

SCEGGS Darlinghurst

2010

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start each question in a new booklet

Total marks – 120

- Attempt Questions 1–10
- All questions are of equal value

Total marks – 120 Attempt Questions 1–10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Ques	tion 1 (12 marks)	Marks
(a)	Evaluate <i>ln 27</i> correct to 2 decimal places.	2
(b)	Solve $ x + 4 = 3$.	2
(c)	Simplify $\frac{3}{x-1} - \frac{5}{x+1}$.	2
(d)	Solve: $\sqrt{3} \tan x = -1$ for $0 \le x \le 2\pi$.	2
(e)	Rationalise the denominator of $\frac{1}{\sqrt{3}-2}$.	2
(f)	Find a primitive function of $2 + \frac{1}{x}$.	2

Marks

Question 2 (12 marks) Use a SEPARATE writing booklet.

(a) Differentiate: (i) $y = e^{2x} (3x - 2)$. 2

(ii)
$$y = \log_e (2x^2 + 5).$$
 2

(b) Find
$$\int \sec^2 3x \, dx$$
. 1

(c) Find the equation of the normal to the curve $y = x^2 - 4x$ at the point (1, -3). 3

(d) Evaluate
$$\sum_{r=1}^{3} (-1)^r (r+2)^2$$
. 2

(e) Find the value of k if the sum of the roots of $x^2 - (k-1)x + 2k = 0$ is equal to 2 the product of those roots.

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a)

(b)

The diagram shows the points A(-5, 5) and C(1, 3) and D(-4, -2). *B* is a point on the *y*-axis.

(i)	Find the gradient of AC.	1
(ii)	Find the midpoint of AC	1
(iii)	Show that the equation of the perpendicular bisector of AC is $3x - y + 10 = 0$.	1
(iv)	Find the co-ordinates of <i>B</i> given that <i>B</i> lies on $3x - y + 10 = 0$.	1
(v)	Show that the point $D(-4, -2)$ lies on $3x - y + 10 = 0$.	1
(vi)	Show that <i>ABCD</i> is a rhombus.	2
(i)	On the same set of axes sketch the graphs $y = 4 - x^2$ and $y = 3$.	2
(ii)	The graph $y = 3$ cuts the parabola at <i>A</i> and <i>B</i> . Find the co-ordinates of <i>A</i> and <i>B</i> .	1
(iii)	Calculate the area enclosed by the graphs $y = 4 - x^2$ and $y = 3$.	2

Question 4 (12 marks) Use a SEPARATE writing booklet.

(i)	Find $f'(x)$.	1
(ii)	Find the coordinates of the two stationary points.	2
(iii)	Determine the nature of the stationary points.	2
(iv)	Sketch the curve $y = f(x)$ for $0 \le x \le 4$ clearly labelling the stationary points.	2
(v)	Apply the Trapezoidal Rule with 5 function values to find an approximation to an area between $f(x) = x^3 - 6x^2 + 9x + 2$ and the <i>x</i> -axis between $x = 0$ and $x = 4$.	3

Quest	tion 5 (12 marks) Use a SEPARATE writing booklet.	Marks
(a)	By using the substitution of $y = 5^x$ solve for x the equation $25^x - 26(5^x) + 25 = 0$.	2
(b)	Sketch the curve that has the following properties. $f(2) = 1$ $f'(2) = 0$ $f''(2) = 0$ $f'(x) \ge 0 \text{ for all real } x.$	3
(c)	Solve $2\log_b x = \log_b 2 + \log_b (x+4)$.	3

(d) (i) Show that
$$\frac{d}{dx}(x\log_e x) = \log_e x + 1$$
. 1

(ii) Hence evaluate
$$\int_{1}^{e} (\log_{e} x) dx$$
. 3

iv) In which year will the silky oak reach a height of 5 metres?

