Student Number:

Set:
(a) Evaluate e^{-3} correct to 3 significant figures. 2

(a) Evaluate e^{-3} correct to 3 significant figures.
b) Factorise $8 x^{3}-125$.2
(c) Simplify $\frac{5 x-3}{x^{2}-9}-\frac{2}{x-3}$. 2

cimplify $\frac{5 x-3}{x^{2}-9}-\frac{2}{x-3}$
(d) Find the values of x for which $|x+1| \leq 4$. 2

(d) Find the values of x for which $|x+1| \leq 4$.
(e) Find the integers a and b such that $(5-\sqrt{2})^{2}=a-b \sqrt{2}$. 2
2

(he geometric series $\frac{5}{6}+\frac{5}{36}+\frac{5}{216}+$
2

Total Marks - 120

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Note: Any time you have remaining should be spent revising your answers.

Total marks - $\mathbf{1 2 0}$

- Attempt Questions 1 - 10
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover
(a) Differentiate with respect to x :
(i) $\left(x^{3}+7\right)$
(ii) $x \sin x$
(iii) $\frac{e^{x}}{2 x+1}$
(b) Find $\int\left(\sec ^{2} 3 x+x\right) d x$.
(c) Evaluate $\int_{0}^{1} \frac{d x}{x+2}$.
(d)

The diagram shows $\triangle A B C$ with $\angle A C B=\theta, A B=7$ centimetres, $B C=12$ centimetres and $A C=15$ centimetres.

Find the value of θ correct to the nearest degree.
(a)

The diagram shows the points $A(-1,-2), B(-3,4)$ and $C(8,1)$.
(i) Find the gradient of $A B$
(ii) Show that $A B$ is perpendicular to $A C$.
(iii) Find the length of the interval $A C$.
(iv) Hence, or otherwise, calculate the area of the triangle $A B C$.
(b) Find the equation of the tangent to the curve $y=3 e^{2 x}$ at the point on the curve where $x=\frac{1}{2}$.
(c) Let α and β be the solutions of $x^{2}-3 x+7=0$.
(i) Find $\alpha \beta$.
(ii) Find $\alpha+\beta$.
(iii) Hence, find $\frac{1}{\alpha}+\frac{1}{\beta}$.
(a) Find the values of k for which the quadratic equation $5 x^{2}-2 x+k=0$ has no real roots.
(b) Four red marbles and five green marbles are contained in a cloth bag. Two marbles are randomly selected without replacement.
(i) Find the probability of selecting two marbles of the same colour.
(ii) Find the probability of selecting two marbles of different colours.
(c) The diagram below shows the cross-section of a river with the depths of the water shown in metres, at 10 metre intervals.

NOT TO SCALE
(i) Use the trapezoidal rule to find an approximate value for the area of the cross-section.
(ii) Water flows through this section of the river at a speed of 0.6 metres per second.

Calculate the approximate volume of water that flows through this crosssection in one hour.
(d) Consider the parabola $8 y=x^{2}-6 x-23$
(i) Find the coordinates of the vertex
(ii) Find the coordinates of the focus.
(a) State the domain of the function $y=\sqrt{36-x^{2}}$.
(b) Fred is training for a big running race. On the first day he runs 5 kilometres. On each subsequent day he runs 200 metres further than he did on the previous day. He stops training on the day he runs 42.2 kilometres.
(i) How far does Fred run on the $50^{\text {th }}$ day?
(ii) How many days does Fred train for?
(iii) What is the total distance that Fred runs during his training?
(c)

In the diagram, $D M B N$ is a rhombus. M and N are the midpoints of $A B$ and $C D$ respectively and $\angle C N B=x^{\circ}$. Copy or trace the diagram into your writing booklet.
(i) Show that $\angle A M D=x^{\circ}$, giving reasons.
(ii) Prove that $\triangle A M D \equiv \triangle C N B$.
(iii) Prove that $A B C D$ is a parallelogram.
(c)
(a) Solve $2 \sin ^{2} x-7 \sin x+3=0$ for $0 \leq x \leq 2 \pi$
(b) (i) Find $\frac{d}{d x}\left[\log _{e}(\sin 2 x)\right]$.
(ii) Hence, or otherwise, evaluate $\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \cot 2 x d x$.
(c) Consider the function $f(x)=x^{3}-3 x^{2}+8$.
(i) Find the coordinates of the stationary points of the function $y=f(x)$, and determine their nature
(ii) Sketch the function $y=f(x)$, showing the stationary points.
(iii) Find the values of x for which the curve $y=f(x)$ is concave down.
(a)

