

THE SCOTS COLLEGE

2006

TRIAL H.S.C. EXAMINATION

Mathematics

Time Allowed: 3 hours

Instructions

- Show ALL necessary working.
- Approved calculators may be used.
- All questions are of equal marks.
- Begin each question on a new page.

Question 1 (Begin a new Booklet)

a) Evaluate, to 2 significant figures, $\sqrt[3]{\frac{(9.2)^{2}}{\pi}}$.
b) Simplify fully $\frac{6 a^{2}-2 a b}{9 a^{2}-b^{2}}$
c) \quad Solve for x : $\quad 18 x^{2}=9 x$
d) Solve for $x: \quad x^{2}+x-12>0$
e) Simplify fully $e^{\ln (2 x-1)}$
f) Solve for x : $|2 x-3| \leq 10$
g) Differentiate $\cos \left(3 x^{2}\right)$

Question 2 (Begin a new Booklet)

a) A fair coin is tossed three times. What is the probability that exactly one tail is obtained? (2)
b) Differentiate:
i) $x \ln x$
ii) $\quad \frac{2 x+1}{e^{x}}$
c) Solve the equation $\sqrt{5 x+2}=7$
d) In triangle $\mathrm{WXV}, \mathrm{YZ}=12 \mathrm{~cm}, \mathrm{VX}=16 \mathrm{~cm}, \mathrm{WX}=8 \mathrm{~cm}$ and $\mathrm{YZ} \| \mathrm{VX}$. Prove that $\Delta \mathrm{WZY}$ is similar to $\Delta \mathrm{WXV}$ and find the length of WZ .

Question 3 (Begin a new Booklet)

In the diagram above, the line p cuts the y axis at $C(0,2)$ and the x axis at $A(1,0)$ while the line k cuts the y axis at $\mathrm{D}(0,8)$ and the x axis at $\mathrm{B}(-2,0)$.
a) Find the equation of the line k and the line p.
b) Find the coordinates of the point Q , where lines k and p intersect.
c) Write the equation of a line, q, passing through Q and perpendicular to the x axis.
d) Find the area enclosed by the lines p and q and the x axis.
e) Find the equation of the line t through the point $\mathrm{A}(1,0)$ and parallel to the line k.
f) Find the perpendicular distance between the line t and the line k.

Question 4 (Begin a new Booklet)

a) $\quad \mathrm{P}(x, y)$ moves so that its distance from $\mathrm{M}(3,0)$ is always twice its distance from the point $\mathrm{N}(0,3)$.
i) Show that the equation of the locus of all points $\mathrm{P}(x, y)$ is

$$
\begin{equation*}
x^{2}+2 x+y^{2}-8 y+9=0 \tag{4}
\end{equation*}
$$

ii) Give a geometrical description of the locus.
b) Find the equation of the curve $y=f(x)$ which satisfies the conditions:

- $f^{\prime}(x)=e^{x}+b$
- $(0,7)$ lies on the curve, and
- the slope of the tangent at $x=0$ is 3 .
c) Find i) $\int \sec ^{2}(3 x) d x$
ii) $\int \frac{5}{3 x+2} d x$

Question 5 (Begin a new Booklet)

a) Solve $\quad 4-4 \cos 2 x=2$ for $0 \leq x \leq 2 \pi$
b) In the diagram below, a cars windscreen wiper blade sweeps across the region ABCD, where $B C$ and $A D$ are the arcs of circles with centre O. The intervals $O A$ and $A B$ are $x \mathrm{~cm}$ and $3 x \mathrm{~cm}$ respectively, with $\angle \mathrm{BOC}=\theta$. The perimeter of the shaded region ABCD is 240 cm .

i) Find the angle θ, in terms of x. Show that $\theta=\frac{240-6 x}{5 x}$
ii) Show that the area ABCD is: $9 x(40-x) \mathrm{cm}^{2}$
iii) Find the maximum area of the shaded region.
c) Prove $\frac{\sin ^{3} \theta}{\cos \theta}+\sin \theta \cos \theta=\tan \theta$.
d) Differentiate $y=x \sin x+\cos x$. Hence, find in exact form, $\int_{0}^{\frac{\pi}{2}} x \cos x d x$.

