3}-6 x^{2}+9 x+2$.
(i) Find $f^{\prime}(x)$.
(ii) Find the coordinates of the two stationary points.
(iii) Determine the nature of the stationary points.
(iv) Sketch the curve $y=f(x)$ for $0 \leq x \leq 4$ clearly labelling the stationary points.
(v) Apply the Trapezoidal Rule with 5 function values to find an approximation to an area between $f(x)=x^{3}-6 x^{2}+9 x+2$ and the x-axis between $x=0$ and $x=4$.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) By using the substitution of $y=5^{x}$ solve for x the equation $25^{x}-26\left(5^{x}\right)+25=0$.
(b) Sketch the curve that has the following properties.

$$
\begin{aligned}
& f(2)=1 \\
& f^{\prime}(2)=0 \\
& f^{\prime \prime}(2)=0 \\
& f^{\prime}(x) \geq 0 \text { for all real } x .
\end{aligned}
$$

(c) Solve $2 \log _{b} x=\log _{b} 2+\log _{b}(x+4)$.
(d) (i) Show that $\frac{d}{d x}\left(x \log _{e} x\right)=\log _{e} x+1$.
(ii) Hence evaluate $\int_{1}^{e}\left(\log _{e} x\right) d x$.

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Calculate the area of the region enclosed by the graph of $y=\cos 2 x$, the x-axis and the ordinates at $x=0$ and $x=\frac{\pi}{4}$.
(b) Tom is an enthusiastic gardener. He planted a silky oak tree three years ago when it was 80 centimetres tall. At the end of the first year after planting, it was 130 centimetres tall, that is it grew 50 centimetres. Each year's growth was then 90% of the previous year's.
(i) What was the growth of the silky oak in the second year?
(ii) How tall was the silky oak after three years?
(iii) Assuming that it maintains the present growth pattern, explain why the tree will never reach a height of 6 metres.
(iv) In which year will the silky oak reach a height of 5 metres?
(c) $\quad A B C$ is a right-angled triangle in which $\angle A B C=90^{\circ}$. Points D and E lie on $A B$ and $A C$ respectively such that $A C$ is perpendicular to $D E$. $A D=8 \mathrm{~cm}, E C=11 \mathrm{~cm}$ and $D B=2 \mathrm{~cm}$.

(i) Prove that $\triangle A B C$ is similar to $\triangle A E D$.
(ii) Find the length of $A E$.

End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Simplify $\frac{2 \sec ^{2} A-2}{2 \tan A}$

2
(b) The diagram represents an archway of a building that is 5 m high and 6 m wide. The curved part is in the shape of a parabola with vertex 3 m above the ground.

Use the axis shown in the diagram to:
(i) show that the equation of the parabola is $y=-\frac{1}{3} x^{2}+3$.
(ii) find the shaded area.
(c) The College gardener knows that the probability of a seedling growing to maturity is 0.95 .
(i) If the gardener plants 2 seedlings, what is the probability that both will survive to maturity?
(ii) If the gardener plants 5 seedlings, what is the probability that at least one seedling will die before reaching maturity?
Express as decimal correct to 2 decimal places.
(iii) If the gardener plants n seedlings, what is the maximum value of n if the probability that at least one seedling will die before reaching maturity is less than 0.5 ?

End of Question 7

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) For the function $y=3 \cos 4 x-5 \sin x$, find the value of k if

$$
y+\frac{d^{2} y}{d x^{2}}=k \cos 4 x
$$

(b) (i) Sketch the curve $y=\ln (x-1)$ clearly showing the x-intercept and the asymptote.
(ii) The region enclosed by the curve $y=\ln (x-1)$ and the lines $x=0$, $y=0$ and $y=\ln 3$ is rotated about the y-axis to form a solid of revolution. Find the volume of this solid.
(c) Jane and Ruby play a tennis match against each other. The probability in any set that Jane wins is $\frac{3}{5}$. The first player to win 2 sets wins the match.
(i) Find the probability that the match ends at the second set.
(ii) Find the probability that Jane wins at least one set.
(iii) Find the probability that the person who wins the first set goes on to win the match.

End of Question 8

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a)

NOT
TO
SCALE

A water sprinkler covers a circular lawn area of radius 10 metres. The sprinkler (O) is placed 5 metres from a rectangular garden bed.
(i) Garden stakes are placed at A and B.

