

Student Number: Set:

### Total Marks - 120 Attempt Questions 1–10 All questions are of equal value

Answer each question is a SEPARATE writing booklet. Extra writing booklets are available.

| Que | estion 1 (12 marks)                                                      | Marks |
|-----|--------------------------------------------------------------------------|-------|
| (a) | Evaluate $e^{-3}$ correct to 3 significant figures.                      | 2     |
| (b) | Factorise $8x^3 - 125$ .                                                 | 2     |
| (c) | Simplify $\frac{5x-3}{x^2-9} - \frac{2}{x-3}$ .                          | 2     |
| (d) | Find the values of x for which $ x + 1  \le 4$ .                         | 2     |
| (e) | Find the integers a and b such that $(5 - \sqrt{2})^2 = a - b\sqrt{2}$ . | 2     |

(f) Calculate the limiting sum of the geometric series  $\frac{5}{6} + \frac{5}{36} + \frac{5}{216} + \dots$ . 2

# Year 12 **Mathematics Trial Examination** 2010

## **General Instructions**

- Reading time 5 minutes ٠
- Working time 3 hours ٠
- Write using black or blue pen ٠
- Board-approved calculators may be used ٠
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question
- Note: Any time you have remaining should be spent revising your answers.

## Total marks - 120

- Attempt Questions 1 10
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a ٠ blank booklet marked with your examination number and "N/A" on the front cover

## DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Question 2 (12 marks) Use a SEPARATE writing booklet

(a) Differentiate with respect to *x*:

(i) 
$$(x^3+7)^4$$

Marks

2

2

2

2

(ii) 
$$x \sin x$$

(iii) 
$$\frac{e^x}{2x+1}$$
 2

(b) Find 
$$\int (\sec^2 3x + x) dx$$
.

(c) Evaluate 
$$\int_0^1 \frac{dx}{x+2}$$
.



The diagram shows  $\triangle ABC$  with  $\angle ACB = \theta$ , AB = 7 centimetres, BC = 12 centimetres and AC = 15 centimetres.

Find the value of  $\theta$  correct to the nearest degree.



Marks

The diagram shows the points A(-1, -2), B(-3, 4) and C(8, 1).

|     | (i)         | Find the gradient of AB.                                                                             | 1 |
|-----|-------------|------------------------------------------------------------------------------------------------------|---|
|     | (ii)        | Show that <i>AB</i> is perpendicular to <i>AC</i> .                                                  | 2 |
|     | (iii)       | Find the length of the interval <i>AC</i> .                                                          | 1 |
|     | (iv)        | Hence, or otherwise, calculate the area of the triangle ABC.                                         | 2 |
| (b) | Find<br>whe | the equation of the tangent to the curve $y = 3e^{2x}$ at the point on the curve $x = \frac{1}{2}$ . | 3 |
| (c) | Let         | $\alpha$ and $\beta$ be the solutions of $x^2 - 3x + 7 = 0$ .                                        |   |
|     | (i)         | Find $\alpha\beta$ .                                                                                 | 1 |
|     | (ii)        | Find $\alpha + \beta$ .                                                                              | 1 |

(iii) Hence, find 
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
. 1

| Question 4 (12 marks) Use a SEPARATE writing booklet |                                                                                                                              | Marks |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|
| (a)                                                  | Find the values of <i>k</i> for which the quadratic equation $5x^2 - 2x + k = 0$ has no real roots.                          | 2     |
| (b)                                                  | Four red marbles and five green marbles are contained in a cloth bag. Two marbles are randomly selected without replacement. |       |
|                                                      | (i) Find the probability of selecting two marbles of the same colour.                                                        | 2     |
|                                                      | (ii) Find the probability of selecting two marbles of different colours.                                                     | 1     |
| (c)                                                  | The diagram below shows the cross-section of a river with the depths of the water shown in metres, at 10 metre intervals.    |       |



(i) Use the trapezoidal rule to find an approximate value for the area of the cross-section.

2

2

2

1

(ii) Water flows through this section of the river at a speed of 0.6 metres per second.