Question 6 (Begin a new Booklet)

a) A parabola has the equation $x^{2}-6 x-6 y-3=0$. For this parabola, find:
i) the focal length,
ii) the coordinates of the vertex,
iii) the coordinates of the focus,
iv) the equation of the directrix
b) $\quad \alpha$ and β are the roots of $(2 m-1) x^{2}+(1+m) x+1=0$. Find m if $\alpha+\beta=0$.
c) The table below shows points on a continuous curve $y=f(x)$. Use the trapezoidal rule to find the approximate value, to 2 decimal places, of $\int_{3}^{3.4} f(x) d x$.

x	3	3.2	3.4
$f(x)$	7.19	7.62	8.41

d) A glass shape is obtained by rotating part of the parabola $x=\frac{y^{2}}{30}$ about the y axis as shown. The glass is 10 cm deep.

Find the volume of liquid, to 1 decimal place, which the glass will hold.

Question 7 (Begin a new Booklet)

a) The function $y=x^{3}-3 x^{2}-9 x+1$ is defined in the domain $-4 \leq x \leq 5$.
i) Find the coordinates of any turning points and determine their nature.
ii) Find the coordinates of any points of inflexion.
iii) Determine the minimum value of the function y in the domain $-4 \leq x \leq 5$.
b)

The diagram above shows $y=\sin x$ and $y=\cos x$ for the domain $0 \leq x \leq \pi$.
i) Show that the value of A, the x coordinate for the point of intersection of the two curves, is $\frac{\pi}{4}$.
ii) Find the size of the shaded area in exact form with a rational denominator in simplest form.

Question 8 (Begin a new Booklet)

a) The mass M of radioactive substance present after t years is given by $M=12 e^{-k t}$ where k is a positive constant. After 150 years, the mass reduced to 4 kg .
i) What was the original mass?
ii) Find the value of k, to 4 decimal places.
iii) What amount of the substance would remain after a period of 500 years, to 2 significant figures?
iv) How long, to the nearest year, would it take for the original mass to reduce to 6 kg ?
b) A 12 cm bamboo plant is put into a garden and its growth is recorded. It grows 5 cm every week. In what week will its height reach 167 cm ?
c) The sum of the first n terms of a series is given by $S_{n}=2^{n}+n^{2}$. Find the $15^{\text {th }}$ term.
d) A geometric series is generated by the rule $\sum_{n=1}^{8} 16\left(\frac{3}{2}\right)^{n-1}$.
i) Write out the first three terms of the series.
ii) Find the exact value of the sum of this series.

Question 9 (Begin a new Booklet)

a) A closed water tank in the shape of a right cylinder is to be constructed with a surface area of $64 \pi \mathrm{~cm}^{2}$. The height of the cylinder is $h \mathrm{~cm}$ and the base radius is $r \mathrm{~cm}$.
i) Show that the height of the water tank, in terms of r, is given by

$$
h=\frac{32}{r}-r
$$

ii) Show that the volume, V, that can be contained in the tank is given by

$$
\begin{equation*}
V=32 \pi r-\pi r^{3} \tag{1}
\end{equation*}
$$

iii) Find the radius $r \mathrm{~cm}$ which will give the cylinder its greatest possible volume. Justify your answer.
b) Oz Challenge is a game played with two different coloured dice: one gold and the other blue.