(c) ABC is a right-angled triangle in which $\angle ABC = 90^{\circ}$. Points D and E lie on AB and AC respectively such that AC is perpendicular to DE. AD = 8 cm, EC = 11 cm and DB = 2 cm.

(b)	Tom is an enthusiastic gardener. He planted a silky oak tree three years ago
	when it was 80 centimetres tall. At the end of the first year after planting,
	it was 130 centimetres tall, that is it grew 50 centimetres. Each year's growth
	was then 90% of the previous year's.

(i)	What was the growth of the silky oak in the second year?	1
(ii)	How tall was the silky oak after three years?	1
(iii)	Assuming that it maintains the present growth pattern, explain why the tree will never reach a height of 6 metres.	2
(iv)	In which year will the silky oak reach a height of 5 metres?	2

x-axis and the ordinates at x = 0 and $x = \frac{\pi}{4}$.

Calculate the area of the region enclosed by the graph of $y = \cos 2x$, the

Question 6 (12 marks) Use a SEPARATE writing booklet.

(a)

2

2 2 **Question 7** (12 marks) Use a SEPARATE writing booklet.

(a) Simplify
$$\frac{2 \sec^2 A - 2}{2 \tan A}$$
 2

(b) The diagram represents an archway of a building that is 5m high and 6m wide. The curved part is in the shape of a parabola with vertex 3m above the ground.

Use the axis shown in the diagram to:

(i) show that the equation of the parabola is
$$y = -\frac{1}{3}x^2 + 3$$
.

- (ii) find the shaded area.
- (c) The College gardener knows that the probability of a seedling growing to maturity is 0.95.

(i)	If the gardener plants 2 seedlings, what is the probability that both will survive to maturity?	1
(ii)	If the gardener plants 5 seedlings, what is the probability that at least one seedling will die before reaching maturity? Express as decimal correct to 2 decimal places.	2
(iii)	If the gardener plants <i>n</i> seedlings, what is the maximum value of <i>n</i> if the probability that at least one seedling will die before reaching maturity is less than 0.5?	3

End of Question 7

Marks

3

Quest	ion 8 (1	2 marks) Use a SEPARATE writing booklet.	Marks
(a)	For the	e function $y = 3\cos 4x - 5\sin x$, find the value of k if	3
		$y + \frac{d^2 y}{dx^2} = k \cos 4x .$	
(b)	(i)	Sketch the curve $y = \ln (x - 1)$ clearly showing the <i>x</i> -intercept and the asymptote.	2
	(ii)	The region enclosed by the curve $y = \ln (x - 1)$ and the lines $x = 0$, $y = 0$ and $y = \ln 3$ is rotated about the y-axis to form a solid of revolution. Find the volume of this solid.	3
(c)	Jane and set that	nd Ruby play a tennis match against each other. The probability in any t Jane wins is $\frac{3}{5}$. The first player to win 2 sets wins the match.	
	(i)	Find the probability that the match ends at the second set.	1
	(ii)	Find the probability that Jane wins at least one set.	1
	(iii)	Find the probability that the person who wins the first set goes on to win the match.	2

1

Question 9 (12 marks) Use a SEPARATE writing booklet.

A water sprinkler covers a circular lawn area of radius 10 metres. The sprinkler (*O*) is placed 5 metres from a rectangular garden bed.

(i) Garden stakes are placed at *A* and *B*.

Show that
$$\angle AOB = \frac{2\pi}{3}$$
 radians.

(ii) Show that the total perimeter of the lawn area covered by the sprinkler is
$$\frac{40\pi}{3}$$
 m.

(iii) Show that the area of the lawn that the sprinkler will cover is
$$\frac{200\pi}{3} + 25\sqrt{3} \text{ m}^2$$
.

- (b) Savannah buys a Porsche for \$320,000 and agrees to pay it off at the same amount each month over 8 years. The interest rate is 15% per annum, reducible monthly.
 - (i) If the monthly repayments are M, and A_n is the amount owing **1** after *n* repayments, show that the amount owing (in dollars) after the second repayment is given by:

$$A_2 = 320\,000 \times 1.0125^2 - 1.0125\,M - M$$

(ii) Hence find the amount of each monthly repayment.

