Examination Number
Set:

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What is the value of $\frac{e^{2}+e^{-2}}{\sqrt{\ln 2}+1}$ correct to 3 significant figures?
(A) 4.11
(B) 5.78
(C) 7.46
(D) 7.49

2 If $\frac{2 \sqrt{3}}{\sqrt{3}+3}=a \sqrt{3}+b$, what are the values of a and b ?
(A) $a=1, b=1$
(B) $a=1, b=-1$
(C) $a=-1, b=1$
(D) $a=-1, b=-1$

3 What are the solutions of $x^{2}-4 x-2=0$?
(A) $x=-2 \pm \sqrt{2}$
(B) $x=2 \pm \sqrt{2}$
(C) $x=-2 \pm \sqrt{6}$
(D) $x=2 \pm \sqrt{6}$

4 A line has a gradient of $-\sqrt{3}$.
What is the inclination of the line to the positive x axis?
(A) 30°
(B) 60°
(C) 120°
(D) 150°

5 What is a primitive of $3-\sin x$?
(A) $-\cos x$
(B) $\cos x$
(C) $3 x-\cos x$
(D) $3 x+\cos x$

6 A parabola has focus $(-4,0)$ and directrix $x=2$.
What is the equation of the parabola?
(A) $y^{2}=-24(x+4)$
(B) $y^{2}=-12(x+1)$
(C) $y^{2}=24(x+4)$
(D) $y^{2}=12(x+1)$

7 What are the solutions of $x^{2}<9$?
(A) $x<-3$ or $x<3$
(B) $x<-3$ or $x>3$
(C) $x>-3$ and $x<3$
(D) $x<-3$ and $x<3$

8 Which diagram shows the graph of $y=\cos \left(2 x-\frac{\pi}{6}\right)$?
(A)

(B)

(C)

(D)

9 A particle is moving along the x-axis. The displacement of the particle after t seconds is given by $x=t^{2}-3 t$ metres.

Which statement describes the motion after 1 second?
(A) The particle is moving to the left with decreasing speed.
(B) The particle is moving to the right with decreasing speed.
(C) The particle is moving to the left with increasing speed.
(D) The particle is moving to the right with increasing speed.

10 The diagram shows a sketch of the gradient function $y=f^{\prime}(x)$ passing through the points A, B, C and D.

Which point represents the horizontal point of inflexion of the curve $y=f(x)$?
(A) Point A
(B) Point B
(C) Point C
(D) Point D

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and $\mathbf{4 5}$ minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Solve $|2 x+3|<9$.
(b) Factorise $4+7 x-2 x^{2}$
(c) Sketch the graph of $y=|x-2|$.
(d) Find the perpendicular distance from the point $(-3,4)$ to the line $y=5 x$.
(e) Find $f^{\prime \prime}(-2)$ if $f(x)=\log _{e} \sqrt{x}$.
(f) Find $\int \frac{1}{x^{2}}+\sqrt{x} d x$.
(g) The quadratic equation $4 x^{2}-3 x-2=0$ has roots α and β.
(i) Find $\alpha+\beta$.
(ii) Find $\alpha^{3} \beta^{2}+\alpha^{2} \beta^{3}$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate with respect to x.
(i) $x e^{x^{2}}$

2
(ii) $\frac{\sin x}{2 x}$
(b) Find $\int \sec ^{2}\left(\frac{x}{2}+\pi\right) d x$.
(c) Evaluate $\int_{0}^{2} \frac{x^{3}}{2+2 x^{4}} d x$. Leave your answer in simplified exact form.
(d) A miner is mining for a precious metal in the deserts of Western Australia. The amounts of precious metal mined in each of the first three months of operation were 4000 grams, 3920 grams, 3840 grams respectively and this pattern continues throughout the operation. The mine runs out of the precious metal after 50 months
(i) How many grams were mined in the $12^{\text {th }}$ month?
(ii) How many grams were mined over the first year?
(iii) 25% of the precious metal mined each month is placed in storage 3 metal mined each month to an overseas company

How many months does he need to mine to sell a total of 73.2 kg to the company?