The six faces of the blue die are numbered: $5,7,9,10,11,13$
The six faces of the gold die are numbered: $1,4,6,8,12,14$
The player wins if the number on the gold die is larger than the number of the blue die.
i) Calculate the probability of the player winning a game.
ii) Calculate the probability that the player wins at least once in 2 successive games.
c) Solve $\log _{e}\left(x^{2}-x\right)=\log _{e} 2+\log _{e}(3 x+4)$

Question 10 (Begin a new Booklet)

a) Daniel borrows $\$ 8000$ from his father to pay for his World Cup Football trip and tickets. They agree that Daniel should pay interest of 1.5% every month and that he should agree to pay his father back an instalment every month.
i) Letting \$A be the amount owing after n months, and \$T be the value of each monthly instalment, derive an expression, involving T , for the amount owing after 12 months.
ii) Hence, find the value of T, to the nearest dollar, if he repays the loan after two years.
b) A particle moves on a horizontal line so that its displacement $x \mathrm{~cm}$ to the right of the origin at time t seconds is $x=t \sin t$.
i) Find expressions for the velocity and acceleration of the particle.
ii) Find the exact velocity of the particle at time $t=\frac{\pi}{4}$.
iii) What effect does the acceleration have on the velocity of the particle at

$$
\begin{equation*}
t=\frac{\pi}{4} \tag{1}
\end{equation*}
$$

iv) After the particle leaves the origin, is the particle ever at rest? Give reasons for your answer.

The End

$Q 1$
a)

$$
\begin{aligned}
\sqrt[3]{\frac{(9.2)^{2}}{\pi}} & =2.9978 \ldots \\
& =3.0(2 \mathrm{sigfg})
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{6 a^{2}-2 a b}{9 a^{2}-b^{2}} & =\frac{2 a(3 a-b)}{(3 a-b)(3 a+b)} \\
& =\frac{2 a}{3 a+b}
\end{aligned}
$$

c)

$$
\begin{aligned}
& 18 x^{2}=9 x \\
& 18 x^{2}-9 x=0 \\
& 9 x(2 x-1)=0 \\
& x=0 \quad \text { or } 2 x-1=0 \\
& 2 x=1 \\
& x=\frac{1}{2}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
x^{2}+x-12>0 \\
(x+4)(x-3)>0 \\
x<-4 r x>3
\end{array} \\
& \text { e) } \quad e^{\ln (2 x-1)}=2 x-1
\end{aligned}
$$

f)

$$
\begin{aligned}
& |2 x-3| \leqslant 10 \\
& -10 \leqslant 2 x-3 \leqslant 10 \\
& -7 \leqslant 2 x \leqslant 13 \\
& -\frac{7}{2} \leqslant x \leqslant \frac{13}{2}
\end{aligned}
$$

9)

$$
\begin{gathered}
y=\cos \left(3 x^{2}\right) \\
\frac{d y}{d x}=-6 x \operatorname{sen}\left(3 x^{2}\right)
\end{gathered}
$$

QR
a) $<_{T}^{H}<_{T}^{H}<_{T}^{H}<_{T}^{H}<_{T}^{H} \quad P(=T T)=\frac{3}{8}$
b) 1)

$$
\begin{array}{rlrl}
y & =x \ln x & \quad u=x & v=\ln x \\
\frac{d y}{d x} & =v \frac{d v}{d x}+v \frac{d v}{d x} & \frac{d}{d x}=1 & \frac{d v}{d x}=\frac{1}{x} \\
& =\ln x \cdot 1+x \frac{1}{x} \\
& =\ln x+1
\end{array}
$$

ii)

$$
\begin{aligned}
y & =\frac{2 x+1}{e^{x}} \quad \begin{array}{c}
d u \\
d x \\
\frac{d y}{d x}
\end{array}=\frac{v \frac{d v}{d x}-v \frac{d v}{d x} \quad \frac{d v}{d x}=e^{x}}{d x} \\
& =\frac{e^{x} \cdot 2^{v^{2}-(2 x+1)} e^{x}}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x}(2-2 x-1)}{\left(e^{x}\right)^{x}} \\
& =\frac{1-2 x}{e^{x}}
\end{aligned}
$$

c)

$$
=7
$$

$$
2=49
$$

$$
5 x=47
$$

$$
x=\frac{47}{5}
$$

$h \Delta w y z$ a $\Delta w V x$
$\therefore \Delta w y z$ similar $\Delta w r x$ as they are equiangular.