1
Show that $\angle A O B=\frac{2 \pi}{3}$ radians.
(ii) Show that the total perimeter of the lawn area covered by the sprinkler is $\frac{40 \pi}{3} \mathrm{~m}$.
(iii) Show that the area of the lawn that the sprinkler will cover is

$$
\frac{200 \pi}{3}+25 \sqrt{3} \mathrm{~m}^{2}
$$

(b) Savannah buys a Porsche for $\$ 320,000$ and agrees to pay it off at the same amount each month over 8 years. The interest rate is 15% per annum, reducible monthly.
(i) If the monthly repayments are $\$ M$, and $\$ A_{n}$ is the amount owing after n repayments, show that the amount owing (in dollars) after the second repayment is given by:

$$
A_{2}=320000 \times 1.0125^{2}-1.0125 M-M
$$

(ii) Hence find the amount of each monthly repayment.

Question 9 continues on page 10

Question 9 (continued)
(c) For what values of p does the equation $\sin x=p x$ have two solutions in the domain $0 \leq x \leq \pi$.

End of Question 9

Question 10 (12 marks) Use a SEPARATE writing booklet.
(a) Find the co-ordinates of the vertex of the parabola $y^{2}-6 y-9 x-9=0$.
(b) John puts $\$ 2000$ into a superannuation account on his 40th birthday. He continues to do this on his birthday up to and including his 60th birthday. The interest he earns is 10% pa compounded yearly.

On his 61st birthday he moves the accumulated amount into an account which earns 8% pa compounded yearly.

He will collect his accumulated amount on his 65th birthday.
(i) How much does the first $\$ 2000$ accumulate to when John celebrates his 61st birthday?
(ii) How much will John collect on his 65th birthday?

Question 10 continues on page 12
(c) It is desired to construct a cable link between two points L and N, which are situated on opposite banks of a river of width 1 km . L lies 3 km upstream from N. It costs 3 times as much to lay a length of cable underwater as it does to lay the same length overland. The following diagram is a sketch of the cables, where θ is the angle where $N M$ makes with the direct route across the river.

(i) Prove $M N=\sec \theta$ and $M T=\tan \theta$.
(ii) If segment $L M$ costs c dollars per km, prove that the total cost (T) of laying the cable is given by

$$
T=3 c-c \tan \theta+3 c \sec \theta
$$

(iii) At what angle should the cable cross the river in order to minimize the total cost of laying it.

End of Paper

Solutions to Trial 2010
Question 1
call 2
a) 3.2958

$$
3.30
$$

b)

$$
\begin{array}{r}
x+4=3 \\
x=-1
\end{array}
$$

$$
-(x+4)=3
$$

$$
-x-4=3
$$

$$
-x=1
$$

$$
x=-7
$$

c)

$$
\begin{aligned}
& \frac{3}{x-1}-\frac{5}{x+1} \\
= & \frac{3(x+1)-5(x-1)}{(x-1)(x+1)} \\
= & \frac{3 x+3-5 x+5}{(x-1)(x+1)} \\
= & \frac{x+8}{(x-1)(x+1)}
\end{aligned}
$$

d)

$$
\tan x=-\frac{1}{\sqrt{3}}
$$

Tan-re Q2+4 acute $\Varangle=\frac{\pi}{6}$

$$
x=\frac{5 \pi}{6}, \frac{11 \pi}{6}
$$

e)

$$
\begin{aligned}
& \frac{1}{\sqrt{3}-2} \cdot \frac{\sqrt{3}+2}{\sqrt{3}+2} \\
= & \frac{\sqrt{3}+2}{3-4}=-\sqrt{3}-2
\end{aligned}
$$

f)

$$
\begin{aligned}
& y^{\prime}=2+\frac{1}{x} \\
& y=2 x+\ln x+c
\end{aligned}
$$

$\mathrm{Cal} / 5 \quad$ Rear $/ 7$

Well done

Be ccieful of the $\begin{aligned} \text { bracket } & -5(x-1) \\ = & -5 x+5\end{aligned}$
aloft of careless errors made here.

$$
\begin{aligned}
& \text { Denominator }
\end{aligned}=-1 .
$$

Not $-\sqrt{3}+2$

$$
\int \frac{1}{x}=\ln x
$$

Ink awarded for Ink awarded for $\ln x$.