Calculate the approximate volume of water that flows through this crosssection in one hour.

- (d) Consider the parabola  $8y = x^2 6x 23$ .
  - (i) Find the coordinates of the vertex.
  - (ii) Find the coordinates of the focus.

| Question 5 (12 marks) Use a SEPARATE writing booklet |                          | Marks                                                                                                                                                                                                             |   |
|------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (a)                                                  | State                    | e the domain of the function $y = \sqrt{36 - x^2}$ .                                                                                                                                                              | 1 |
| (b)                                                  | Fred<br>On e<br>day.     | is training for a big running race. On the first day he runs 5 kilometres.<br>each subsequent day he runs 200 metres further than he did on the previous<br>He stops training on the day he runs 42.2 kilometres. |   |
|                                                      | (i)                      | How far does Fred run on the 50 <sup>th</sup> day?                                                                                                                                                                | 2 |
|                                                      | (ii)                     | How many days does Fred train for?                                                                                                                                                                                | 1 |
|                                                      | (iii)                    | What is the total distance that Fred runs during his training?                                                                                                                                                    | 2 |
| (c)                                                  | $\stackrel{A}{\searrow}$ | M B NOT TO                                                                                                                                                                                                        | ) |



In the diagram, *DMBN* is a rhombus. *M* and *N* are the midpoints of *AB* and *CD* respectively and  $\angle CNB = x^{\circ}$ .

Copy or trace the diagram into your writing booklet.

| (ii) | Prove that $\Delta AMD \equiv \Delta CNB$ . | 3 |
|------|---------------------------------------------|---|
|      |                                             |   |

(iii) Prove that *ABCD* is a parallelogram. 1

Question 6 (12 marks) Use a SEPARATE writing booklet

(a) Solve 
$$2\sin^2 x - 7\sin x + 3 = 0$$
 for  $0 \le x \le 2\pi$ .

(b) (i) Find 
$$\frac{d}{dx} \left[ \log_e (\sin 2x) \right]$$
. 2

Marks

3

(ii) Hence, or otherwise, evaluate 
$$\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \cot 2x \, dx$$
. 2

(c) Consider the function  $f(x) = x^3 - 3x^2 + 8$ .



The graphs of the curves  $y = e^{2x}$  and  $y = 4e^x - 4$  are shown in the diagram above. The curves intersect at the point  $A(\ln 2, 4)$ .

Calculate the exact area of the shaded region.

(b) A tank initially holds 2500 litres of water. The water drains from the bottom of the tank. The tank takes 50 minutes to empty.

A mathematical model predicts that the volume, *V* litres, of water that will remain in the tank after *t* minutes is given by

$$V = 2500 \left(1 - \frac{t}{50}\right)^2$$
, where  $0 \le t \le 50$ .

- (i) What volume does the model predict will remain after 10 minutes? 1
- (ii) At what rate does the model predict that the water will drain from the tank after 20 minutes?
- (iii) At what time does the model predict that the water will drain at its fastest 2 rate from the tank?
- (c) A superannuation fund pays interest at the rate of 5% per annum compounding annually. Steven decides to invest \$7000 into the fund at the beginning of each year, commencing on the 1<sup>st</sup> of January 2011.
  - (i) Write an expression for the value of Steven's fund after 3 years. 1
  - (ii) What will be the value of Steven's superannuation when he retires on the  $31^{st}$  of December 2041?

1

3

2

2

2

1

1



| The graphs of the curves $y$ | $=\sqrt{x}$ and $y = \frac{1}{2}$ | $\frac{1}{\sqrt{x}}$ intersect at the | e point <i>P</i> , as |
|------------------------------|-----------------------------------|---------------------------------------|-----------------------|
| shown in the diagram above   |                                   |                                       |                       |

- (i) Show that P is the point (1, 1).
- (ii) Find the area of the shaded region bounded by  $y = \sqrt{x}$ ,  $y = \frac{1}{\sqrt{x}}$ , the *y*-axis and the line y = 2.
- (b) Solve  $\log_7 x \log_7 4 = 2\log_7 3$ .
- (c) The velocity of a particle is given by v=3-6cost for 0≤t≤2π, where v is measured in metres per second and t is the time in seconds.
  (i) Sketch the graph of v as a function of t for 0 ≤ t ≤ 2π.
  (ii) At what times during this period is the particle at rest?
  (iii) Find an expression for the acceleration, a m/s<sup>2</sup>, in terms of t.
  (iv) Find when the particle first reaches its maximum acceleration.