$$
\begin{aligned}
\frac{12}{16} & =\frac{x}{8} \\
x & =6 . \mathrm{cm}
\end{aligned}
$$

$$
\begin{aligned}
& \angle \omega=\angle \omega \text { (comma) } \\
& \angle w y z=\left\langlew r x \left(\begin{array}{c}
\text { alt. } \\
H z \| v
\end{array} \|\right.\right. \text { equal }
\end{aligned}
$$

83.

$$
\begin{aligned}
& \text { a) } \\
& m_{k}=\frac{8-0}{0+2} \\
& =4 \\
& \begin{aligned}
m_{p} & =\frac{2-0}{0-1} \\
& =-2
\end{aligned} \\
& 4=\frac{y-8}{x} \\
& -2=\frac{y-2}{x} \\
& -2 x=y-2 \\
& \text { " } k^{6} \quad y=4 x+8 \\
& 4 x=y \\
& y=-2 x+2 \\
& \text { b) } \\
& 4 x+8=-2 x+2 \\
& 6 x=-6 \\
& x=-1 \\
& \begin{array}{l}
y=-4 \\
y=4
\end{array} \\
& \therefore Q(-1.4)^{\prime}
\end{aligned}
$$

c) $x=-1$
d)

84.
a)

$$
2 P N=P M V
$$

i)

$$
\begin{aligned}
& P N=\sqrt{(x-0)^{2}+(y-3)^{2}} \\
& P M=\sqrt{(x-3)^{2}+(y-0)^{2}}
\end{aligned}
$$

$$
\begin{gathered}
2 \sqrt{x^{2}+(y-3)^{2}}=\sqrt{(x-3)^{2}+y^{2}} \\
4\left(x^{2}+y^{2}-6 y+9\right)=\left(x^{2}-6 x+9\right)+y^{2} \\
4 x^{2}+4 y^{2}-24 y+36=x^{2}-6 x+9+y^{2} \\
3 x^{2}+6 x+3 y^{2}-24 y+27=0 \\
x^{2}+2 x+y^{2}-8 y+9=0
\end{gathered}
$$

(3)
ii)

$$
x^{2}+2 x+\left(\frac{2}{2}\right)^{2}+y^{2}-8 y+\left(\frac{8}{2}\right)^{2}=-9+1^{2}+4^{2}
$$

$$
(x+1)^{2}+(y-4)^{2}=8
$$

arcle certre $(-1,4)$

$$
\begin{aligned}
r & =\sqrt{8} \\
& =2 \sqrt{2} \text { unts }
\end{aligned}
$$

b) $f^{\prime}(x)=e^{x}+b$
e) $m_{k}=4 \quad m_{t}=4 \quad$ of parallel to k. $p(x)=3$ wher $x=0$

$$
\begin{aligned}
& \therefore 4=\frac{y-0}{x-1} \\
& 4 x-4=y \\
& y=4 x-4
\end{aligned}
$$

f) $4 x-y+8=0 \quad(1,0)$
$\begin{array}{ll}a=4 & x=1 \\ b=-1 & y=0\end{array}$ wher $x=0, f(x)=7$

$$
\begin{aligned}
d & =\left|\frac{a x+b y+c}{\sqrt{\left(a^{2}+b^{2}\right)}}\right| \\
& =\left|\frac{4 \times 1+-1 \times 0+8}{\sqrt{\left(4^{2}+1^{2}\right)}}\right| \\
& =\left|\frac{12}{\sqrt{17}}\right|
\end{aligned}
$$

$$
c=8
$$

$=\sqrt{17}$ uncts r

$$
\begin{gathered}
e^{0}+b=3 \\
1+b=3 \\
b=2 \\
f^{\prime}(x)=e^{x}+2 \\
f(x)=e^{x}+2 x+c
\end{gathered}
$$

$$
\begin{aligned}
e^{0}+0+c & =7 \\
c & =6 \\
\therefore f(x) & =e^{x}+2 x+6
\end{aligned}
$$

c)
i) $\int \sec ^{2} 3 x d x=\frac{1}{3} \tan 3 x+c^{2}$

$$
\text { 11) } \begin{aligned}
\int \frac{5}{3 x+2} d x & =\frac{5}{3} \int \frac{3}{3 x+2} d x \\
& =\frac{5}{3} \ln (3 x+2)+c
\end{aligned}
$$