Question 9 continues on page 10

3

Marks

Question 9 (continued)

(c) For what values of p does the equation $\sin x = px$ have two solutions in 2 the domain $0 \le x \le \pi$.

Ques	tion 10	(12 marks) Use a SEPARATE writing booklet.	Marks
(a)	Find t	he co-ordinates of the vertex of the parabola $y^2 - 6y - 9x - 9 = 0$.	2
(b)	John p He co The in	outs \$2 000 into a superannuation account on his 40th birthday. ntinues to do this on his birthday up to and including his 60th birthday. Iterest he earns is 10% pa compounded yearly.	
	On his which	s 61st birthday he moves the accumulated amount into an account earns 8% pa compounded yearly.	
	He wi	ll collect his accumulated amount on his 65th birthday.	
	(i)	How much does the first \$2 000 accumulate to when John celebrates his 61st birthday?	1
	(ii)	How much will John collect on his 65th birthday?	3

Question 10 continues on page 12

Question 10 (continued)

(c) It is desired to construct a cable link between two points L and N, which are situated on opposite banks of a river of width 1km. L lies 3km upstream from N. It costs 3 times as much to lay a length of cable underwater as it does to lay the same length overland. The following diagram is a sketch of the cables, where θ is the angle where NM makes with the direct route across the river.

(i) Prove
$$MN = \sec \theta$$
 and $MT = \tan \theta$. 1

(ii) If segment *LM* costs *c* dollars per km, prove that the total cost (*T*) of 2 laying the cable is given by $2 = \frac{1}{2} \frac{1}{2}$

$$T = 3c - c\tan\theta + 3c\sec\theta.$$

(iii) At what angle should the cable cross the river in order to minimize the total cost of laying it.

End of Paper

$$\frac{\int O(a t d n x + 0 t - 1 (a t d 2010)}{\int (2a t d x + 0 t - 1 (a t t d x + 0 t - 1 (a t t d x + 0 t - 1 (a t t d x + 0 t - 1 (a t t d x + 0 t - 1 (a t t d x + 0 t - 1 (a t t d x + 0 t - 1 (a t t -$$

-		
	(e) $x^{2} - (k-1)x + 2k = 0$ a = 1	coreless empras made with sum = - =
	b = -(k-1) $C = 2k$	be careful of the signs.
	Sum = -b product = c a	
	$\frac{R-1}{1} = \frac{2R}{1}$ Reas2	

Question 3
(a) i)
$$\frac{3-5}{1+5} = \frac{-2}{6} = -\frac{1}{3}$$
 (a) $\frac{2}{1+5} = \frac{-2}{6} = -\frac{1}{3}$ (a) $\frac{2}{1+5}$
(a) $\frac{3-5}{1+5} = \frac{-2}{6} = -\frac{1}{3}$ (b) $\frac{2}{10}$
(c) $\frac{1}{1+5} = \frac{5+3}{2}$)
 $= (-2, 4)$ (c) $\frac{1}{2} = m(x-x_1)$
 $y - y_1 = m(x-x_1)$
 $y - y_1 = m(x-x_1)$
 $y - y_1 = 3(x - -2)$
 $y - 4 = 3x + 6$
 $3x - y + 10 = 0$
(c) $\frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2}$
(c) $\frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2}$

Do not assume that all references to the word "perpendicular" imply the use of the perpendicular distance formula!

Many students went on "firthing" expeditions - listing all the properties of a rhombous that they could think of ... Full makes required a clear, precise response.

Well done.