The above diagram shows a sketch of the gradient function of the curve y = f(x).

In your writing booklet, draw a possible sketch of the function y = f(x) given that f(0) = 1.

- (b) The radioisotope Technetium-99m is used for medical procedures and is produced at Lucas Heights in NSW. Technetium-99m has a rate of decay that is proportional to the mass *M* present at any given time, such that dM/dt = -kM.
  (i) Show that M = M<sub>0</sub>e<sup>-kt</sup>, where k and M<sub>0</sub> are constants, satisfies the differential equation above.
  - (ii) Technetium-99m has a half life of 6 hours. That is, the time taken for half the initial mass to decay is 6 hours. Find the value of k.
  - (iii) A sample of Technetium-99m was shipped from the production site to a hospital in Western Australia. The total shipping time was 15.6 hours.

How many kilograms were shipped if just **one** kilogram of Technetium-99m arrived at the hospital?

#### **Question 9 continues**

Marks

2

1

2

#### Question 10 (12 marks) Use a SEPARATE writing booklet

3

(a) A rectangular beam of width *w* cm and depth *d* cm can be cut from a cylindrical log of wood as shown in the diagram below.



The diameter of the cross-section of the log (and hence the diagonal of the cross-section of the beam) is  $\sqrt{27}$  cm.

The strength *S* of the beam is proportional to the product of its width and the square of its depth, so that  $S = kd^2w$ , where *k* is a positive constant.

| (i)  | Show that $S = k(27w - w^3)$ .                                                                          | 2 |
|------|---------------------------------------------------------------------------------------------------------|---|
| (ii) | What numerical dimensions will give a beam of maximum strength?<br>Leave your answer as an exact value. | 3 |

- (iii) A square beam with diagonal of  $\sqrt{27}$  cm is to be cut from an identical log. Show that the rectangular beam of maximum strength is more than 8% stronger than this square beam.
- (b) Consider the function  $f(x) = x((\ln x)^2 2\ln x + 2)$ . (i) Show that  $f'(x) = (\ln x)^2$ .
  - (ii) Hence, or otherwise, find the volume of the solid of revolution formed when the region bounded by the curve  $y = \ln x$  and the *x*-axis between x = 1 and x = e is rotated about the *x*-axis.

## END OF EXAM

SCALE

NOT TO

1

2

2

A cam is formed with cross-section as shown in the diagram. The cross-section consists of a semi-circle *FLX*, with centre *C* and radius *k*, and a sector *FSL*, with centre *F*, radius 2k and angle  $\theta$  radians.

| (i) Show that the perimeter P of the | e cam is given by $P = k$ | $2\theta + \pi + 2$ . |  |
|--------------------------------------|---------------------------|-----------------------|--|
|--------------------------------------|---------------------------|-----------------------|--|

- (ii) The area of the cross-section is 1 unit<sup>2</sup>. Find an expression for  $\theta$  in terms of *k*.
- (iii) Hence, show that the perimeter *P* is given by

$$P = \frac{1}{k} + k \left(2 + \frac{\pi}{2}\right).$$

End of Question 9



$$\begin{array}{l} \underbrace{Q \cup estion 1}{P(1)} \\ (a) \quad e^{-3} = 0 \quad 0 + 9787... \\ & = 0 \quad 0 + 98 \\ (b) \quad 9xc^3 - 12S = (2xc)^2 - (5)^3 \\ & = (2xc - 5)((2x)^3 + 2xxs^5 + 5^2) \\ & = (2xc - 5)((4xc^3 + 10x + 25)) \\ (c) \quad \frac{5x-3}{(x^3-9)} - \frac{2}{xc-3} = \frac{5x-3}{(x+2)(x-3)} - \frac{2(x+3)}{(2x+3)(x-3)} \\ & = \frac{5x-2x-3-6}{(x+3)(x-3)} \\ & = \frac{3xc-9}{(x+3)(x-3)} \\ & = \frac{3xc-9}{(x+3)(x-3)} \\ & = \frac{3}{(x+3)(x-3)} \\ & =$$