25.

a)

$$
\begin{aligned}
& \text { a) } \begin{aligned}
& 4-4 \cos 2 x=2 \\
& 4(1-\cos 2 x)=2 \\
& 1-\cos 2 x==\frac{1}{2} \\
&+\cos 2 x=+\frac{1}{2}
\end{aligned} \\
& 2 x=\frac{\pi}{3} \quad 2 x=\frac{5 \pi}{3} \quad 2 x=\frac{7 \pi}{3} \quad 2 x=\frac{11 \pi}{3} \\
& x=\frac{\pi}{6} \quad x=\frac{5 \pi}{6} \quad x=\frac{7 \pi}{6} \quad x=\frac{11 \pi}{6} \\
& \therefore x=\underbrace{\frac{\pi}{6}, \frac{5 \pi}{6}}_{r}, \underbrace{\frac{7 \pi}{6}, \frac{11 \pi}{6}}
\end{aligned}
$$

$Q 6$
a)

$$
\begin{aligned}
x^{2}-6 x-6 y-3 & =0 \\
\left(x^{2}-6 x+\left(\frac{6}{2}\right)^{2}\right) & =6 y+3+9 \\
(x-3)^{2} & =6(y+2)
\end{aligned}
$$

1) $\begin{aligned} 4 a & =6 \\ a & =\frac{3}{2}\end{aligned} \quad$ focal length $=\frac{3}{2}$
ii) vertex $(3,-2) \quad \checkmark$
iii) focus $\left(3,-\frac{1}{2}\right)$
iv) orectic $y=-3 \frac{1}{2}$
b) 1) Small $l=r Q$ large $l=r Q$

$$
=x Q \quad=4 x Q
$$

\therefore Renmeter $=3 x+3 x+x Q+4 x Q$

$$
240=6 x+5 x Q
$$

$$
5 x \theta=240-6 x
$$

$$
Q=\frac{240-6 x}{5 x}
$$

11)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot 16 x^{2} Q-\frac{1}{2} x^{2} Q \\
& =\frac{1}{2} 15 x^{2} Q \\
& =\frac{1}{2} 18 x^{2}\left(\frac{240-6 x}{8 x}\right) \\
& =3 x(120-3 x) \\
& =9 x(40-x) \\
& =360 x-9 x^{2}
\end{aligned}
$$

ii) max area occurs what $x=20$ on

$$
\begin{aligned}
& \frac{d A}{d x}=360-18 x=9 \times 20(40-20) \\
& 360-18 x=0=180(20) \\
& 18 x=860 \quad=3600 \mathrm{~cm}^{2} \\
& x=20
\end{aligned}
$$

$$
\text { c) }\left(4 \frac{\sin ^{3} \theta}{\cos \theta}+\sin \theta \cos \theta\right.
$$

$$
=\frac{\sin ^{3} \theta+\operatorname{an} \theta \cos ^{2} \theta}{\cos \theta}
$$

$$
=\frac{\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\cos \theta}
$$

$$
=\frac{\sin \theta}{\cos \theta}
$$

$$
=\tan \theta=\text { RH }
$$

d) $y=x \operatorname{an} x+\cos x \quad \frac{d u}{d x}=1 \quad \frac{d v}{d x}=\cos x$

$$
\begin{aligned}
& \frac{d y}{d x}=\sin x+x \cos x+(-\sin x) \\
&=x \cos x \\
& \int_{0}^{\frac{\pi}{2}} x \cos x d x=[x \sin x+\cos x]_{0}^{\frac{\pi}{2}} \\
&=\left(\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}\right)-(0+\cos \theta) \\
&=\frac{\pi}{2}-1
\end{aligned}
$$

b)