NOT TO

SCALE

The graphs of the curves $y=e^{2 x}$ and $y=4 e^{x}-4$ are shown in the diagram above. The curves intersect at the point $A(\ln 2,4)$.

Calculate the exact area of the shaded region
b) A tank initially holds 2500 litres of water. The water drains from the bottom of the tank. The tank takes 50 minutes to empty

A mathematical model predicts that the volume, V litres, of water that will remain in the tank after t minutes is given by

$$
V=2500\left(1-\frac{t}{50}\right)^{2}, \text { where } 0 \leq t \leq 50
$$

(i) What volume does the model predict will remain after 10 minutes?
(ii) At what rate does the model predict that the water will drain from the tank after 20 minutes?
(iii) At what time does the model predict that the water will drain at its fastest rate from the tank?
(c) A superannuation fund pays interest at the rate of 5% per annum compounding annually. Steven decides to invest $\$ 7000$ into the fund at the beginning of each year, commencing on the $1^{\text {st }}$ of January 2011
(i) Write an expression for the value of Steven's fund after 3 years.
(ii) What will be the value of Steven's superannuation when he retires on the
(a)

The graphs of the curves $y=\sqrt{x}$ and $y=\frac{1}{\sqrt{x}}$ intersect at the point P, as shown in the diagram above.
(i) Show that P is the point $(1,1)$.
(ii) Find the area of the shaded region bounded by $y=\sqrt{x}, y=\frac{1}{\sqrt{x}}$, the y-axis and the line $y=2$.
(b) Solve $\log _{7} x-\log _{7} 4=2 \log _{7} 3$.
(c) The velocity of a particle is given by $v=3-6 \cos t$ for $0 \leq t \leq 2 \pi$, where v is measured in metres per second and t is the time in seconds.
(i) Sketch the graph of v as a function of t for $0 \leq t \leq 2 \pi$.
(ii) At what times during this period is the particle at rest? 2
(iii) Find an expression for the acceleration, $a \mathrm{~m} / \mathrm{s}^{2}$, in terms of t. 1
(iv) Find when the particle first reaches its maximum acceleration
(a)

The above diagram shows a sketch of the gradient function of the curve $y=f(x)$.

In your writing booklet, draw a possible sketch of the function $y=f(x)$ given that $f(0)=1$.
(b) The radioisotope Technetium- 99 m is used for medical procedures and is produced at Lucas Heights in NSW. Technetium-99m has a rate of decay that is proportional to the mass M present at any given time, such that $\frac{d M}{d t}=-k M$
(i) Show that $M=M_{0} e^{-k t}$, where k and M_{0} are constants, satisfies the differential equation above.
(ii) Technetium- 99 m has a half life of 6 hours. That is, the time taken for half the initial mass to decay is 6 hours. Find the value of k.
(iii) A sample of Technetium-99m was shipped from the production site to a hospital in Western Australia. The total shipping time was 15.6 hours.

How many kilograms were shipped if just one kilogram of Technetium-99m arrived at the hospital?

A cam is formed with cross-section as shown in the diagram. The cross-section consists of a semi-circle $F L X$, with centre C and radius k, and a sector $F S L$ with centre F, radius $2 k$ and angle θ radians.
(ii) The area of the cross-section is 1 unit 2. Find an expression for θ in terms of k.
(iii) Hence, show that the perimeter P is given by
(i) Show that the perimeter P of the cam is given by $P=k(2 \theta+\pi+2)$.