$$\frac{Question 2}{Question 2}$$
(a) i)  $\frac{d}{d_{2C}} (2c^3 + 7)^4 = 4 (x^3 + 7)^2 \times 3x^2$   
 $= 12x^3 (x^2 + 7)^5$ 
(i))  $\frac{d}{d_{2C}} (z \sin x) = 2x \cos x + 1x \sin x$  where  $y = 50 \cos x$   
 $z \cos x + \sin x$  where  $y = 2 \cos x$   
(iii)  $\frac{d}{d_2} (\frac{e^x}{2x+1}) = \frac{(2x+1)e^x}{(2x+1)^2}$  where  $y = 2x \cos x$   
 $= \frac{e^{2x}(2x+1)^2}{(2x+1)^2}$  where  $y = 2x + y$   
(i)  $\int (\sec^2 3x + x) dx = \frac{1}{3} \tan^3 x + \frac{3x^2}{2} + C$   
(c)  $\int_0^1 \frac{dx}{2x+2} = \left[ -\ln (x+1) \right]_0^1$   
 $= \ln 3 - \ln 2$   
 $= \ln \frac{7}{2}$   
(d)  $\cos \theta = \frac{a^2 + b^3 - c^3}{2xb}$   
 $= \frac{12^2 + 15^2 - 7^3}{2x + 2x + 15}$   
 $= \frac{320}{360}$   
 $\theta = \cos^{-1} (\frac{320}{250})$   
 $= 27 \cdot 2660 = 27^9$ 

Question 3  
(a) (i) 
$$M_{ARE} = \frac{44 - 62}{-3 - (-1)}$$
  
 $= \frac{6}{-2}$   
 $= -3$   
(ii)  $M_{ARE} = \frac{1 - 62}{8 - (-1)}$   
 $= \frac{3}{9}$   
 $= \frac{1}{3}$   
 $M_{AL} \times M_{RB} = -3 \times \frac{1}{3}$   
 $= -1$   
 $\therefore AC \perp ABS$   
(iii)  $d_{AC} = \int (8 - (-1))^2 + (1 - (-2))^2$   
 $= \int (9^2 + 3^2)$   
 $= \sqrt{81 + 9}$   
 $= \sqrt{90}$   
(iv)  $d_{ABS} = \int (-3 - (-1))^2 + (4 - (-2))^2$   
 $= \sqrt{90}$   
 $= \sqrt{90}$   
Area  $\Delta ABSC = \frac{1}{2} \times \sqrt{90} \times \sqrt{140}$   
 $= 30 \text{ units}^2$ 

Question 3 continued b) y=3e2x y'= 6e2>c when  $>c = \frac{1}{2}$ y= 3e y= 6e2\* + = 3e = 6e The eqn of a straight line is given by; y-y==m(x-xi) y-3e = 6e (2c - 2) y-3e = 6ex - 3e y= bex c)  $3c^2 - 3x + 7 = 0$ i)  $\alpha \beta = \frac{\beta}{\alpha}$  ii)  $\alpha + \beta = \frac{-b}{\alpha}$  iii)  $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + 1}{\alpha + \beta}$ = = -= -3 = 37 = 7 = 3

Question 4

a) 
$$5xc^2 - 2x + k = 0$$
  
For no real roots  $\Delta < 0$   
 $b^2 - 4ac < 0$   
 $(-2)^2 - 4x \\ S \times k < 0$   
 $4 - 20k < 0$   
 $-20k < -4$   
 $k > \frac{1}{5}$   
b))  $P(\text{same colour}) = P(RR) + P(RA)$   
 $= (\frac{4}{3}x\frac{3}{8}) + (\frac{5}{9}x\frac{4}{8})$   
 $= \frac{12}{72} + \frac{20}{72}$   
 $= \frac{32}{72}$   
 $\frac{2}{9}$   
i)  $P(\text{different (obur)} = 1 - P(\text{same colour})$   
 $= 1 - \frac{4}{3}$ 