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a} \quad \text { but } \alpha+\beta=0 \\
& 0=\frac{-(1+m)}{(2 m-1)} \text { abut } m \neq \frac{1}{2} \\
& \text {. }-m-1=0 \\
& m=-1 \\
& \text { c) } A=\frac{0.2}{2}\{7.19+8.41+2 \times 7.62\} \\
& =3.084 \text { ants }^{2}
\end{aligned}
$$

d)

$$
\begin{aligned}
V & =\pi \int_{0}^{0} x^{2} d y \\
& =\pi \int_{0}^{10}\left(\frac{y^{2}}{30}\right)^{2} d y \\
& =\pi \int_{0}^{10} \frac{y^{4}}{900} d y \\
& =\pi\left[\frac{y^{5}}{4500}\right]_{0}^{10} \\
& =\pi\left[\frac{10^{5}}{4500}\right] \\
& =69.81 \ldots \mathrm{~cm}^{3} \\
& =69.8 .8{ }^{3}
\end{aligned}
$$

$Q 7$
a) $y=x^{3}-3 x^{2}-9 x+1$

1) $\frac{d y}{d x}=3 x^{2}-6 x-9$

St pts $0<00 \cdot \frac{d y}{d x}=0$
$3 x^{2}-6 x-9=0$
$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$
$x=3$ or $x=-1$
$\frac{x_{1}}{a_{y}-\sqrt{1}-1}+1+1^{+}$
$(-1,6)$
max mum

ii) $\frac{d^{2} y}{d x^{2}}=6 x-6$ bt iflecta occur $\frac{d y}{d x^{2}}=0$
$6 x-6=0$

$$
\begin{aligned}
x-1 & =0 \\
x & =1
\end{aligned}
$$

$$
x=1
$$

$\therefore(1,-10)$ pet inflection ${ }^{2}$
iii) when $x=-4 \quad y=-75$

$$
x=5 \quad y=6
$$

\because mir value $-4 \leqslant x \leqslant 5$ is $y=-75$ when $x=-4$
b) $\operatorname{yen} x=\cos x$

88
a)
$m=12 e$

1) when $t=0$

$$
m=12 e^{0}
$$

ii)

$$
=12 \mathrm{~g} \quad \therefore \text { initial mass }=12 \mathrm{~kg}
$$

$$
\begin{aligned}
m & =12 e^{-k t} \text { when } m=4, t=150 \\
4 & =12 e^{-1 R \times 150} \\
\frac{1}{3} & =e^{-150 k} \\
\ln \left(\frac{1}{3}\right) & =-150 k \\
R & =\frac{\ln \left(\frac{1}{3}\right)}{-150} \\
& =0.007324 \\
& =0.0073(10409)
\end{aligned}
$$

(ii) $m=12 e^{-0,0073 t}$ uther $t=500$

$$
\begin{aligned}
m & =12 e^{-0.0073 \times 500} \\
& =0.31189 \ldots \\
& =0.31 \mathrm{~kg}\left(t 02 \text { pig } \mathrm{fg}_{3}\right)
\end{aligned}
$$

iv)

$$
\begin{aligned}
& m=12 e^{-0.0073 t} \text { when } m=6 \\
& \begin{array}{c}
6
\end{array}=12 e^{-0.0073 t} \\
& \frac{1}{2}=e^{-0.0073 t} \\
& \begin{aligned}
\ln \left(\frac{1}{2}\right) & =-0.0073 t \\
t & =\frac{\ln \left(\frac{1}{2}\right)}{0.0073} \\
& =94.95 \\
& =95 \mathrm{yrs} . \text { (nearest yr). }
\end{aligned}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 12+17+22+\ldots+167 \quad a=12, d=5 T_{n}=167 \\
& T_{n}=a t(n-1) d \\
& 167=12+(n-1) 5 \\
& 155=5 n-5
\end{aligned}
$$