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram shows triangle $A B C$ with $A B=B C$.

The line $4 x-3 y+12=0$ meets the x and y axes at B and A respectively.

(i) Calculate the distance $A B$.
(ii) Point C has coordinates $\left(1 \frac{1}{2}, b\right)$. Show that $b=\frac{\sqrt{19}}{2}$.
(iii) Find the coordinates of point D if $A B C D$ forms a rhombus.
(b) A circle has a minor segment with area $(3 \pi-9)$ square centimetres.

The segment is cut off by a chord subtending an angle of $\frac{\pi}{6}$ radians at the centre. Find the radius, r, of the circle.

Question 13 continues on page 9

Question 13 (continued)

(c) (i) On the same set of axes, sketch the curves $y=\sin 2 x$ and $y=\cos x$ for $0 \leq x \leq \frac{\pi}{2}$.
(ii) Verify that the curves intersect at $x=\frac{\pi}{6}$ and $x=\frac{\pi}{2}$.
(iii) Hence find the area between the two curves from $x=\frac{\pi}{6}$ to $x=\frac{\pi}{2}$.

End of Question 13

Question 14 continues on page 11

(c) In the diagram $\angle A B D+\angle B C A=\frac{\pi}{3}$, $A D$ bisects $\angle B A C, A B=p, A D=q$, and $A C=r$.

(i) Show that $\angle B A D=\angle D A C=\frac{\pi}{3}$.
(ii) By finding the areas of triangles, prove that $\frac{1}{p}+\frac{1}{r}=\frac{1}{q}$.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Solve $3 \sin x \tan ^{2} x-\sin x=0$ for $0 \leq x \leq 2 \pi$.
(b) The function $y=x(x-3)^{2}$ is defined in the domain $0 \leq x \leq 4$.
(i) Find the x intercepts.
(ii) Find the coordinates of any turning points and determine their nature.
(iii) Sketch the curve $y=x(x-3)^{2}$ for $0 \leq x \leq 4$, showing all essential

features.

(c) The limiting sum of the series $\frac{1}{p}-\frac{1}{p^{2}}+\frac{1}{p^{3}}-\ldots \ldots$. is equal to $-4 p,(p \neq 0)$. Find the value of p.
(d)

End of Question 14

The area bounded by the curve $y=e^{x}+1$, the x axis, and the lines $x=0$ and $x=\ln 2$ is rotated about the x axis. Find the exact volume of the solid formed.
(a) A particle moves in a straight line with acceleration after t seconds given by $a=4 \sin 2 t \mathrm{~m} / \mathrm{s}^{2}$. Initially the particle is 1 metre to the left of the origin and travelling with a velocity of $2 \mathrm{~m} / \mathrm{s}$.
(i) Show that the velocity of the particle is given by $v=4-2 \cos 2 t$.
(ii) Show that the particle never comes to rest.
(iii) Find the distance travelled by the particle in the first 4 seconds. 2 Write your answer correct to the nearest metre.
(b) Nick's grandparents have set up a fund with a single investment of \$400 000 to provide financial support for him. He is granted an annual payment of \$25000 from this fund at the end of each year. The fund accrues interest at a rate of 5% per annum compounded annually.
(i) Calculate the balance in the fund at the beginning of the second year.
(ii) Let $\$ A_{n}$ be the balance of the fund at the end of n years (after Nick receives his payment). Show that $A_{n}=500000-100000(1.05)^{n}$.
(iii) If this fund began at the beginning of 2000, in what year will the fund run out of money?

Question 16 (continued)

(c)

NOT TO

SCALE

Rick and Julie live in 2 parallel streets which are 2 kilometres apart and run east-west as shown in the diagram

When Julie calls Rick to let him know her parents are out, he needs to get there as fast as possible. Rick has hidden a bike at point B in Julie's street.

To get to Julie's house, Rick runs from his house, R, through a park to his bike, B, at a speed of $8 \mathrm{~km} / \mathrm{h}$. He then rides to Julie's house, J at $16 \mathrm{~km} / \mathrm{h}$.