Question 4 continued  
c);) Area = 
$$\frac{1}{2} [(h_1 + h_1) + 2(middles)]$$
  
=  $\frac{12}{2} [(0 + s) + 2(6 + 2)]$   
=  $s (s + 16)$   
=  $10 \text{ Sm}^2$   
i)) Volume =  $10 \text{ Sm}^2 \times 0.6 \text{ ms}^1 \times 3600$   
=  $226800 \text{ m}^3/\text{h}$   
Approx  $226800 \text{ m}^3$  flow through this  
cross-section in 1 hour.  
d);)  $8y = x^2 - 6x - 23$   
 $8y + 23 = x^2 - 6x - 23$   
 $8y + 32 = x^2 - 6x + 9$   
 $8(y + 4) = (x - 3)^2$   
 $4a(y - k) = (x - 1)^2$   
 $\therefore \text{ Vertex at } (3, -4)$   
i))  $4a = 8$   
 $a = 2$   
 $\therefore \text{ focal length} = 2 \text{ and parabola is concave up}$   
 $\therefore \text{ focus at } (3, -2)$ 



| Qu          | pestion 5 continued                                       |                |
|-------------|-----------------------------------------------------------|----------------|
| C)          | * / * · · · · · · · · · · · · · · · · · ·                 |                |
|             | De in North                                               |                |
| i)          | $LMBN = x^{\circ}$ (alternate angles on                   | 11 lines)      |
|             | · LAND = x (corresponding angles on                       | 11 1 iea)      |
| ii)         | In DAMD and DCNB                                          |                |
|             | DM = MTB=BN = DN (sides of a rhombu                       | (z             |
|             | AM = MB (Giren)                                           |                |
|             | NC=DN (Given)                                             |                |
|             | - * . KM = NC                                             | (5)            |
|             | LAMD = LCNB (proved in part (i))                          | (A)            |
|             | DM = BN (sides of a rhombus)                              | (2)            |
|             | · DAMD = DENTE                                            |                |
| <i>(iii</i> | AB= ZAM (m is midpoint of AB)                             |                |
|             | CD=2NC (N is midpoint of CD)                              |                |
|             | since AM = NC (provod in part(ii))                        |                |
|             | AB=CD                                                     |                |
|             | AD = CB (matching sides of congrue                        | ent triangles) |
|             | _ ABCD is a parallelogram<br>(two pairs of equal opposite | sides)         |

## Question 6

a) 2 sin 2 sin x +3=0 let m=sin x 212 -74+3=0 (2u-1)(u-3)=0 - . u= 3 or u= 4 , since = 3 or sin ac = 1 15  $2C = \frac{\pi}{10}$  or  $\pi - \frac{\pi}{10}$ No Soln as Isinocl SI for all sc = II on SI () i) of [loge (sin 2>c)] = 20052>c = 2 cot 2 > c ii)  $\int_{\mathcal{R}} co42sc dsc = \frac{1}{2} \int_{-\infty}^{\frac{1}{4}} 2 cot 2sc dsc$  $= \frac{1}{2} \left[ \log_{e} \left( \sin 2\pi \right) \right]_{r}^{r}$ = 2 ( loge (3in 2. =) - loge (sin 2.=)] = 1 [0 - (n 1 - 1n 52)] === (0-0+11)=) = = 1152 = # 10 2