$$
5 n=160
$$

$$
n=32
$$

$\therefore 32$ nd week

$$
\begin{aligned}
& \text { 11) } \int_{\frac{\pi}{4}}^{\pi} \sin x d x-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x d x+\left|\int_{\frac{\pi}{2}}^{\pi} \cos x d x\right| v \\
& =[-\cos x]_{\frac{\pi}{4}}^{\pi}-[\sin x]_{\frac{\pi}{4}}^{\frac{\pi}{4}}+\left|[\sin x]_{\frac{\pi}{2}}^{\pi}\right| \\
& =\left[-\cos \pi+\cos \frac{\pi}{4}\right]-\left[\sin \frac{\pi}{2}-\sin \frac{\pi}{4}\right]+\left\lvert\,\left[\left.\sin \pi+\sin \frac{\pi}{2} \right\rvert\,\right.\right.
\end{aligned}
$$

d) $\sum_{n=1}^{8} 16\left(\frac{3}{2}\right)^{n-1}$

1) $n=1$

$$
\begin{array}{r}
S_{1 F}=2^{A}+14^{2} T_{15}=S_{15}-S_{A} \\
=16580=32993 \\
\frac{1}{2}=16580 \\
T_{15}=16413
\end{array}
$$

c) $S_{n}=2^{n}+n^{2}$

$$
\begin{aligned}
S_{15} & =2^{15}+15^{2} \\
& =30992
\end{aligned}
$$

$$
=32993
$$

$$
=\left(1+\frac{1}{\sqrt{2}}\right)-\left(1-\frac{1}{\sqrt{2}}\right)+|-1|
$$

$$
=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+1
$$

$$
=1+\frac{2}{\sqrt{2}}
$$ $n=1 \quad 16\left(\frac{3}{2}\right)^{0}=16$

$$
=\frac{\sqrt{2}+2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
$$ $n=2 \quad 16\left(\frac{3}{2}\right)^{\prime}=24$ $n=3 \quad 16\left(\frac{3}{2}\right)^{2}=36$

$=\frac{2+2 \sqrt{2}}{2}$
$=1+\sqrt{2}$ units 2
i)

$$
\begin{aligned}
S_{8} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{16\left(\left(\frac{3}{2}\right)^{3}-1\right)}{\frac{3}{2}-1}=\frac{32\left(\frac{6561}{256}-1\right)}{}=788 \frac{1}{8}
\end{aligned}
$$

89.

a)

$$
\begin{array}{r}
S A=2 \pi r^{2}+2 \pi r h \\
2 \pi r^{2}+2 \pi r h=64 \pi \\
2 \nexists r(r+h)=64 \pi \\
r(r+h)=32 \\
r+h=\frac{32}{r} \\
h=\frac{32}{r}-r
\end{array}
$$

b)

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi r^{2}\left(\frac{32}{r}-r\right) \\
& =32 \pi r-\pi r^{3}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \frac{d V}{d r}=32 \pi-3 \pi r^{2} \\
& \text { max } \text { dlume ocars } \frac{d V}{d r}=0 \\
& 32 \pi-3 \pi^{2}=0 \\
& 3 \pi r^{2}=32 \pi \\
& r^{2}=\frac{32 \pi}{3 \pi} \\
&=\frac{32}{3} \\
& r= \pm \sqrt{\frac{32}{3}} \mathrm{~cm}
\end{aligned}
$$

as $\left.r>0 \quad r=\sqrt{\frac{\sqrt{3}}{3}} \mathrm{~cm} \frac{0 \sqrt{32}_{3}^{3}}{}+\sqrt{\frac{\sqrt{3}}{3}} \right\rvert\, \sqrt{\frac{\sqrt{3}}{3}}^{+}$

Bive Gold
b) 5
$\begin{array}{r}5 \\ \hline 8 \\ \hline 18 \\ \hline\end{array}$
7 名

$$
n(\text { win })=14
$$

1)

$$
\text { 1) } \begin{aligned}
P(\operatorname{mn} n) & =\frac{14}{36} \\
& =\frac{7}{18}
\end{aligned}
$$