	Calc 4 Com 2	
	Reas 21	
	Question 4	
		Poorly done. Few
(a)	$\mathcal{X} \leq 4$	students realised that
()	$M \leq 0$ Reas 2	the unbroken boundaries
	37+24-630	required both equation and
		Inequality signs. Few
(6)	$f(x) = x^3 - 6x^2 + 9x + 2$	students were able to
0.7	(i) $f'(x) = 3x^2 - 17x + 9$	test the points in an
		appropriate mannes.
	(i) For stat policia f(x)=0	11.1
	$3x^2 - 12x + 9 = 0$	
	22-4x+3=0 Calc 2	
	(x-1)(x-3) = 0	
	$\chi = 1 - 3$	
		Need both x and y value;
	(16) Vand (32)	
	Till For happer f'(12) Care 2	
	f''(x) = bx - 12	Tables of -1-1-
	A + 2k = 1 + f''(1) = -b + (1b) max	are worthless inthout
	At $\chi = 3 f''(3) = t_{0} :: (32) Min$	a clear supporting
		of the points.
	GW 4- (16) Max tpt	
		Many students did
	2	not deal adequately
		with the end points.
	-2- 2 3 4	
	-4- Com 2	
	$f(\mu) = 6$	
	(V) See one	
		N

Still some students x 0 1 2 3 4 P(x) 2642 6 with incorrect value for ~ 12 1 2 2 2 h= width of strip Fact Prod 2 12 8 4 6 01 h= b-a 2=32 n A= hxz N= 4, N \$ 5. 2 Some students could = 1×32 not apply the correct factors. 6) = 16 units2

Care 4 Question 5 Com 3 a) y=5 " Reas 5 5²×-26(5^{*})+25=0 y2 -264 +25= 0 (4-25)(4-1)=> Reas 2 4=1 y = 25 52=1 5 = 25 Mostly well done. $5^2 = 5^2$ or x=0 V / 2=2 ~4 1 por positive gradient 1 for connect point (2,1) 1 for honegental inflexion Com 3 -7 X (men if drawn consectly) inflexion point (without horigontal) was not awanded a mark. c) $l_{9}_{6} x^{2} = l_{9}_{6} 2(x+4)$ very poor log laws. $\chi^{2} = 2(\chi + 4)$ mother that x70 12-21-8=0 (x - 4)(x + 2) = 0as log i is Reas 3 11=-2 x=4 NO JOLA defined for x70 only. :)= 4 V

d) i) $\frac{d}{dx} (x \log x)$ well done but $\frac{dy}{dx} = \frac{\chi}{k} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ make working Call 4 alesolutely clear. = loqe +1 11) jloget dx = xloget - jidn not well done. $= \left[\chi \log_{e^{\chi}} - \chi \right]_{1}^{e}$ must show that the sesult of part(1) $= \left(e \log_e^e - e \right) - \left[\log_e^l - 1 \right]$ has been used. fi da was often $= \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$ for Sotten.

U.	calc 2	
	Reas 10	
	Queinon (o	
	$\frac{G}{G} = \frac{14 - Coc}{2} \frac{2}{2}$	
	$(a) y = as 2\pi$	
	$A = \int_{-\infty}^{\infty} (m 2x) dx$	
	n - Journan	
	= Sim In 74 Calc 2	
_		1.1.11 1.0.0
		well dane.
	= I(Sig = -SinO)	
	2	
	= (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	- 2 (1)	
	- Z Unn	
	4.5	
	(b) Govern 2	
	50 Growth T	
		Ta i ia
	80 cm _ 80	It was important
	0:12	to note that
	in Cari and a la	80 cm was not
	(1) Growth in second years	the furt turn of
_	= 0.9×50	the sequence. The
	= 45 cm V	question refers to
_	to here here	growth.
	(1) Height after 5 years	
	= Inchal height + Grouth + Gro	h
	$n=3 \ \alpha=50 \ r=0.9 \ Sn=\alpha(1-r^{2})$	
	$= 80 + 50 (1 - 0.9^{-1})$	
	1-04	
_	= 215,5 Cm	