Question 6 continued c) fex) = >23 - 3x2 + 8 i) f'(x) = 3x2 - 6x = 3x (x -2) Stationary points when fill=0 · 0 = 3x (22-2) sc=0 and sc=2  $f(0) = 0^3 - 3(0)^5 + 8$   $f(2) = 2^3 - 3.2^2 + 8$ = 8 - 12 + 8 = 8 -4 Stat pts at (0,8) and (2,4) f"60 = 6x - 6 f (0) = 6.0 - 6 = -6 < 0 ... concare down at (0,8) . (0, 2) is a maximum. f"(2) = 6.2 - 6 . concave up at (2,4) = 6 >0 . (2,4) is a minimum. (ii V2 (0, 1) 7 y= f(c) 11) concave down when food co 600-600 . for is concerne down for x <1 X<1

$$\frac{Question F}{A_{rea}} = \int_{0}^{\ln 2} e^{2x} - 4e^{x} + 4 dx$$

$$= \left[\frac{e^{2x}}{2} - 4e^{2x} + 4x\right]_{0}^{\ln 2}$$

$$= \left(\frac{e^{2h^{2}}}{2} - 4e^{4h^{2}} + 4\ln^{2}\right) - \left(\frac{e^{2h}}{2} - 4e^{6} + 0\right)$$

$$= 2 - 8 + 4\ln 2 - \frac{1}{2} + 4 + 0$$

$$= 4\ln 2 - \frac{5}{2}$$
(b) i) V = 2500  $\left(1 - \frac{1}{50}\right)^{2}$ 

$$= 2500 \left(1 - \frac{10}{50}\right)^{2}$$

$$= 2500 \left(1 - \frac{10}{50}\right)^{2}$$

$$= 2500 \left(1 - \frac{16}{50}\right)^{2}$$

$$= 2500 \left(1 - \frac{16}{50}\right)^{2}$$

$$= -100 \left(1 - \frac{1}{50}\right)$$

$$= -100 \left(1 - \frac{1}{50}\right)$$

$$= -100 \left(1 - \frac{1}{50}\right)$$

$$= -100 + 24$$
when  $t = 20$ 

$$\frac{dV}{dt} = -100 + 2x20$$

$$= -60 L/min$$

Question 7 continued  
b) (ii) 
$$\frac{dV}{dt} = -100 + 2t$$
  
 $\frac{dV}{dt} = \frac{1}{100} + 2t$   
 $\frac{dV}{dt} = \frac{1}{100} + 2t$   
Ale baskedt rate at which water leaves  
He tank is a t=0 ie:  $\frac{dV}{dt} = -100 L/min$   
c) 31 DEC 2011 (A<sub>1</sub> = 7000 × 1.05)  
31 DEC 2012 (A<sub>2</sub> = 7000 × 1.05<sup>2</sup> + 7000 × 1.05<sup>3</sup>)  
31 DEC 2013 (A<sub>2</sub> = 7000 × 1.05<sup>2</sup> + 7000 × 1.05<sup>3</sup>)  
31 DEC 2013 (A<sub>3</sub> = 7000 × 1.05<sup>2</sup> + 1.05<sup>3</sup>)  
i) A<sub>3</sub> = 7000 (1.05 + 1.05<sup>2</sup> + 1.05<sup>3</sup>)  
ii) Assume A<sub>n</sub> = 7000 (1.05 + 1.05<sup>3</sup> + ... + 1.05<sup>m</sup>)  
Ke Geometric Series a = 1.05  
 $r = 1.05$   
 $S_n = \frac{a(r^{n}-1)}{r-1}$   
 $S_{31} = \frac{1.05 \times (1.05^{21}-1)}{0.05}$   
 $= 74.2988...$   
 $\therefore A_{31} = \frac{4.7000 \times S_{51}}{r=1000 \times 100}$ 

Question 8  
a) ) 
$$\sqrt{x} = \frac{1}{\sqrt{x}}$$
 P is the point (1,)  
 $1 = 5x^{2}$   
 $\therefore x = I$   
 $y = \sqrt{1}$   
 $= 1$   
ii) Area =  $\int_{0}^{1} y^{2} dy + \int_{1}^{2} y^{-2} dy$  note  $y = \sqrt{x}$   
 $= \left[\frac{y^{3}}{y^{2}}\right]_{0}^{1} + \left[\frac{y}{y^{2}}\right]_{1}^{2}$   $y = \frac{1}{\sqrt{x}}$   
 $= \left[\frac{y^{3}}{y^{2}}\right]_{0}^{1} + \left[\frac{y}{y^{2}}\right]_{1}^{2}$   $y = \frac{1}{\sqrt{x}}$   
 $= \left(\frac{1}{3} - 0\right) + \left(-\frac{1}{2} + 1\right)$   
 $= \frac{5}{6}$  on its<sup>2</sup>  
b)  $\log_{7} x - \log_{7} 4 = 2\log_{7} 3$ .  
 $\log_{7} \left(\frac{26}{4}\right) = \log_{7} 9$   
 $\frac{2}{4} = 9$   
 $5x = 36$ 