Question 2
(a)

$$
\text { (1) } \begin{align*}
y & =e^{2 x}(3 x-2) \\
y^{\prime} & =e^{2 x}(3)+(3 x-2) e^{2 x} \cdot 2 \\
& =e^{2 x}[3+6 x-4] \\
& =e^{2 x}[6 x-1] \tag{ise}
\end{align*}
$$

(b)

$$
-\int \sec ^{2} 3 x d x=\frac{\tan 3 x}{3}+c
$$

(c)

$$
\begin{aligned}
& y=x^{2}-4 x \\
& y^{\prime}=2 x-4
\end{aligned}
$$

\therefore slope of tangent at $x=1$

$$
y^{\prime}=2(1)-4=-2
$$

\therefore slope of normal at $x=1$
(ii)

$$
\begin{aligned}
& y=\log _{e}\left(2 x^{2}+5\right) \\
& y^{\prime}=\frac{4 x}{2 x^{2}+5}
\end{aligned}
$$

Cal 2
handled it well.
Ignored subsequent error in factorisation + simplifying
cal 2 mostly well done. Most students got $4 x$ for $1 / 2 \mathrm{mise}$.
Nopenalty for not having "tc"
mostly well dare
Some students didat realise it was the normal.

$$
y+3=\frac{1}{2}(x-1)
$$

$$
2 y+6=x-1
$$

$$
\begin{equation*}
x-2 y-7=0 \tag{d}
\end{equation*}
$$

Students need to be able to identify Σ as sum.

This is not an Ap so sum formula cant
be used

Question 3
a) $\overline{\frac{3-5}{1+5}}=\frac{-2}{6}=-\frac{1}{3}$.

Careless emos made with sum $=-\frac{b}{a}$ be careful of the signs.
11)

$$
\begin{aligned}
& \left(-\frac{5+1}{2}, \frac{5+3}{2}\right) \\
= & (-2,4)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-(k-1) x+2 k=0 \\
& a=1 \\
& b=-(k-1) \\
& c=2 k \\
& \text { sum }=\frac{-b}{a} \quad \text { Product }=\frac{c}{a} \\
& \frac{k-1}{1}=\frac{2 k}{1} \\
& \therefore-1=k
\end{aligned}
$$

(e)

$$
\text { Rear } 2
$$

III)

$$
\begin{aligned}
& m=3 \quad p t=(-2,4) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=3(x--2) \\
& y-4=3 x+6 \\
& \\
& 3 x-y+10=0
\end{aligned}
$$

iv) $(0,4)$

$$
\begin{aligned}
& \text { Let } x=0 \\
& y=
\end{aligned}
$$

$$
\begin{gathered}
x=0 \\
-y=-10 \\
y=10
\end{gathered}
$$

$$
4=10
$$

$$
\therefore B(0,10)
$$

v)

$$
\begin{gathered}
3(-4)-(-2)+10=0 \\
0=0
\end{gathered}
$$

$\therefore D(-4,-2)$ lie, on the line

$$
3 x-4+10=0
$$

v.)

Midpoint BD

$$
\begin{aligned}
& \left(\frac{-4}{2}, \frac{10,-2}{2}\right) \\
= & (-2,4)=\text { midpoint } A C
\end{aligned}
$$

$\therefore A B C D$ is a rhombus as diagonals bisect each other at $(-2,4)$

Do not assume that all references to the word "perpendicular" imply the use of the perpendicular distance formula!

Many students went on "fishing" expeditions - listing all the properties of a rhombious that they could thank of... Frill makes required a clear, precise response.
b) 1)

11)

$$
\begin{array}{lrl}
3=4-x^{2} & \text { When } x=1 & y=3 \\
x^{2}=1 & x=-1 & y=3 \\
x= \pm 1 & \\
A(-1,3) \quad B(1,3) &
\end{array}
$$

III)

$$
\begin{aligned}
A & =\int_{-1}^{1}\left(4-x^{2}\right) d x-3 d x \\
& =\int_{-1}^{1} 1-x^{2} d x \\
& =\left[x-\frac{x^{3}}{3}\right]_{-1}^{1} \operatorname{carc} 2 \\
& =\frac{4}{3} \text { units }^{2}
\end{aligned}
$$

call 4
Com 2
Reas 2
Question 4
(b)
(a)

$$
\left.\begin{array}{c}
x \leq 4 \\
y \leq 0 \\
3 x+2 y-6 \geqslant 0
\end{array}\right\}
$$

$$
f(x)=x^{3}-6 x^{2}+9 x+2
$$

$$
\text { (1) } f^{\prime}(x)=3 x^{2}-12 x+9
$$

(ii) For stat polvin $f^{\prime}(x)=0$

Well dove.