Let x kilometres represent the distance the bike is east of Rick's house
(i) Show that the time (T hours) taken for Rick to get to Julie's house is given by

$$
T=\frac{\sqrt{x^{2}+4}}{8}+\frac{6-x}{16} .
$$

(ii) Find the distance of the bike from Julie's house in order to minimize
$2 U$ TRIAL HSC SOLUTIONS 2014
(1)

$$
\begin{align*}
\frac{e^{2}+e^{-2}}{\sqrt{\ln 2}+1} & =\frac{7.524 \ldots}{1.8325 \ldots} \\
& =4.1059 \ldots \\
& =4.11 \tag{A}
\end{align*}
$$

(2)

$$
\begin{align*}
\frac{2 \sqrt{3}}{\sqrt{3}+3} \times \frac{\sqrt{3}-3}{\sqrt{3}-3} & =\frac{6-6 \sqrt{3}}{3-9} \\
& =\frac{6-6 \sqrt{3}}{-6} \\
& =\sqrt{3}-1 \\
\therefore a=1, b & =-1 \tag{B}
\end{align*}
$$

(3)

$$
\begin{align*}
& x^{2}-4 x-2=0 \\
& x=\frac{4 \pm \sqrt{16-4 \times 1 x-2}}{2} \\
&=\frac{4 \pm \sqrt{24}}{2} \\
&=\frac{4 \pm 2 \sqrt{6}}{2} \\
&=2 \pm \sqrt{6} \tag{D}
\end{align*}
$$

(4)

$$
\begin{align*}
\tan \alpha & =-\sqrt{3} \\
\text { basic } \alpha & =60^{\circ} \\
\therefore \alpha & =120^{\circ} \tag{c}
\end{align*}
$$

(5)

$$
\begin{align*}
& \int 3-\sin x d x \\
& =3 x+\cos x \tag{D}
\end{align*}
$$

(6)

$$
\begin{align*}
(y-0)^{2} & =-4(3)(x+1) \\
y^{2} & =-12(x+1) \tag{B}
\end{align*}
$$

$a=3$
(7) $x^{2}<9$
citical prits $x= \pm 3$

$$
\begin{align*}
& \frac{x+1}{x}-3 \\
\therefore & -3<x<3 \tag{c}
\end{align*}
$$

i.e. $x>-3$ and $x<3$
(8) $\cos \left(2 x-\frac{\pi}{6}\right)=0$ for x interepts

$$
\begin{aligned}
2 x-\frac{\pi}{6} & =\cdots \frac{5 \pi}{2}, \frac{-3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \\
2 x & =\cdots \frac{-7 \pi}{3}, \frac{-4 \pi}{3},-\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{3}, \frac{\pi}{3} \\
x & =\cdots \frac{-7 \pi}{6},-\frac{2 \pi}{3},-\frac{\pi}{6}, \frac{\pi}{3}, \frac{5 \pi}{6}, \frac{4 \pi}{3} .
\end{aligned}
$$

\uparrow
(9)

$$
\begin{align*}
& x=t^{2}-3 t \\
& u=2 t-3 \\
& a=2 \tag{A}
\end{align*}
$$

at $t=1, v=-1 \mathrm{~m} / \mathrm{s}$
\therefore moving to left mith decraning speed
(10) For H.P.O.I.

$$
f^{\prime}(x)=0, \quad f^{\prime \prime}(x)=0
$$

Question II
(a)

$$
\begin{aligned}
& |2 x+3|<9 \\
& -9<2 x+3<9 \\
& -12<2 x<6 \\
& -6<x<3
\end{aligned}
$$

(b)

$$
\begin{array}{rlrl}
& 4+7 x-2 x^{2} & & P-8 \\
= & 4+8 x-x-2 x^{2} & \frac{S T}{F+8,-1} \\
= & 4(1+2 x)-x(1+2 x) & & \\
= & (4-x)(1+2 x) & {[\text { or }-(x-4)(2 x+1)]}
\end{array}
$$