0.1

(iii) the sequence of growth is a GP with		(C) (1) IN SABC , SAED	
r=0.9. there will be a limiting sum		/A is common Reas 2	well d
a = 50 (= 0.9)	must show	LAED = LABC Given	Reason
$S_{10} = 50 = 500 \text{ cm} = 5\text{m}$	calculations.	= 90	seque
1-0.9		: A ABC III SAED (ARTEIT V	
the maximum growth is 5m	must add the	or equiangular	
the maximum height = 5.8 m	80cm to the	A FBC III A RED	
. the wee nill never	infinite sum.	(ii) $AE = AB$	Better
reach bm.	,	AD AC	draw th
		AE = 10	treangle
(iv) If the tree reaches 5 m its		8 AE+11	seperate
growth would be 4.2 m		$AE^2 + 11 AE = 80$	to pino
9		$KE^2 + 11AE - 80 = 0$ 2.	companyon
$S_n = 420$ $a = 50$	a= 50	(AE + 16)(AE - 5) = 0	rides.
$420 = 50(1-0.9^{n})$ r= 0.9	+= 0.9	AE = -16 (Impossible)	
(The seem is 420cm	AE = 5	
$420 \times 0.1 = 1 - 0.9^{n}$	not 500 cm		
50			
0.9"=1-420×0.1			
50			
= 425			
n = ln(5)			
ln (0.9)			
- 173			
: tree will reach height of 5m	no mark deduct a		
in the 18th year.	how 17 the year		
	0		
		and the second	

Cal 3 Question 7 Rews 9 a) $2(sec^2 A - 1)$ 2 + an A + a 2 A + 1 - 1 V + a A Reas 2 = tanA b) Test (0,3) (3,0) (-3,0) $y = -\frac{1}{3}\chi^{2} + 3$ $0 = -\frac{1}{3}(3)^{2} + 3$ $0 = -\frac{1}{3}(-3)^{2} + 3$ / Reas 1 3 = 3 0=0 Since all 3 points are on the parabola the equation is y=-3x2+3 II) $A = 5x7 - 2 \int_{-\frac{1}{3}}^{3} \left(-\frac{1}{3}x^{2} + 3\right) dx$ = $35 - 2 \left[-\frac{23}{9} + \frac{3x}{9}\right]_{0}^{3}$ $= 35 - 2\left(-\frac{27}{9}+9-0\right)$ = 23 units / Cur 3 c) 1) P(both Survive) = 0.95×0.95 = 0.9025 = 0.9025 11) 1- (0.95) Reas 6. = 0.23 1-(0,95) 20.5 -(0.95)" 2 -0.5 111) (0.95) 7 0.5 (0.95) 7 0.5 n 109 0.95 7 101 0.5 n 109 0.95 7 1050.5 n 2 1050.5 0.95 n K13.5

Many students made this much more complicated than it needed to be.

poorly done. the easiest way to show this is to substitute 3 points and test to see if they lie on the curve.

5x6 was also accepted for the rectangle as these were the measurements given in the wording of the question

This question was fairly well done. part (iii) there was some confusion with the inequality sign. Note: when Oca < 1 in log a then log a is negative hence dividing by log 0.95 the sign must be reversed.

calc 6	
Com 2	
Reas 4	
Question 8	
(a) $M = 3\cos 4x - 5\sin x$	dzy- means the
$y + \frac{d^2y}{dz^2} = k \cos 4x \qquad \text{Call 3}$	dri ² second derivation and many students
$\frac{dy}{dx} = -3 \times 4 \sin 4x - 5\cos x$	didn't know this.
$d^2y = -48 \cos 4x + 5 \sin x$	
ance	
$\therefore 3 \cos 4x - 5 \sin x - 48\cos 4x + 5 \sin x$ = k cos 4x	
$-45\cos 4x = k\cos 4x$	
: e = 45	
(b) (1) $y = ln(x-1)$ Com 2	
И 234 7к	
< asymptote at x = 1	
(ii) $V = TT \int x^2 dy$ $y = ln(x-1)$	Volume around the yaxis
$V = T \left[\begin{array}{c} e^{2y} + 2e^{y} + 1 \ dy \\ \end{array} \right] \chi = e^{y} + 1 V$	$V = \pi \int x^2 dy$
$= TT \left[\frac{e^{2y}}{2} + 2e^{y} + y \right]^{m3} = (c + 1)$	and find an expression
$= \Pi \begin{bmatrix} e^{2\ln 3} & \ln 3 & -e^{2} & -2e^{2} \\ 2 & 2 & 2 \end{bmatrix}$	before integrating.