912
1012

$$
p(1000)=\frac{118}{18}
$$

$$
\text { i) } P(\text { at least ance })
$$

$$
11_{14}^{12}
$$

13 i4

$$
=1-P(2 L)
$$

$$
=1-\left(\frac{11}{18} \times \frac{11}{18}\right)
$$

$$
=1-\frac{121}{324}
$$

$$
=\frac{203}{324}
$$

c)

$$
\begin{aligned}
& \log _{e}\left(x^{2}-x\right)=\log _{e} 2+\log _{e}(3 x+4) \\
& \log _{e}\left(x^{2}-x\right)=\log _{e} 2(3 x+4) \\
& x^{2}-x=6 x+8 \\
& x^{2}-7 x-8=0 \\
& (x-8)(x+1)=0 \\
& x-8=0 \quad \text { or } \quad x=0 \\
& x=8 \quad x=-1
\end{aligned}
$$

010

$$
A_{02}=8000 \times 1.015^{p 2}-1.015^{p 7} \cdot \ldots-1.015 T-T
$$

$$
24
$$

iII) $A_{24}=8000 \times 1.015-1.015^{23} \ldots \ldots 1.1 .015 T-T$

But $A_{24}=0$
$\ldots+(-1151)$

$$
\therefore \text { max value. } T=\frac{0000 \times 1.015^{24}}{28.63}
$$

$$
=\$ 38.63
$$

b) $x=t \operatorname{ar} t$
1)

$$
\begin{aligned}
& \frac{d x}{d t}=v=\operatorname{ain} t+\cos t \quad \frac{a u}{d t}=1 \quad \frac{d v}{d t}=\cos t \\
& \frac{d v}{d t}=a=\cos t+\cos t-t a n t=t \quad v=\cos t \\
& a=2 \cos t-\tan t \quad \frac{d u}{d t}=1 \quad \frac{d v}{d t}=-\operatorname{an} t
\end{aligned}
$$

ii)

$$
\text { Whent }=\frac{\pi}{4} \quad \begin{aligned}
v & =\operatorname{sen} \frac{\pi}{4}+\frac{\pi}{4} \cos \frac{\pi}{4} \\
& =\frac{1}{\sqrt{2}}+\frac{\pi}{4} \times \frac{1}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

iii) $a=2 \cos \frac{\pi}{4}-\frac{\pi}{4} \sin \frac{\pi}{4}$

$$
\begin{aligned}
& =2 \times \frac{1}{\sqrt{2}}-\frac{\pi}{4} \times \frac{1}{\sqrt{2}} \\
& =\frac{2}{\sqrt{2}}-\frac{\pi}{4 \sqrt{2}} \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

as accelerata is poaitive, the bortide is opeeding up the partacle.
(i) at ast $\dot{V}=0$, \vec{E} ar $t+E \cos t=0$

Sicton $y=$ arit + tcookt we con coes that it will be at rest agoin
att his poit the y values odbled $=0$

$$
\begin{aligned}
& 8000 \times 1.015^{24}=T\left(1+1.015+\ldots 1.015^{23}\right) \\
& T=\frac{8000 \times 1.015^{24}}{1+1.015+\ldots 1.015^{23}} \\
& \text { GP } a=1, r=1.015 n=24 \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{1\left(1-015^{24}-1\right)}{1.015-1} \\
& =28.63 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \text { lst } m \text { th }=8000 \times 1.015-T \\
& \text { 1) 2nd } m \text { Th }=(8000 \times 1.015-T) 1 \cdot 015-T \\
& =8000 \times 1.015 \times 1.015-T 1.015-T \\
& 30 \mathrm{mth}=[2 \mathrm{andmth}] \times 1.015-T \\
& =8000 \times 1.015^{3}-1.015^{2} \mathrm{~T}-1.015 \mathrm{~T}-7
\end{aligned}
$$