(c) $y=|x-2|$

(d)

$$
d=\left|\frac{5(-3)-1(4)+0}{\sqrt{5^{2}+(-1)^{2}}}\right| \quad \begin{aligned}
& y=5 x \\
& 0=5 x-y+0
\end{aligned}
$$

$$
=\left|\frac{-19}{\sqrt{26}}\right|
$$

$$
=\frac{19}{\sqrt{26}} \quad\left[\text { or } \frac{19 \sqrt{26}}{26}\right]
$$

(e)

$$
\begin{aligned}
f(x) & =\ln \sqrt{x} \\
& =\frac{1}{2} \ln x \\
f^{\prime}(x) & =\frac{1}{2} \times \frac{1}{x} \\
& =\frac{1}{2} x^{-1} \\
f^{\prime \prime}(x) & =-\frac{1}{2} x^{-2} \\
f^{\prime \prime}(-1) & =-\frac{1}{2}(-2)^{-2} \\
& =-\frac{1}{8}
\end{aligned}
$$

Quertion II Continued
(f) $\int \frac{1}{x^{2}}+\sqrt{x} d x$

$$
\begin{aligned}
& =\int x^{-2}+x^{\frac{1}{2}} d x \\
& =\frac{x^{-1}}{-1}+\frac{2}{3} x^{\frac{3}{2}}+C \\
& =-\frac{1}{x}+\frac{2}{3 \sqrt{x^{3}}}+C
\end{aligned}
$$

(i)

$$
\begin{align*}
\alpha+\beta & =-\frac{b}{a} \tag{g}\\
& =\frac{3}{4}
\end{align*}
$$

(ii)

$$
\begin{aligned}
\alpha^{3} \beta^{2}+\alpha^{2} \beta^{3} & =\alpha^{2} \beta^{2}(\alpha+\beta) \\
& =(\alpha \beta)^{2}(\alpha+\beta) \\
& =\left(-\frac{1}{2}\right)^{2}\left(\frac{3}{4}\right) \\
& =\frac{1}{4} \times \frac{3}{4} \\
& =\frac{3}{16}
\end{aligned}
$$

Quetron 12
(a) (i)

$$
\begin{aligned}
y & =x e^{x^{2}} \\
y^{\prime} & =e^{x^{2}} \times 1+x \times 2 x e^{x^{2}} \\
& =e^{e^{x^{2}}+2 x^{2} e^{x^{2}}}\left[\operatorname{or} e^{x^{2}}\left(1+2 x^{2}\right)\right]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\frac{\sin x}{2 x} \\
y^{\prime} & =\frac{2 x \times \cos x-\sin x \times 2}{4 x^{2}} \\
& =\frac{x \cos x-\sin x}{2 x^{2}}
\end{aligned}
$$

Question 12 Continued
(b)
(c)

$$
\begin{aligned}
& \int_{0}^{2} \frac{x^{3}}{2+2 x^{4}} d x \\
= & \frac{1}{8} \int_{0}^{2} \frac{8 x^{3}}{2+2 x^{4}} d x \\
= & \frac{1}{8}\left[\ln \left(2+2 x^{4}\right)\right]_{0}^{2} \\
= & \frac{1}{8}\left[\ln \left(2+2(2)^{4}\right)-\ln \left(2+2(0)^{4}\right)\right] \\
= & \frac{1}{8}[\ln 34-\ln 2] \\
= & \frac{1}{8} \ln 17
\end{aligned}
$$

(d) $4000,3920,3840$,
(i)

$$
\begin{aligned}
T_{12} & =4000+11 x-80 \\
& =31209
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{12} & =4000+3920+\ldots+3120 \\
& =\frac{12}{2}(4000+3120) \\
& =42720 \mathrm{~g}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& a=0.75 \times 4000=3000 \quad d=0.75 \times-80=-60 \\
& 73200=\frac{n}{2}[2 \times 3000+(n-r) \times-60] \\
& 73200=n[3000-30 n+30] \\
& 73200=3030 n-30 n^{2} \\
& n^{2}-101 n+2440=0 \\
& (n-40)(n-61)=0 \Rightarrow n=40 \quad(n 550)
\end{aligned}
$$