NOT TO
SCALE

$$
P=\frac{1}{k}+k\left(2+\frac{\pi}{2}\right) .
$$

(a) A rectangular beam of width $w \mathrm{~cm}$ and depth $d \mathrm{~cm}$ can be cut from a cylindrical \log of wood as shown in the diagram below.

NOT TO

 SCALE

The diameter of the cross-section of the \log (and hence the diagonal of the cross-section of the beam) is $\sqrt{27} \mathrm{~cm}$.

The strength S of the beam is proportional to the product of its width and the square of its depth, so that $S=k d^{2} w$, where k is a positive constant.
(i) Show that $S=k\left(27 w-w^{3}\right)$.
(ii) What numerical dimensions will give a beam of maximum strength? Leave your answer as an exact value.
(iii) A square beam with diagonal of $\sqrt{27} \mathrm{~cm}$ is to be cut from an identical log. Show that the rectangular beam of maximum strength is more than 8% stronger than this square beam.
(b) Consider the function $f(x)=x\left((\ln x)^{2}-2 \ln x+2\right)$.
(i) Show that $f^{\prime}(x)=(\ln x)^{2}$.
(ii) Hence, or otherwise, find the volume of the solid of revolution formed when the region bounded by the curve $y=\ln x$ and the x-axis between $x=1$ and $x=e$ is rotated about the x-axis.

Question 1
a)

$$
\begin{aligned}
e^{-3} & =0049787 \ldots \\
& =00498
\end{aligned}
$$

b)

$$
\begin{aligned}
8 x^{3}-125 & =(2 x)^{3}-(5)^{3} \\
& \left.=(2 x-5)(2 x)^{2}+2 x \times 5+5^{2}\right) \\
& =(2 x-5)\left(4 x^{2}+10 x+25\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{5 x-3}{\left(x^{2}-9\right)}-\frac{2}{x-3} & =\frac{5 x-3}{(x+3)(x-3)}-\frac{2(x+3)}{(x+3)(x-3)} \\
& =\frac{5 x-2 x-3-6}{(x+3)(x-3)} \\
& =\frac{3 x-9}{(x+3)(x-3)} \\
& =\frac{3(x-3)}{(x+3)(x-3)} \\
& =\frac{3}{(x+3)}
\end{aligned}
$$

d)

$$
\begin{aligned}
&|x+1| \leqslant 4=-4 \leqslant(x+1) \leqslant 4 \\
&-5 \leqslant x \leqslant 3
\end{aligned}
$$

e)

$$
\begin{aligned}
(5-\sqrt{2})^{2} & =(5-\sqrt{2})(5-\sqrt{2}) \quad \therefore \quad a=27 \\
& =25-10 \sqrt{2}+2 \\
& =27-10 \sqrt{2}
\end{aligned}
$$

f) $a=\frac{5}{6} \quad r=\frac{1}{6} \quad S_{\infty}=\frac{a}{1-r}=\frac{\frac{5}{6}}{1-\frac{1}{6}}=\frac{\frac{5}{6}}{\frac{5}{6}}=1$

Question 2
a)

$$
\text { i) } \begin{aligned}
\frac{d}{d x}\left(x^{3}+7\right)^{4} & =4\left(x^{3}+7\right)^{3} \times 3 x^{2} \\
& =12 x^{2}\left(x^{3}+7\right)^{3}
\end{aligned}
$$

$$
\text { ii) } \begin{array}{rlrl}
d x & (x \sin x) & =x \cos x+1 \times \sin x & \\
\mu=x & v=\sin x \\
& =x \cos x+\sin x & & u^{\prime}=1
\end{array} \quad v=\cos x .
$$

$$
\text { iii) } \begin{aligned}
\frac{d}{d x}\left(\frac{e^{x}}{2 x+1}\right) & =\frac{(2 x+1) e^{x}-2 e^{x}}{(2 x+1)^{2}} & \begin{array}{l}
u=e^{x} \\
w^{\prime}
\end{array} \quad v=e^{x} \quad v^{\prime}=2 x+1
\end{aligned}
$$