 $= \pi \left[\frac{2 \ln^3}{4} + 2 e^{\ln^3} + \ln^3 - 1 - 2 \right]$ $= \pi \left[\frac{e^{2\ln 3} + 2e^{\ln 3} + \ln 3 - 5}{2} \right]$ Calc $= tr \underbrace{e^{\ln q}}_{2} + 2 \underbrace{e^{\ln 3}}_{1} + \underbrace{\ln 3}_{2} - \underbrace{5}_{2}$ $\frac{9+2x(3)+\ln 3-5}{2}$ $\pi = \pi$ $= \pi \left[\frac{9+b+\ln 3-5}{2} \right]$ = TT [8 + ln 3] or 28.6 units Students who answered this (C) ER ER successfully were those that drew a tree diagram or wrote down the required R J ZR selections for each question. (1) P(JJ) or P(RR) $\left(\frac{3}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{13}{25}$ Reas 4 (ii) 1 - P(RK) $1 - (\frac{2}{4})^2 = \frac{21}{25}$ (ii) P(JJ) or P(JRJ) or P(RJR) or P(RR) $\left(\frac{3}{5}\right)^{2} + \frac{3}{5} \times \frac{2}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{3}{5} \times \frac{2}{5} + \left(\frac{3}{5}\right)^{2} = 19$ 25

Question 9 Reas 9. $cos 0 = \frac{5}{10} = \frac{1}{2}$ 2×0= 211 0=1 alternative sola $11) \quad 2 \times \pi \times 10 - \left(10 \times \frac{2 \pi}{3}\right)$ Was 211 - 217 = 411 Then using are leath 2011 - 2011 l= 10×4117 6511 - 2011 = 4011 = 4011 2 Various Solutions accepted III) Avea Circle - Area minor signent Area of sector + A $\pi r^2 - \left(\frac{1}{2}r^2(\theta - Sh\theta)\right)$ but Working required to fet mark for have of TT 100 - (50 (2 - SULT) mangle if used 2 5×4. 100TT - 100TT +505in 2TT 300TT - 100TT + 50 SUZIT 20011 + 50 × J3 Reas 3 fudging to get 3 2 Reas 3 fudging to get Solution # no marks. = 20011 + 2553