Poorly done. Few
students realised that the unbroken boundaries required both equality ane inequality signs. Few shodeits were ald to test the points in an appropriate manner.

$$
\begin{gathered}
3 x^{2}-12 x+9=0 \\
x^{2}-4 x+3=0 \\
(x-1)(x-3)=0 \\
x=1,3
\end{gathered}
$$

$$
(1,6) \sqrt{ } \text { and }(3,2)
$$

(iii) For nature $f^{\prime \prime}(x)$

$$
f^{\prime \prime}(x)=6 x-12
$$

(iv)

Tables of -1^{-}are worthless inthout a clear supporting Statement of the nature
of the points. of the points.

Many students did not deal adequately whet the end points.
(v) See over

1) $\frac{d}{d x}\left(x \log _{e} x\right)$

$$
\begin{aligned}
\frac{d u}{d x} & =x \frac{1}{x}+109 e^{x} \cdot 1 \quad \operatorname{casc} 4 \\
& =109 e^{x}+1
\end{aligned}
$$

11) $\int \log _{e} x d x=x^{\prime} \circ q_{e} x-\int 1 d x$ $=\left[x \log \varepsilon_{e}-x\right]_{1}^{e}$

$$
=\left[e \operatorname{lo} 9 e^{e-e}\right]-\left[\log e^{1-1}\right]
$$

$$
=\varphi \cdot 1-\beta-0+1
$$

$$
=1
$$

Well done bluet

wake working alesolutrely chat.
hot well dore. hent show that the result of part (i) has lien urea. $\int_{1}^{e} d x$ was often forgotten.

Call 2
Rear 10

(iii) the sequence of growth es a GP mb $r=0.9$. There will be a limiting sum

$$
\begin{aligned}
& a=50 \quad r=0.9 \\
& S_{\infty}=\frac{50}{1-0.9}=500 \mathrm{~cm}=5 \mathrm{~m}
\end{aligned}
$$

\therefore The maximum growth is 5 m the maximum height $=5.8 \mathrm{~m}$ \therefore the tree hill never reach 6 m .
(iv) If the tree reaches 5 m its growth would be 4.2 m

$$
\begin{array}{rl}
\therefore S_{n}=420 & a=50 \\
420 & =50\left(\frac{1-0.9^{n}}{0.1}\right) \\
\begin{aligned}
\frac{420 \times 0.1}{50} & =1-0.9^{n} \\
0.9^{n} & =1-\frac{420 \times 0.1}{50} \\
& =\frac{4}{25} \\
n & =\frac{\ln (4 / 25)}{\ln (0.9)} \\
& =17.3
\end{aligned}
\end{array}
$$

\therefore tree will reach height of 5 m in the 18 th year.
meet show
calculations.
(c)
must add the 80 cm -to the infinite sum.

$$
\begin{aligned}
& a=50 \\
& t=0.9
\end{aligned}
$$

The sum is 420 cm hot 500 cm
no mart deducts for 17 th year
(1) In $\triangle A B C, \triangle A E D$
$\angle A$ is common

$$
\angle A E D=\angle A B C \text { Given }
$$

$$
=90
$$

$\therefore \triangle A B C$ III $\triangle A E D$ (AA test or equiangular)
$\triangle \widehat{A B C} \| I I$
$\frac{A E}{A D}=\frac{A B}{A C}$

$$
\begin{aligned}
& \frac{A E}{8}=\frac{10}{A E}+11 \\
& A E^{2}+11 A E=80 \\
& A E^{2}+11 A E-80=0 \\
& (A E+16)(A E-5)=0 \\
& A E=-16 \quad(\text { impossible }) \\
& A E=5
\end{aligned}
$$

Better -to
draw the
treangles
seperately.
To find
comespanding
rides. rides.

Question 1
a)

$$
\begin{aligned}
& \frac{2\left(\sec ^{2} A-1\right)}{2 \tan A} \\
& \frac{\tan ^{2} A+1-1}{\tan A}
\end{aligned}
$$

$$
\tan A \quad \text { Rear } 2
$$

$$
=\tan A
$$

b) Test $(0,3)(3,0)(-3,0)$

$$
\begin{array}{lll}
\text { Test }(0,3) & (3,0) & (-3,0) \\
y=-\frac{1}{3} x^{2}+3 & 0=-\frac{1}{3}(3)^{2}+3 & 0=\frac{1}{3}(-3)^{2}+3 \\
3=3 & 0=0 & 0=0 \\
\text { Keas } \\
& & \text { Parabola }
\end{array}
$$

cal is

Since all 3 points are on the parabola the equation is $y=-\frac{1}{3} x^{2}+3$
11)

$$
\begin{aligned}
A & =5 \times 7-2 \int_{0}^{3}\left(-\frac{1}{3} x^{2}+3\right) d x \\
& =35-2\left[-\frac{x^{3}}{9}+3 x\right]_{0}^{3} \\
& =35-2\left(-\frac{27}{9}+9-0\right) \\
& =23 \text { units }^{2}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
P(\text { both survive }) & =0.95 \times 0.95 \\
& =0.9025
\end{aligned}
$$

$$
=0.9025
$$

II)

$$
1-(0.95)^{5}
$$

III)