b) $\int\left(\sec ^{2} 3 x+x\right) d x=\frac{1}{3} \tan 3 x+\frac{x^{2}}{2}+c$

$$
\text { c) } \begin{aligned}
\int_{0}^{1} \frac{d x}{x+2} & =[\ln (x+2)]_{0}^{1} \\
& =\ln 3-\ln 2 \\
& =\ln \frac{3}{2}
\end{aligned}
$$

d)

$$
\begin{aligned}
\cos \theta & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
& =\frac{12^{2}+15^{2}-7^{2}}{2 \times 12 \times 15} \\
& =\frac{320}{360}
\end{aligned}
$$

$$
\theta=\cos ^{-1}\left(\frac{320}{360}\right)
$$

$$
=27.2660 \div 27^{\circ}
$$

Question 3
a)

$$
\text { i) } \begin{aligned}
m_{A B} & =\frac{4-(-2)}{-3-(-1)} \\
& =\frac{6}{-2} \\
& =-3
\end{aligned}
$$

ii)

$$
\begin{aligned}
m_{A C} & =\frac{1-(-2)}{8-(-1)} \\
& =\frac{3}{9} \\
& =\frac{1}{3} \\
m_{A C} \times m_{A B} & =-3 \times \frac{1}{3} \\
& =-1 \\
& \therefore A C \perp A B
\end{aligned}
$$

iii) $d_{\text {AC }}=\sqrt{(8-(-1))^{2}+(1-(-2))^{2}}$

$$
\begin{aligned}
& =\sqrt{9^{2}+3^{2}} \\
& =\sqrt{81+9} \\
& =\sqrt{90}
\end{aligned}
$$

$$
\text { iv) } \begin{aligned}
d_{A B} & =\sqrt{(-3-(-1))^{2}+(4-(-2))^{2}} \\
& =\sqrt{4+36} \\
& =\sqrt{40} \\
\text { Area }_{\triangle A B C} & =\frac{1}{2} \times \sqrt{90} \times \sqrt{40} \\
& =30 \text { units }^{2}
\end{aligned}
$$

Question 3 continued
b)

The eqn of a straight line is given by;

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 e & =6 e\left(x-\frac{1}{2}\right) \\
y-3 e & =6 e x-3 e \\
y & =6 e x
\end{aligned}
$$

c) $x^{2}-3 x+7=0$
i) $\alpha \beta=\frac{c}{a}$
ii)

$$
\text { iii) } \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}
$$

$$
=\frac{7}{1}
$$

$$
\begin{aligned}
\alpha+\beta & =\frac{-b}{a} \\
& =\frac{-3}{1} \\
& =3
\end{aligned}
$$

$$
=\frac{3}{7}
$$

$$
=7
$$

$$
\begin{aligned}
& y=3 e^{2 x} \\
& y^{\prime}=6 e^{2 x} \\
& \text { when } x=\frac{1}{2} \\
& y=3 e^{2 x \frac{1}{2}} \quad y^{\prime}=6 e^{2 x i} \\
& =3 e \quad=6 e
\end{aligned}
$$

Question 4
a) $5 x^{2}-2 x+k=0$

For no real roots $\Delta<0$

$$
\begin{aligned}
b^{2}-4 a c & <0 \\
(-2)^{2}-4 \times 5 \times k & <0 \\
4-20 k & <0 \\
-20 k & <-4 \\
k & >\frac{1}{5}
\end{aligned}
$$

b)i)

$$
\begin{aligned}
P(\text { same colour }) & =P(R R)+P(G a) \\
& =\left(\frac{4}{9} \times \frac{3}{8}\right)+\left(\frac{5}{9} \times \frac{4}{8}\right) \\
& =\frac{12}{72}+\frac{20}{72} \\
& =\frac{32}{72} \\
& =\frac{4}{9}
\end{aligned}
$$

ii) $P($ different Colour) $=1-P$ (same colour)

$$
\begin{aligned}
& =1-\frac{4}{9} \\
& =\frac{5}{9}
\end{aligned}
$$

Question 4 continued
c) i)

$$
\begin{aligned}
\text { Area } & =\frac{h}{2}\left[\left(h_{t}+h_{e}\right)+2(\text { middles })\right] \\
& =\frac{10}{2}[(0+5)+2(6+2)] \\
& =5(5+16) \\
& =105 \mathrm{~m}^{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { Volume } & =105 \mathrm{~m}^{2} \times 0.6 \mathrm{~ms}^{-1} \times 3600 \\
& =226800 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

