

Examination Number:

Set:

Shore

Year 12 **Trial HSC Examination** August 2014

# **Mathematics**

## **General Instructions**

- Reading time 5 minutes
- Working time 3 hours ٠
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–16, show relevant mathematical reasoning and/or calculations
- Start each of Questions 11–16 in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

## Total marks - 100

Section I Pages 2-5

## 10 marks

- Attempt questions 1–10
- Allow about 15 minutes for this section

## Section II Pages 6–14

## 90 marks

- Attempt questions 11–16
- Allow about 2 hours and 45 minutes for this section
- Note: Any time you have remaining should be spent revising your answers.

## Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

| 1 | What is the value of $\frac{e^2 + e^2}{\sqrt{\ln 2}}$ | $\frac{2^{-2}}{+1}$ correct to 3 significant figures? |
|---|-------------------------------------------------------|-------------------------------------------------------|
|---|-------------------------------------------------------|-------------------------------------------------------|

- (A) 4.11
- (B) 5.78
- (C) 7.46
- (D) 7.49
- 2 If  $\frac{2\sqrt{3}}{\sqrt{3}+3} = a\sqrt{3}+b$ , what are the values of *a* and *b*? (A) a = 1, b = 1(B) a = 1, b = -1(C) a = -1, b = 1
  - (D) a = -1, b = -1
- What are the solutions of  $x^2 4x 2 = 0$ ? 3
  - (A)  $x = -2 \pm \sqrt{2}$
  - (B)  $x = 2 \pm \sqrt{2}$
  - (C)  $x = -2 \pm \sqrt{6}$
  - (D)  $x = 2 \pm \sqrt{6}$

## DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

4 A line has a gradient of  $-\sqrt{3}$ .

What is the inclination of the line to the positive *x* axis?

- (A) 30°
- (B) 60°
- (C) 120°
- (D) 150°
- 5 What is a primitive of  $3 \sin x$ ?
  - (A)  $-\cos x$
  - (B)  $\cos x$
  - (C)  $3x \cos x$
  - (D)  $3x + \cos x$
- 6 A parabola has focus (-4, 0) and directrix x = 2.

What is the equation of the parabola?

- (A)  $y^2 = -24(x+4)$
- (B)  $y^2 = -12(x+1)$
- (C)  $y^2 = 24(x+4)$
- (D)  $y^2 = 12(x+1)$
- 7 What are the solutions of  $x^2 < 9$ ?
  - (A) x < -3 or x < 3
  - (B) x < -3 or x > 3
  - (C) x > -3 and x < 3
  - (D) x < -3 and x < 3

8 Which diagram shows the graph of  $y = \cos\left(2x - \frac{\pi}{6}\right)$ ?

(A)

(D)









- 4 -

9 A particle is moving along the x-axis. The displacement of the particle after t seconds is given by  $x = t^2 - 3t$  metres.

Which statement describes the motion after 1 second?

- (A) The particle is moving to the left with decreasing speed.
- (B) The particle is moving to the right with decreasing speed.
- (C) The particle is moving to the left with increasing speed.
- (D) The particle is moving to the right with increasing speed.
- 10 The diagram shows a sketch of the gradient function y = f'(x) passing through the points *A*, *B*, *C* and *D*.



Which point represents the horizontal point of inflexion of the curve y = f(x)?

- (A) Point A
- (B) Point B
- (C) Point C
- (D) Point D

### Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

| (a) | Solve $ 2x + 3  < 9$ .                                                                                     | 2 |
|-----|------------------------------------------------------------------------------------------------------------|---|
| (b) | Factorise $4+7x-2x^2$ .                                                                                    | 2 |
| (c) | Sketch the graph of $y =  x-2 $ .                                                                          | 2 |
| (d) | Find the perpendicular distance from the point $(-3, 4)$ to the line $y = 5x$ .                            | 2 |
| (e) | Find $f''(-2)$ if $f(x) = \log_e \sqrt{x}$ .                                                               | 2 |
| (f) | Find $\int \frac{1}{x^2} + \sqrt{x}  dx$ .                                                                 | 2 |
| (g) | The quadratic equation $4x^2 - 3x - 2 = 0$ has roots $\alpha$ and $\beta$ .<br>(i) Find $\alpha + \beta$ . | 1 |

(ii) Find  $\alpha^3 \beta^2 + \alpha^2 \beta^3$ . 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate with respect to *x*.