Leas 6.

$$
=0.23
$$

Many students made this much more complicated than it needed to be.
poorly done!
the easiest way to show this is to substitute 3 points and test to see if they lie on the curve.
5×6 was also accepted for the rectangle as these were the measurements given in the wording of the question

This question was fairly well done.
part (iii) there was some confusion with the inequality slain. Note: when o<a<1 in $\log a$ then $\log a$ is negative hence dividing by $\log 0.95$ the sign must be reversed.
call. 6
Com 2
Question 8
(a)

$$
\begin{aligned}
& y=3 \cos 4 x-5 \sin x \\
& y+\frac{d^{2} y}{d x^{2}}=k \cos 4 x \\
& \frac{d y}{d x}=-3 \times 4 \sin 4 x-5 \cos x
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=-48 \cos 4 x+5 \sin x
$$

$$
\therefore 3 \cos 4 x-5 \sin x-48 \cos 4 x+5 \sin x
$$

$$
=k \cos 4 x
$$

$$
-45 \cos 4 x=k \cos 4 x
$$

$$
\therefore k=-45
$$

(b)
(1) $y=\ln (x-1)$

Com 2

<< asymptote at $x=1$

$$
\begin{aligned}
& =\pi\left[\frac{e^{2 \ln 3}}{2}+2 e^{\ln 3}+\ln 3-\frac{1}{2}-2\right] \\
& =\pi\left[\frac{e^{2 \ln 3}}{2}+2 e^{\ln 3}+\ln 3-\frac{5}{2}\right] \\
& =\pi\left[\frac{e^{\ln 9}}{2}+2 e^{\ln 3}+\ln 3-\frac{5}{2}\right] \\
& =\pi\left[\frac{9}{2}+2 \times(3)+\ln 3-\frac{5}{2}\right] \\
& =\pi\left[\frac{9}{2}+6+\ln 3-\frac{5}{2}\right] \\
& =\pi[8+\ln 3] \quad \text { or } 28 \cdot 6 \text { unis }^{3}
\end{aligned}
$$

(c)

(1) $P(J J)$ or $P(R R)$

$$
\left(\frac{3}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}=\frac{13}{25}
$$

Rems 4
(ii) $1-P(R R)$

$$
1-\left(\frac{2}{5}\right)^{2}=\frac{21}{25}
$$

(iii) $P(J J)$ or $P(J R J)$ or $P(R J R)$ or $P(R R)$

$$
\left(\frac{3}{5}\right)^{2}+\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}+\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}+\left(\frac{2}{5}\right)^{2}=\frac{19}{25}
$$

Students who answered this successfully were those that drew a tree diagram or wrote down the required selections for each question.
$1-\left(\frac{2}{5}\right)^{2}=\frac{21}{25}$

Question 9
a)

$$
\begin{align*}
\cos \theta & =\frac{5}{10}=\frac{1}{2} \quad 2 \times \theta=\frac{2 \pi}{3} \\
\theta & =\frac{\pi}{3}
\end{align*}
$$

Leas 9.
1)
II)

$$
\begin{align*}
& 2 \times \pi \times 10-\left(10 \times \frac{2 \pi}{3}\right) \\
& 20 \pi-\frac{20 \pi}{3} \\
& \frac{60 \pi-20 \pi}{3} \\
& =\frac{40 \pi}{3} \tag{2}
\end{align*}
$$

iii) Area Circle - Area miner segment

$$
\pi r^{2}-\left[\frac{1}{2} r^{2}(\theta-\sin \theta)\right.
$$

$$
\pi 100-\left[50\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right)\right.
$$

$$
100 \pi-\frac{100 \pi}{3}+\operatorname{sos} \frac{2 \pi}{3}
$$

$$
\frac{300 \pi-100 \pi}{3}+50 \operatorname{sn} \frac{2 \pi}{3}
$$

$$
\frac{200 \pi}{3}+50+\frac{\sqrt{3}}{2} \quad \operatorname{Reas} 3
$$

$$
=\frac{20, \pi}{3}+25 \sqrt{3}
$$

alternative sola (wa) $2 \pi-\frac{2 \pi}{3}=\frac{4 \pi}{3}$
Then unis are lent

$$
\begin{aligned}
l & =10 \times 4 \frac{\pi}{3} \\
& =\frac{40 \pi}{3}
\end{aligned}
$$