\therefore Approx $226800 \mathrm{~m}^{3}$ flow through this cross-section in 1 hour.
d) i)

$$
\begin{aligned}
& \text { i) } 8 y=x^{2}-6 x-23 \\
& 8 y+23=x^{2}-6 x \\
& 8 y+32=x^{2}-6 x+9 \\
& 8(y+4)=(x-3)^{2} \quad 4 a(y-k)=(x-h)^{2}
\end{aligned}
$$

\therefore Vertex at $(3,-4)$
ii) $4 a=8$

$$
a=2
$$

\therefore focal length $=2$ and parabola is concave up focus at $(3,-2)$

Question 5
a) $y=\sqrt{36-x^{2}}$

Domain is $\quad-6 \leqslant x \leqslant 6$
b) $a=5 \quad d=0.2 \quad l=42.2$
i)

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
T_{50} & =5+(50-1) 0.2 \\
T_{50} & =5+49 \times 0.2 \\
& =14.8 \mathrm{~km}
\end{aligned}
$$

ii)

$$
\begin{aligned}
42 \cdot 2 & =5+(n-1) 0 \cdot 2 \\
\frac{37 \cdot 2}{0 \cdot 2} & =n-1 \\
n & =\frac{37 \cdot 2}{0.2}+1 \\
& =187
\end{aligned}
$$

\therefore Fred trains for 187 days.
iii) $S_{n}=\frac{1}{2}(a+l)$

$$
\begin{aligned}
& =\frac{187}{2}(5+42 \cdot 2) \\
& =4+13 \cdot 2
\end{aligned}
$$

\therefore Fred runs a total distance of 4413.2 km .

Question 5 continued
c)

i) $\angle M B N=x^{\circ}$ (alternate angles on 11 lines)
$\therefore \angle A M D=x^{\circ}$ (corresponding angles on $1 /$ lies)
ii) In $\triangle A M D$ and $\triangle C N B$
$D M=M T S=B N=D N$ (sides of a rhombus)
$A M=M B$ (Given)
$N C=$ DN (Given)

$$
\begin{equation*}
\therefore A M=N C \tag{s}
\end{equation*}
$$

$\angle A M D=\angle C N B$ (Proved in part (i))
$D M=B N$ (sides of a rhombus)

$$
\therefore \triangle A M D=\triangle C N T
$$

iii) $A B=2 A M$ (M is midpoint of $A B$)
$C D=2 N C$ (N is midpoint of $C D$)
since $A M=N C$ (proved in part (ii))

$$
\therefore A B=C D
$$

$A D=C B$ (matching sides of congruent triangles)

- $A B C D$ is a parallelogram (two pairs of equal opposite sides)

Question 6
a)

$$
\begin{aligned}
& 2 \sin ^{2} x-7 \sin x+3=0 \quad \text { let } \mu=\sin x \\
& 2 \mu^{2}-7 \mu+3=0 \\
& (2 \mu-1)(\mu-3)=0 \\
& \therefore \mu=3 \text { or } \mu=\frac{1}{2} \\
& \therefore \sin x=3 \text { or } \sin x=\frac{1}{2} \quad \text { 的 } 1_{1}^{2} \text { stA } \\
& \text { No sown } \quad \therefore x=\frac{\pi}{6} \text { or } \pi-\frac{\pi}{6} \\
& \text { for all } x \\
& =\frac{\pi}{6} \text { or } \frac{5 \pi}{6}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
\frac{d}{d x}\left[\log _{e}(\sin 2 x)\right] & =\frac{2 \cos 2 x}{\sin 2 x} \\
& =2 \cot 2 x
\end{aligned}
$$