(i) 
$$xe^{x^2}$$
 2

(ii) 
$$\frac{\sin x}{2x}$$
 2

(b) Find 
$$\int \sec^2\left(\frac{x}{2} + \pi\right) dx$$
. 2

(c) Evaluate 
$$\int_{0}^{2} \frac{x^{3}}{2+2x^{4}} dx$$
. Leave your answer in simplified exact form.

3

1

2

3

- (d) A miner is mining for a precious metal in the deserts of Western Australia. The amounts of precious metal mined in each of the first three months of operation were 4000 grams, 3920 grams, 3840 grams respectively and this pattern continues throughout the operation. The mine runs out of the precious metal after 50 months.
  - (i) How many grams were mined in the 12<sup>th</sup> month?
  - (ii) How many grams were mined over the first year?
  - (iii) 25% of the precious metal mined each month is placed in storage for future investment. The miner sells the remaining 75% of precious metal mined each month to an overseas company.

How many months does he need to mine to sell a total of 73.2 kg to the company?

### Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows triangle ABC with AB = BC. The line 4x - 3y + 12 = 0 meets the x and y axes at B and A respectively.



Question 13 continues on page 9

#### Question 13 (continued)

# (c) (i) On the same set of axes, sketch the curves $y = \sin 2x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{2}$ .

- (ii) Verify that the curves intersect at  $x = \frac{\pi}{6}$  and  $x = \frac{\pi}{2}$ .
- (iii) Hence find the area between the two curves from  $x = \frac{\pi}{6}$  to  $x = \frac{\pi}{2}$ . 3

2

2

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) In a recent poll taken on whether Australia should become a republic, the following results were obtained. • In favour of a republic = 35%• Against a republic = 55% • Undecided = 10%Two people were chosen at random from those who were surveyed. (i) Find the probability that both were in favour of a republic. 1 (ii) Find the probability that one would be in favour of a republic and one 2 would be against a republic. (iii) Find the probability that at least one would be in favour of a republic. 2 The blood-alcohol content (B) after a person has been drinking is given by (b)  $B = B_0 e^{-kt}$ , where  $B_0$  represents the blood-alcohol content level at the time a person stops drinking, t is measured in hours and B in mg/ml. Sam stops drinking at 11:00 pm on Saturday night (t = 0) and his blood-alcohol level was measured at 0.24 mg/ml. It took 28 hours for Sam's blood-alcohol level to be measured at 0.001 mg/ml. Find the value of k correct to 4 decimal places. 2 (i) (ii) The allowable blood-alcohol level limit for Sam to drive a car is 2 0.05 mg/ml. What is the earliest time on Sunday that Sam will be able to legally drive? Write your answer correct to the nearest hour. (iii) What is the rate of decrease of the blood-alcohol level content in Sam's 1 blood at 8:00 am on Sunday?

Question 14 continues on page 11

Question 14 (continued)



### Question 15 (15 marks) Use a SEPARATE writing booklet.

(d)

- (a) Solve  $3\sin x \tan^2 x \sin x = 0$  for  $0 \le x \le 2\pi$ .
- (b) The function  $y = x(x-3)^2$  is defined in the domain  $0 \le x \le 4$ .
  - (i) Find the *x* intercepts. 1

3

- (ii) Find the coordinates of any turning points and determine their nature. **3**
- (iii) Sketch the curve  $y = x(x-3)^2$  for  $0 \le x \le 4$ , showing all essential features. 2
- (c) The limiting sum of the series  $\frac{1}{p} \frac{1}{p^2} + \frac{1}{p^3} \dots$  is equal to -4p,  $(p \neq 0)$ . **3** Find the value of *p*.



The area bounded by the curve  $y = e^x + 1$ , the *x* axis, and the lines x = 0 **3** and  $x = \ln 2$  is rotated about the *x* axis. Find the exact volume of the solid formed.

#### Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle moves in a straight line with acceleration after *t* seconds given by  $a = 4 \sin 2t \text{ m/s}^2$ . Initially the particle is 1 metre to the left of the origin and travelling with a velocity of 2 m/s.
  - (i) Show that the velocity of the particle is given by  $v = 4 2\cos 2t$ .
  - (ii) Show that the particle never comes to rest.
  - (iii) Find the distance travelled by the particle in the first 4 seconds. Write your answer correct to the nearest metre.
- (b) Nick's grandparents have set up a fund with a single investment of \$400 000 to provide financial support for him. He is granted an annual payment of \$25 000 from this fund at the end of each year. The fund accrues interest at a rate of 5% per annum compounded annually.
  - (i) Calculate the balance in the fund at the beginning of the second year.
  - (ii) Let  $A_n$  be the balance of the fund at the end of *n* years (after Nick receives his payment). Show that  $A_n = 500\ 000-100\ 000(1.05)^n$ .
  - (iii) If this fund began at the beginning of 2000, in what year will the fund run out of money?