Various solution accepted
Area of sector $+\Delta$ but workin required to get man for base of triangle if used $\frac{1}{2} \mathrm{bth}$.
b)

Keas
$n=8 \times 12=96$
$r=0.15 \div 12=0.0125$
$A_{1}=320,000(1.0125)-m$ $A_{2}=[320,000(1.0125)-\mathrm{m}](1.0125)-\mathrm{m}$
$=320,000(1.0125)^{2}-1.0125 m-m$
$=320,000(1.0125)^{2}-m[1.0125+1]$
$A_{96}=320,000(1.0125)^{96}-m\left[1.0125^{95}+\cdots, 1\right]$
$\begin{gathered}a=1 \\ r=1.0125\end{gathered}$
$r=92$
$A_{96}=0$

$$
320000(1.0125)^{96}=M\left[\frac{1\left(1.925^{-96}-1\right)}{0.125}\right] \quad \begin{aligned}
& \text { Careless mors with } \\
& \text { gp ad } n \neq 95 .
\end{aligned}
$$

$$
\frac{320000(1.0125)^{96}(0.0125)}{1.0125^{96}-1}=m
$$

$$
\$ 5142.53=\mathrm{m}
$$

c) If $p \geqslant 1$, then the line wort intersect twice
$p \leq 0$,
When gradient $=0$, the line $y=0$ cuts the argot twice $\quad 0 \leqslant p<1$

Rear 2
the equation $\sin x=p x$ has two Solutions.
most students handled

Students needed to

Show correction with A_{1} either as shown or
$A_{2}=A_{1}(1.0125-m)$ to be awned mark:
this well.

$\begin{array}{ll}\text { Call } 3 \\ \text { Reas } & 7\end{array}$

Ques tron 10

Only a tee students
recognized that there
were 21 deposits.
several students
did not see the was followed by a compound interest

Many sivdents who had attempted vote
learning of a procedure
could not apply b
given question.

Several sivdeat
thought that
!!

(c)	(i) $\sec \theta=\underline{M N} \quad \tan \theta=\underline{M T} \quad$ Reas 1	Well done -
	T 1	many stodents
	$\therefore M N=\sec \theta \quad \therefore M T=\tan \theta$	we able to
		access these
	(ii) $L M=L T-M T$	3 marks.
	$=3-\tan \theta \quad$ Reas 2	
	cost of LM $=(3-\tan \theta) \mathrm{C}$	
	$M N=\sec \theta$	
	Cost of $M N=3 C \times \sec \theta$	
	仡	
	\therefore total $\cos t=(3-\tan \theta) c+3 \sec \theta$.	
	$=3 c-2 \tan \theta+3 c \sec \theta$	
	(iii) Minimise cost	Only a few
	$T=3 c-c \tan \theta+3 c \sec \theta$	students could
	$J=3 c-c \tan \theta+3(\cos \theta)^{-1} c$	conectly differctiol
	$T^{\prime}=-c \sec ^{2} \theta+3 c(\cos \theta)^{-2} \times \sin \theta$	T. Favers shill
	$=-\operatorname{csec}^{2} \theta+\frac{3 c \sin \theta}{\cos ^{2} \theta} \quad \operatorname{carc} 3$	coned solve $T^{\prime}=0$.
	- $\overline{\cos ^{2} \theta}$ canc3	Many sludens
	$=c(-1)+3 \sin \theta)$	calculated.
	$\overline{\cos ^{2} \theta} \quad \overline{\cos ^{2} \theta}$	dT unstead of
	$=c(3 \sin \theta-1)$	$d c$
	$\left(\frac{3}{\cos ^{2} \theta}\right)$	dt.
	Vor max/min $t^{\prime}=0$	$d \theta$
	le $3 \sin \theta-1=0$	
	$\sin \theta=\frac{1}{3}$,	
	$\theta=\sin ^{-1}\left(\frac{1}{3}\right)=0.3398^{\circ}$	
	check minimum value	
	$\theta \quad 0.3^{c} 0.339^{c} 0.4{ }^{\text {c }}$	Several indewn
		diduot demontrak
	1 , M Minimum	thes adequately.