ii)

$$
\begin{aligned}
\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \cot 2 x d x & =\frac{1}{2} \int_{\frac{\pi}{8}}^{\pi / 4} 2 \cot 2 x d x \\
& =\frac{1}{2}\left[\log _{e}(\sin 2 x)\right]_{\frac{\pi}{8}}^{\frac{\pi}{4}} \\
& =\frac{1}{2}\left[\log _{e}\left(\sin 2 \cdot \frac{\pi}{4}\right)-\log _{e}\left(\sin 2 \cdot \frac{\pi}{8}\right)\right] \\
& =\frac{1}{2}\left[\ln 1-\ln \frac{1}{\sqrt{2}}\right] \\
& =\frac{1}{2}[0-(\ln 1-\ln \sqrt{2})] \\
& =\frac{1}{2}(0-0+\ln \sqrt{2}) \\
& =\frac{1}{2} \ln \sqrt{2} \\
& =\frac{1}{4} \ln 2
\end{aligned}
$$

Question 6 continued
C) $f(x)=x^{3}-3 x^{2}+8$
i)

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-6 x \\
& =3 x(x-2)
\end{aligned}
$$

Stationary points when $f^{\prime}(x)=0$

$$
\therefore 0=3 x(x-2)
$$

$$
x=0 \text { and } x=2
$$

$$
\begin{array}{rlrl}
f(0) & =0^{3}-3(0)^{2}+8 & f(2) & =2^{3}-3.2^{2}+8 \\
& =8 & & =8-12+8 \\
& =4
\end{array}
$$

Stat pts at $(0,8)$ and $(2,4)$

$$
f^{\prime \prime}(x)=6 x-6
$$

$$
f^{\prime \prime}(0)=60-6
$$

$=-6<0 \quad \therefore$ concave down at $(0,8)$
$\therefore(0,8)$ is a maximum.
$f^{\prime \prime}(2)=6.2-6 \quad$ concave up at $(2,4)$
$=6>0 \quad \therefore(2,4)$ is a minimums.
ii)

iii) Concave down when $f^{\prime \prime}(x)<0$
$6 x-6<0 \quad \therefore f(x)$ is concave down $x<1$ for $x<1$

Question 7
a)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\ln 2} e^{2 x}-4 e^{x}+4 d x \\
& =\left[\frac{e^{2 x}}{2}-4 e^{x}+4 x\right]_{0}^{\ln 2} \\
& =\left(\frac{e^{2 \ln 2}}{2}-4 e^{\ln 2}+4 \ln 2\right)-\left(\frac{e^{20}}{2}-4 e^{0}+0\right) \\
& =2-8+4 \ln 2-\frac{1}{2}+4+0 \\
& =4 \ln 2-\frac{5}{2}
\end{aligned}
$$

b) i)

$$
V=2500\left(1-\frac{t}{50}\right)^{2}
$$

for $t=10$

$$
\begin{aligned}
V & =2500\left(1-\frac{10}{50}\right)^{2} \\
& =2500 \times \frac{16}{25} \\
& =16002
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d V}{d t} & =2 \times 2500\left(1-\frac{t}{50}\right) \times-\frac{1}{50} \\
& =-100\left(1-\frac{t}{50}\right) \\
& =-100+2 t
\end{aligned}
$$

when $t=20$

$$
\begin{aligned}
\frac{d v}{d t} & =-100+2 \times 20 \\
& =-60 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

Question 7 continued
b) iii)

$$
\begin{aligned}
& \frac{d V}{d t}=-100+2 t \\
& \frac{d V}{d t} \underbrace{t 100}_{t=50}
\end{aligned}
$$