| Question a continued                                                               |            |
|------------------------------------------------------------------------------------|------------|
| c) i) $P = 2k + 2k\theta + \pi k$<br>= $k (2\theta + \pi + 2)$                     |            |
| ii) Area = Area of sector + Area of                                                | semicircle |
| = 2 -20 + 2 -7 R2                                                                  | r=2k       |
| = = 2 (212)3日 + 之町125                                                              | R=K        |
| $1 = 2k^2\theta + \frac{1}{2}\pi k^2$                                              |            |
| $2k^{2}\Theta = 1 - \frac{1}{2}\pi k^{2}$                                          |            |
| $\Theta = \frac{1 - \frac{1}{2}\pi k^2}{2k^2}$                                     |            |
| $=\frac{1}{2k^2}-\frac{\pi}{4}$                                                    |            |
| $\frac{1}{10}  \text{for}  \Theta = \frac{1}{2k^2} - \frac{11}{4}$                 |            |
| $P = k \left( 2 \theta + \pi + z \right)$                                          |            |
| $= \bigstar \left( z \left( \frac{1}{2} - \frac{\pi}{2} \right) + \pi + z \right)$ |            |
| $= 1 \times (\frac{1}{12} - \frac{17}{2} + 77 + 7)$                                |            |
| = 1 + KTT + 2 K                                                                    |            |
| $=\frac{1}{k}+k\left(2+\frac{\pi}{2}\right)$                                       |            |

Question 10  
d)) 
$$S = k d^2 w$$
  
 $= k (27 - w^2) w$   
 $= k (27w - w^2)$   
 $d^2 + w^2 = 27$   
 $= k (27w - w^2)$   
 $d^2 = 27 - w^2$   
i))  $\frac{dS}{dw} = k (27 - 3w^2)$   
 $\frac{dS}{dw} = 0$  for maximum Strength  
 $0 = k (27 - 3w^2)$   
 $w^2 = 9$   
 $w^2 = 9$   
 $w = \pm 3$   
 $= 3$  (ignore -redimension)  
when  $w = 3$ ,  $d^2 = 27 - 9$   
 $= 18$   
 $d = \sqrt{18}$   
Check max  $\frac{d^2S}{dw^2} = -bwk$   
 $dw^2 < 0$  (assume  $w > 0$ )  
 $w = 3cn + d = \sqrt{12}cn$   
 $w = 3cn + d = \sqrt{12}cn$   
 $w^2 = 27$   
 $w^2 = 27$   
 $w^2 = 27$   
 $w^2 = 27$ 

Question 10 continued  
a)iii) Sequence = ked<sup>2</sup> w  
= kx 27 x 
$$\frac{127}{2}$$
  
S<sub>nex</sub> = ked<sup>2</sup> w  
= kx 18x 3  
 $\frac{S_{max}}{S} = \frac{54k}{271k} \sqrt{\frac{27}{2}}$   
=  $\frac{4}{\sqrt{\frac{127}{2}}}$   
= 1.08866...  
S<sub>nex</sub> > 1.08 x Sequence as Required.  
b) )  $f(cd) = 5c ((\ln x)^2 - 2\ln x + 1)$  we ( $\ln 50^2 - 2\ln x + 1$ )  
 $f(xd) = 5c (2\ln x - \frac{2}{5c}) + ((\ln x)^2 - 2\ln x + 1)$   $y = 2\ln x - \frac{2}{5c}$   
=  $(\ln 5c)^2$