Question 16 (continued)

2

1

2

1

2

1



Rick and Julie live in 2 parallel streets which are 2 kilometres apart and run east-west as shown in the diagram.

When Julie calls Rick to let him know her parents are out, he needs to get there as fast as possible. Rick has hidden a bike at point *B* in Julie's street.

To get to Julie's house, Rick runs from his house, R, through a park to his bike, B, at a speed of 8 km/h. He then rides to Julie's house, J at 16 km/h.

Let *x* kilometres represent the distance the bike is east of Rick's house.

(i) Show that the time (*T* hours) taken for Rick to get to Julie's house is given by 2

$$T = \frac{\sqrt{x^2 + 4}}{8} + \frac{6 - x}{16}.$$

(ii) Find the distance of the bike from Julie's house in order to minimize 4 the time taken for Rick to get to Julie.

End of paper

Question 16 continues on page 14

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        | $\begin{array}{c} \textcircled{6} \\ -4 \\ -4 \\ -1 \\ 2 \\ -4 \\ -1 \\ 2 \\ -4 \\ -1 \\ 2 \\ -4 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ -1 \\ 2 \\ -1 \\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              | $ ( ) x^{2} < 9 $ Critical points $x = \pm 3$ $ \frac{x + 5}{-3 + 5} \times \frac{1}{-3 + 5} \times \frac{1}{-3} \times \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\therefore a=1, b=-1 \qquad \textcircled{B}$                                                                | (a) (2 Th) and sc < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $x = 4x - 2 = 0$ $x = 4 \pm \sqrt{16 - 4x/x - 2}$ $= 4 \pm \sqrt{24}$ $= 4 \pm 2\sqrt{6}$ $= 2 \pm \sqrt{6}$ | $\begin{array}{c} \textcircled{\bullet} \\ (\textcircled{\bullet}) $ |
| $e + an \alpha = -53$                                                                                        | (9) $x = t - 3t$<br>v = 2t - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| basic $\alpha = 60^{\circ}$<br>$\alpha = 120^{\circ}$                                                        | a=2<br>at $t=1$ , $v=-1$ m/s (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 J3- Siz alse                                                                                               | inverg to left with deckang<br>speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= \frac{3 \times + \cos x}{D}$                                                                              | (10) For $H, P. 0. T.$<br>f'(x) = 0, f''(x) = 0<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

$$\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}$$

$$\frac{\text{Question 12 Continued}}{(b) \int \sec^{2}\left(\frac{x}{2} + \pi\right) dx}$$

$$= 2 \tan\left(\frac{x}{2} + \pi\right) + C$$

$$= 2 \tan\left(\frac{x}{2} + \pi\right) + C$$

$$= \frac{1}{8} \int_{0}^{2} \frac{8x^{3}}{2 + 2x^{4}} dx$$

$$= \frac{1}{8} \int_{0}^{2} \frac{8x^{3}}{2 + 2x^{4}} dx$$

$$= \frac{1}{8} \left[ \ln\left(2 + 2x^{4}\right) \right]_{0}^{2}$$

$$= \frac{1}{8} \left[ \ln\left(2 + 2(2)^{4}\right) - \ln\left(2 + 2(0)^{4}\right) \right]$$

$$= \frac{1}{8} \left[ \ln\left(34 - \ln 2\right) \right]$$

$$= \frac{1}{2} \left[ 4000 + 11 \times -80$$

$$= \frac{3120 \ 4}{2}$$

$$(i) \int_{12} = 4000 + 3920 + \dots + 3120$$

$$= \frac{1^{2}}{2} (4000 + 3120)$$

$$= 42720 \ 3$$

$$(iii) a = 0.75 \times 4000 = 3000 \ d = 0.75 \times 80 = -60$$

$$= -60$$

0n-30n-440 = 0  $(n \le 50) = n = 40$  (n \le 50)

$$\underbrace{\operatorname{Austrie} 13}_{(a)} \underbrace{\operatorname{Aut} - 3_{\frac{1}{2}} + 12 = 0}_{(a)}$$

$$\underbrace{\operatorname{For} \times \operatorname{integr}_{\epsilon}, \quad y=0 \quad \rightarrow x=-3 \quad 1.8 \text{ is} (-3,0)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad \rightarrow y=4 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times \operatorname{integr}_{\epsilon}, \quad x=0 \quad 1.4 \text{ is} (0,4)}_{For \times$$