The fastest rate at which water leaves the term is ar $t=0$ ie: $\frac{d v}{d t}=-100 \mathrm{~L} / \mathrm{min}$
c)

$$
\begin{aligned}
& 31 \text { DEC } 2011\left(A_{1}=7000 \times 1.05\right) \\
& 31 \text { DEC } 2012\left(A_{2}=7000 \times 1.05^{2}+7000 \times 1.05\right) \\
& 31 D E C 2013\left(A_{3}=7000 \times 1.05^{3}+7000 \times 105^{2}+7000 \times 1.05\right)
\end{aligned}
$$

i) $A_{3}=7000\left(1.05+1.05^{2}+1.05^{3}\right)$
ii) Assume $A_{n}=7000\left(1.05+1.05^{2}+\ldots+1.05^{n}\right)$
ie Geometicie serious $a=1.05$

$$
\begin{aligned}
& r=1.05 \\
& n=31
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
S_{31} & =\frac{1.05 \times\left(1.0 s^{31}-1\right)}{0.05} \\
& =74.2988 \ldots \\
A_{31} & =\$ 7000 \times s_{31} \\
& =\$ 520091.81
\end{aligned}
$$

Question 8
a)

$$
\begin{aligned}
\sqrt{x} & =\frac{1}{\sqrt{x}} \\
1 & =x^{2} \\
\therefore x & =1 \\
y & =\sqrt{1} \\
& =1
\end{aligned}
$$

ii)

$$
\begin{array}{rlr}
\text { Area } & =\int_{0}^{1} y^{2} d y+\int_{1}^{2} y^{-2} d y & \text { note: } \begin{array}{l}
y=\sqrt{x} \\
\end{array}=\left[\frac{y^{3}}{3}\right]_{0}^{1}+\left[\frac{y^{-1}}{-1}\right]_{1}^{2} \\
& =\left(\frac{1}{3}-0\right)+\left(-\frac{1}{2}+1\right) & y=\frac{1}{\sqrt{x}} \\
& =\frac{x=y}{6} \text { units }^{2} &
\end{array}
$$

b)

$$
\begin{aligned}
\log _{7} x-\log _{7} 4 & =2 \log _{7} 3 \\
\log _{7}\left(\frac{x}{4}\right) & =\log _{7} 9 \\
\frac{x}{4} & =9 \\
x & =36
\end{aligned}
$$

Question 8 continued
c) $v=3-6 \cos t$

ii) Particle is at rest when $V=0$

$$
\begin{aligned}
0=3 & -6 \cos t \\
6 \cos t & =3 \\
\cos t & =\frac{1}{2} \\
t & =\frac{\pi}{3} \text { or } 2 \pi-\frac{\pi}{3} \\
& =\frac{\pi}{3} \text { or } \frac{5 \pi}{3}
\end{aligned}
$$

iii) $a=\frac{d(v)}{d t}$

$$
\therefore a=6 \sin t
$$

iv) Sint hos its first maximum when $t=\frac{\pi}{2}$
\therefore The parkcle first reaches its maximum acceleration when $t=\frac{\pi}{2}$ seconds

Question 9
a)

b) i) $M=M_{0} e^{-k t}$

$$
\begin{aligned}
\frac{d M}{d t} & =M_{0} \times-k \times e^{-k t} \\
& =-k \times M_{0} e^{-k t} \\
& =-k M
\end{aligned}
$$

ii) when $t=6 \quad \frac{\pi}{M_{0}}=\frac{1}{2}$

$$
\frac{1}{2}=e^{-k x b}
$$

$$
\begin{aligned}
\ln \frac{1}{2} & =-6 k \\
k & =\frac{\ln 2}{6}
\end{aligned}
$$

iii) $M=1, k=\frac{\ln 2}{6}, t=15.6$

$$
\begin{aligned}
1 & =m_{0} \times e^{-\frac{1.2}{6} \times 15.6} \\
& =6.06286 \ldots
\end{aligned}
$$