Question 13
Question 13 continued
(c) (i)
(a) $4 x-3 y+12=0$
(i) For x intercept, $y=0 \rightarrow x=-3 \quad \therefore B$ is $(-3,0)$

For yintrupt, $x=0 \rightarrow y=4 \quad \therefore$ A is $(0,4)$

$$
\begin{aligned}
A B^{2} & =3^{2}+4^{2} \\
& =25 \\
A B & =5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
b^{2} & =5^{2}-\left(\frac{9}{2}\right)^{2} & \text { (ii) } \left.\begin{array}{lll}
x=\frac{\pi}{6} & y=\sin 2\left(\frac{\pi}{6}\right) & y=\cos \left(\frac{\pi}{6}\right) \\
& =25-\frac{81}{4} & \\
& & y=\frac{\sqrt{3}}{2} \\
& & y=\frac{\sqrt{3}}{2} \\
& & \\
& & \\
& & \\
& & y=\frac{\pi}{2} \\
& & y=0 \\
& & y=\cos \left(\frac{\pi}{2}\right) \\
& & y=0
\end{array}\right)
\end{aligned}
$$

$$
=\frac{19}{4}
$$

(iii)
(iii)

$$
b=\frac{\sqrt{19}}{2}
$$

$$
\begin{aligned}
c & =\left(1 \frac{1}{2}, \frac{\sqrt{19}}{2}\right) \\
D & =\left(1 \frac{1}{2}+3, \frac{\sqrt{19}}{2}+4\right) \\
& =\left(4 \frac{1}{2}, \frac{\sqrt{19}+8}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin 2 x-\cos x d x \\
& =\left[-\frac{1}{2} \cos 2 x-\sin x\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
& =\left(-\frac{1}{2} \cos \pi-\sin \frac{\pi}{2}\right)-\left(-\frac{1}{2} \cos \frac{\pi}{3}-\sin \frac{\pi}{6}\right) \\
& =\left(\frac{1}{2}-1\right)-\left(-\frac{1}{4}-\frac{1}{2}\right) \\
& =\frac{1}{4} \mu^{2}
\end{aligned}
$$

(b) $A=\frac{1}{2} r^{2}(\theta-\sin \theta)$
$3 \pi-9=\frac{1}{2} r^{2}\left(\frac{\pi}{6}-\sin \frac{\pi}{6}\right)$
$3(\pi-3)=\frac{1}{2} r^{2}\left(\frac{\pi}{6}-\frac{1}{2}\right)$
$6(\pi-3)=r^{2}\left(\frac{\pi-3}{6}\right)$

$$
36=r^{2}
$$

$$
\begin{align*}
P(\text { IA or AI }) & =0.35 \times 0.55+0.55 \times 0.35 \tag{ii}\\
& =0.385
\end{align*}
$$

$$
r=6 \mathrm{~cm}
$$

Question 14 Continued
(a) (iii) P (at learnt one I)

$$
\begin{aligned}
& =P\left(\frac{I I}{\downarrow} \text { ar } \frac{A I \text { ar IA }}{\downarrow}\right. \text { ar UI or IU) } \\
& =0.1225+0.385+0.1 \times 0.35+0.35 x \\
& =0.5775
\end{aligned}
$$

(b)

$$
\text { (i) } \begin{aligned}
B= & B_{0} e^{-k t} \\
0.001 & =0.24 e^{-28 k} \\
\frac{0.001}{0.24} & =e^{-28 k} \\
\ln \left(\frac{0.001}{0.24}\right) & =-28 k \\
k & =-\frac{1}{28} \ln \left(\frac{0.001}{0.24}\right) \\
& =0.1957 \text { (to 4d.p.) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
0.05 & =0.24 e^{-0.1957 t} \\
\frac{0.05}{0.24} & =e^{-0.1957 t} \\
\ln \left(\frac{5}{24}\right) & =-0.1957 t \\
t & =\frac{\ln \left(\frac{5}{24}\right)}{-0.1957} \\
& =8.0154 \ldots \\
\therefore \text { thine } & =11 p n+8 \text { hows } \\
& =7 a m
\end{aligned}
$$