b)	Reap 4		0	calc 3	
$N = 8 \times 12 = 96$				Reas 7	
r=0.15=n=0.025		ship haveded to		0	
		Students miles with A		dues hon 10	
122000/1.012	(5) - M	Show Connection and	(a)	$y^{-}6y - 9x - 9 = 0$	Most (but not all)
A,= 3.0,000 (1		eiter as such to		$y^2 - by + (3)^2 = 9x + 9 + 9$	students could successfull
A2= 320,000 (1.0125)-1	M (1.0125) - M	Az-A, (1.0125 - M) 12 be awared morik?		$(y-3)^2 = Q(x+2)$	complete the square.
	10125M - M	02 F		Vertex = (-23)	
= 320,000 (1.0125) -	- 1.012		_		
$(10125)^2$ -	m [10125 +1]		(6)	21 deposits of \$2000	Only a few students
= 520,000 (100 96	$(10005^{95} + \cdots)$	most students hand led		r= 0.1	recognized that there
1.0125) - 1	m 1.0123	His well.		(1) the first \$2000 manues in 21 years	were 21 deposits.
A ₉₆ = 325,000 (1	a=1.0125			$A_{1} = P(1+r)^{n}$	several sholects
	n=96	И		=2000 (1.1)	did not see the
A96 = 0	F 1 (1.925 -1)	(Areless errors with		= \$14800.50	annuity context
	M 0,125	ad n = 95.			a compound interest
320000 (1.0113)		j gr		(11) A - 2000 (11)21 Reas 4	Context.
GL /	105)			$A_{2} = 2000 (11)^{20}$	Many shide to use
(10125) (0	0.027 = W1			$A_2 = 2000 (11)^{19}$	had all and d vale
320000(11					leaving of a note
1.0125 -1				$A_{21} = 2000 (11)^{0}$	realining of a proceause
	M.				courd not apply to
\$ 57 42.55 =				A = 2000 (11) + 2000/11)	given question.
1.5	\checkmark			$r_{tor} = 2000 (11) + 2000 (11) + $	
	ine won't	Alkmative Solution		+ (200 (11)	C
c) if p 7,1, then the	e mi i	o.ly hits		-2- (.21, 20	several sindents
startet twice		Liker		- 2000 1.1 + 1.1 + 1	Thought that
	14	1 m=1		L (22)7	10/0 = 0.01 !!
p = 0 1. 1 = 0. the	live y=0 cuts			= 2000 (1.1 - 1)	
When gradient wice	0 0	y= Sin X		Oil	
the fire of p 21	Keas I	y'= cosx		= \$142,805.49	
	nx has two	1 thent at showing this		this amount is then exposed to	
the equation since	r	An artigether students		compound interest @ 8% p.a. fer 4 yrs	
Solutions .		were awarded think.			
			_	A = 142805.99 (1.08)	
		1		= \$194285.30	

۲		
(c)	(i) $Sec\theta = MN$ $tan \theta = MT$ I I Reas $I\therefore MN = Sec \Theta \therefore MT = tan \Theta(ii) LM = LT - MT= 3 - tan \Theta Reas 2cost of LM = (3 - tan O) C$	Well done - many shidents we able to access these 3 marks.
	$MN = Sec \Theta$ $Cost of MN = 3c \times Sec \Theta$ $= 3cSec\Theta$ $\therefore total cost = (3-tan0)c+3cSec\Theta$ $= 3c-ztan0 + 3cSecO$	
	((i) Minimise cost $T = 3c - ctan \theta + 3csc\theta$ $T = 3c - ctan \theta + 3(cos \theta)^{-1}c$ $T' = -csc^{2}\theta + 3c(cos \theta)^{-2}sin \theta$ $= -csc^{2}\theta + 3c sin \theta$ $cos^{2}\theta$	Only a few stratents could connectly differention T. Ferrer shill could solve T'=0 Many stratents
	$= C \left(-1 + 3 \sin \Theta \right)$ $= C \left(3 \sin \Theta - 1 \right)$ $= C \left(3 \sin \Theta - 1 \right)$ $= C \left(3 \sin \Theta - 1 = 0 \right)$ $= C \left(3 \sin \Theta - 1 = 0 \right)$ $= C \left(3 \sin \Theta - 1 = 0 \right)$ $= C \left(3 \sin \Theta - 1 = 0 \right)$	calculated <u>dT</u> instead of <u>dc</u> <u>dT</u> . <u>d0</u>
	$\begin{array}{c} 0 = \sin^{-1}(\frac{1}{2}) = 0.3398^{\circ} \\ 0 = \sin^{-1}(\frac{1}{2}) = 0.3398^{\circ} \\ 0 = 0.3^{\circ} 0.339^{\circ} \\ 0.4^{\circ} \\ 1 = 0.12 \\ 0 = 0.2 \\ $	Several shokenss did not demonstrat flus adequately