\therefore Approx $6 \mathrm{~kg} w a s$ shipped

Question a continued
c) i)

$$
\begin{aligned}
P & =2 k+2 k \theta+\pi k \\
& =k(2 \theta+\pi+2)
\end{aligned}
$$

ii) Area $=$ Area of sector + Area of semicircle

$$
\begin{array}{rlr}
& =\frac{1}{2} r^{2} \theta+\frac{1}{2} \pi k^{2} & r=2 k \\
& =\frac{1}{2}(2 k)^{2} \theta+\frac{1}{2} \pi k^{2} & R=k \\
1 & =2 k^{2} \theta+\frac{1}{2} \pi k^{2} & \\
2 k^{2} \theta & =1-\frac{1}{2} \pi k^{2} & \\
\theta & =\frac{1-\frac{1}{2} \pi k^{2}}{2 k^{2}} & \\
& =\frac{1}{2 k^{2}}-\frac{\pi}{4} &
\end{array}
$$

iii) for $\theta=\frac{1}{2 k^{2}}-\frac{\pi}{4}$

$$
\begin{aligned}
P & =k(2 \theta+\pi+2) \\
& =k\left(2\left(\frac{1}{2 k^{2}}-\frac{\pi}{4}\right)+\pi+2\right) \\
& =k\left(\frac{1}{k^{2}}-\frac{\pi}{2}+\pi+2\right) \\
& =\frac{1}{k}+\frac{k \pi}{2}+2 k \\
& =\frac{1}{k}+k\left(2+\frac{\pi}{2}\right)
\end{aligned}
$$

Question 10
a)i) $S=k d^{2} w$

$$
\begin{aligned}
\therefore s & =k\left(27-w^{2}\right) w \\
& =k\left(27 w-w^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d \sqrt{\sqrt{27}} \\
& d^{2}+\omega^{2}=27 \\
& d^{2}=27-\omega^{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d s}{d w} & =k\left(27-3 w^{2}\right) \\
\frac{d s}{d w} & =0 \text { for maximin strength } \\
0 & =k\left(27-3 w^{2}\right) \\
w^{2} & =9 \\
w & = \pm 3 \\
& =3 \quad \text { (ignore -re dimension) }
\end{aligned}
$$

when $w=3, d^{2}=27-9$

$$
\begin{aligned}
& =18 \\
d & =\sqrt{18}
\end{aligned}
$$

check $\max \frac{d^{2} S}{d w^{2}}=-6 w k$
<0 (assume $\omega>0$)
\therefore max strength when $\quad(k>0$ given $)$

$$
w=3 \mathrm{~cm}+d=\sqrt{18} \mathrm{~cm}
$$

iii)

$$
\begin{aligned}
2 w^{2} & =27 \\
w^{2} & =\frac{27}{2}
\end{aligned} \quad \therefore \quad d=w=\sqrt{\frac{27}{2}}
$$

Question 10 continued
a) iii)

$$
\begin{aligned}
S_{\text {square }} & =k d^{2} \omega \\
& =k \times \frac{27}{2} \times \frac{\sqrt{27}}{2} \\
& =k \times 18 \times 3 \\
S_{\text {max }} & =k d^{2} \omega \\
& =\frac{54 k}{S_{\text {max }}} \\
S_{\text {square }} & =\frac{54 k}{2} \times \sqrt{\frac{27}{2}} \\
& =\frac{4}{\sqrt{\frac{27}{2}}} \\
& =1.08866 \ldots
\end{aligned}
$$

$S_{\text {max }}>1.08 \times S_{\text {squad }}$ as Required.
b) i)

$$
\begin{aligned}
f(x) & =x\left((\ln x)^{2}-2 \ln x+2\right) \\
f^{\prime}(x) & =x\left(\frac{2 \ln x}{x}-\frac{2}{x}\right)+\left((\ln x)^{2}-2 \ln x+2\right) \\
& =2 \ln x>2+(\ln x)^{2}-2 \ln x+2 \\
& =(\ln x)^{2}
\end{aligned}
$$

Question 10 continued
b) ii)

$$
\begin{aligned}
V & =\pi \int_{1}^{e} y^{2} d x \\
& =\pi \int_{1}^{e}(\ln x)^{2} d x \\
& =\pi\left[x\left((\ln x)^{2}-2 \ln x+2\right)\right]_{1}^{e} \\
& =\pi\left[e\left(1^{2}-2+2\right)-1\left(0^{2}-0+2\right)\right] \\
& =\pi(e-2) \text { units }^{3}
\end{aligned}
$$