(ii)

Shertion 14 Contimed
(c) (i)

$$
\begin{aligned}
\angle B A C & =\pi-(\angle A B D+\angle B C A) \quad(\angle S \text { cen } \triangle A B C) \\
& =\pi-\frac{\pi}{3} \\
& =\frac{2 \pi}{3} \\
\angle A B D=\angle D A C & =\frac{1}{2} \angle B A C \quad(A O \text { bisect } \angle B A C) \\
& =\frac{1}{2} \times \frac{2 \pi}{3} \\
& =\frac{\pi}{3}
\end{aligned}
$$

(ii)

Area $\triangle B A D=\frac{1}{2} p q \sin \frac{\pi}{3}$
Hen $\triangle D A C=\frac{1}{2} q r \sin \frac{\pi}{3}$
Area $(\triangle B A D+\triangle D A C)=$ Area $\triangle A B C$

$$
\begin{aligned}
& \frac{1}{2} p q \times \frac{\sqrt{3}}{2}+\frac{1}{2} q r \times \frac{\sqrt{3}}{2}=\frac{1}{2} p r \sin \frac{2 \pi}{3} \\
& \frac{\sqrt{3} p q}{4}+\frac{\sqrt{3} q r}{4}=\frac{\sqrt{3} p r}{4} \\
& p q+q r=p r \\
& \frac{p q}{p q r}+\frac{q r}{p q r}=\frac{p r}{p q r} \\
& \frac{1}{r}+\frac{1}{p}=\frac{1}{q}
\end{aligned}
$$

Qrestion is
(a) $3 \sin x \tan ^{2} x-\sin x=0$
$\sin x\left(3 \tan ^{2} x-1\right)=0$

$$
\begin{array}{ll}
\sin x=0 \quad \tan ^{2} x=\frac{1}{3} \\
\tan x= \pm \frac{1}{\sqrt{3}}
\end{array}
$$

$$
x=0, \pi, 2 \pi
$$

$$
x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

(b) (i) $y=x(x-3)^{2}$
x intereaps at $(0,0)(3,0)$
(ii)

$$
\begin{aligned}
y & =x\left(x^{2}-6 x+9\right) \\
& =x^{3}-6 x^{2}+9 x \\
y^{\prime} & =3 x^{2}-12 x+9 \\
y^{\prime \prime} & =6 x-12
\end{aligned}
$$

For T.P.

$$
\begin{aligned}
& 3 x^{2}-12 x+9=0 \\
& 3(x-1)(x-3)=0 \\
& x=1 \quad x=3 \\
& =1(1-3)^{2} \quad y^{\prime \prime}=6(1)-12 \\
& =4
\end{aligned}
$$

at $x=1$
at $x=3 \quad y=3(3-3)^{2}$

$$
=0
$$

$$
\begin{aligned}
y^{\prime \prime} & =6(3)-12 \\
& =6>0
\end{aligned}
$$

\therefore Maximuen T.P. at $(1,4)$
Minimin T.P at $(3,0)$

Qrestion 15 Continued
(b) (iii) $y=x(x-3)^{2}$

(c)

$$
\begin{array}{r}
S_{\infty}=\frac{a}{1-r} \\
-4 p=\frac{\frac{1}{p}}{1+\frac{1}{p}} \\
-4 p=\frac{1}{p+1} \\
-4 p^{2}-4 p=1 \\
4 p^{2}+4 p+1=0 \\
(2 p+1)^{2}=0 \\
p=-\frac{1}{2}
\end{array}
$$

$$
a=\frac{1}{p} \quad r=-\frac{1}{p}
$$

(d)

$$
\begin{aligned}
V & =\pi \int_{0}^{\ln 2}\left(e^{x}+1\right)^{2} d x \\
& =\pi \int_{0}^{\ln 2}\left(e^{2 x}+2 e^{x}+1\right) d x \\
& =\pi\left[\frac{1}{2} e^{2 x}+2 e^{x}+x\right]_{0}^{\ln 2} \\
& =\pi\left[\left(\frac{1}{2} e^{2 \ln 2}+2 e^{\ln 2}+\ln 2\right)-\right. \\
& =\pi\left[\left(\frac{1}{2} e^{0}+2 e^{0}+0\right)\right] \\
& \left.=\pi[\ln 2)-\left(\frac{1}{2}+2\right)\right]
\end{aligned}
$$

Qus teonth
(a)
(i)

$$
\begin{aligned}
& a=4 \sin 2 t \\
& v=-2 \cos 2 t+c
\end{aligned}
$$

$$
\begin{aligned}
t=0, v=2 \quad 2 & =-2 \cos 0+c \\
2 & =-2+c \\
c & =4 \\
\therefore \quad v & =4-2 \cos 2 t
\end{aligned}
$$

(ii) If $v=0,0=4-2 \cos 2 t$

$$
\begin{aligned}
& 2 \cos 2 t=4 \\
& \cos 2 t=2
\end{aligned}
$$

no solution \therefore porticle is never at test
(iii)

$$
\begin{aligned}
\text { distance } & =\int_{0}^{4} 4-2 \cos 2 t d t \\
& =[4 t-\sin 2 t]_{0}^{4} \\
& =(16-\sin 8)-(0-0) \\
& \doteq 15 \text { metres }
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
A_{1} & =400000(1.05)-25000 \\
& =\$ 395000
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{2} & =A_{1}(1.05)-25000 \\
& =400000(1.05)^{2}-25000(1.05)-2,000 \\
& =400000(1.05)^{2}-25000(1+1.05) \\
A_{n} & =400000(1.05)^{n}-25000(1+1.05+. .71 .05 \\
& =400000(1.05)^{n}-25000 \frac{\left(1.05^{n}-1\right)}{0.05} \\
& =400000(1.05)^{n}-500000(105)^{n}+500000 \\
& =500000-100000(1.05)^{n}
\end{aligned}
$$

(b) (iii)

$$
\begin{aligned}
& 0=500000-100000(1.05)^{n} \\
& 100000(1.05)^{n}=500000 \\
&(1.05)^{n}=5 \\
& n=\frac{\ln 5}{\ln (1.05)} \\
& \doteqdot 32.986
\end{aligned}
$$

\therefore Monay ruens out in 2032
(c) (i) $R B=\sqrt{x^{2}+2^{2}} \quad B J=6-x$

$$
\begin{aligned}
\text { Terice } & =\frac{\text { Distance }}{\text { speed }} \\
T & =\frac{R B}{8}+\frac{B J}{16} \\
& =\frac{\sqrt{x^{2}+4}}{8}+\frac{6-x}{16}
\end{aligned}
$$

$$
\begin{equation*}
\frac{d T}{d x}=\frac{\frac{1}{2}\left(x^{2}+4\right)^{-\frac{1}{2}} \times 2 x}{8}-\frac{1}{16} \tag{ii}
\end{equation*}
$$

For mineimesen thin

$$
\begin{aligned}
\frac{x}{8 \sqrt{x^{2}+4}}-\frac{1}{16} & =0 \\
2 x-\sqrt{x^{2}+4} & =0 \\
2 x & =\sqrt{x^{2}+4} \\
4 x^{2} & =x^{2}+4 \\
3 x^{2} & =4 \\
x^{2} & =\frac{4}{3} \\
x & =\frac{2}{\sqrt{3}}
\end{aligned}
$$

check:

$$
\begin{array}{c|cc}
\frac{2}{\sqrt{3}} 2 \\
\hline \frac{d T}{d x} & -0.0100 .03
\end{array}
$$

\therefore Minimuen time wher $B J=6-\frac{2}{\sqrt{3}} \mathrm{~km}$