E.

$$\frac{\&uestion 13}{(c) (i)} \quad \text{(c) (i)} \quad \frac{1}{\frac{\pi}{L}} \quad \frac{\pi}{3} \quad \frac{\pi}{3} \quad \frac{\pi}{3} \quad \frac{\pi}{3} \quad \frac{\pi}{2} \quad \frac{\pi}{2} \quad \frac{\pi}{3} \quad$$

| Question 14 Continued                                                                                                   | Question 15                                                                                   | Question 15 Continued                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (e) i)                                                                                                                  | (a) $3 \sin x + 4n^2 x - \sin x = 0$                                                          | (b) $iii) y = x (x-3)^2$                                                                                 |
| LBAC = T - (LABD + LBCA) (LSem AABC)                                                                                    | $\operatorname{Sin} \times (3 \tan^2 x - 1) = 0$                                              | 4 + (1,4) + (4,4)                                                                                        |
| $= \pi - \frac{\pi}{3}$ $= 2\pi$                                                                                        | $\sin x = 0 \qquad 4a_{\mu}^{2}x = \frac{1}{3}$                                               |                                                                                                          |
| LABD = LDAC = 1 LBAC (AD bisuts (BAC)                                                                                   | $da_{x} = \pm \frac{1}{\sqrt{3}}$                                                             | (c) $S_{o} = \frac{a}{l-r}$ $a = \frac{l}{p}$ $r = -\frac{l}{p}$                                         |
| $=\frac{1}{2}\times\frac{2\pi}{3}$                                                                                      | $\chi = 0, \pi, 2\pi$ $\chi = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$ | $-4p = \frac{1}{p}$ $\frac{1}{1+p}$                                                                      |
| $=\frac{\pi}{3}$                                                                                                        | (b) (i) $y = x (x-3)^{2}$                                                                     | $-4\rho = \frac{l}{\rho+l}$                                                                              |
| $(ii) Area \triangle BAD = \pm pq \sin \frac{\pi}{3}$                                                                   | x interespts at (0,0) (3,0)                                                                   | $-4p^2 - 4p = 1$                                                                                         |
| Area A DAC = $\frac{1}{2}qr$ Sin $\frac{TT}{3}$                                                                         | (ii) $y = x(x^2 - 6x + 9)$                                                                    | $4p^{2}+4p+1=0$                                                                                          |
| Area (2 BAO + 2 DAC) = Area 2 ABC                                                                                       | $= x^{2} - 6x^{2} + 9x$ $4^{2} = 3x^{2} - 12x + 9$                                            | $p = -\frac{1}{2}$                                                                                       |
| $\frac{1}{2}pq \times \frac{\sqrt{3}}{2} + \frac{1}{2}qr \times \frac{\sqrt{3}}{2} = \frac{1}{2}pr \sin \frac{2\pi}{3}$ | y'' = 6x - 12<br>For T.P. $2x^2 - 12x + 9 = 0$                                                | $(d)  V = \pi \int_{0}^{ln2} (e^{\chi} + 1)^{2} d\chi$                                                   |
| $\frac{\sqrt{3}}{4} \frac{p_{9}}{4} + \frac{\sqrt{3}}{4} \frac{q_{1}f}{4} = \frac{\sqrt{3}}{4} \frac{p_{1}}{4}$         | 3(x-1)(x-3) = 0<br>x = 1 $x = 3$                                                              | $= \pi \int_{0}^{l_{n2}} \left( \frac{2\kappa}{e^{2} + 2e^{2\kappa} + l} \right) d\mu$                   |
| $p_2 + q_r = p_r$                                                                                                       | $at x = 1$ $y = 1(1-3)^{2}$ $y'' = 6(1) - 12$                                                 | $= \pi \left[ \frac{1}{2} e^{2\pi} + 2e^{2\pi} + 2 \right]_{0}$                                          |
| $\frac{Pr}{pqr} + \frac{qr}{pqr} = \frac{pr}{pqr}$                                                                      | $\frac{-4}{2} = \frac{-6}{3} < 0 / 1$                                                         | = $T_{1}\left[\left(\frac{1}{2}e^{2h^{2}}+2e^{-4h^{2}}+h^{2}\right)-\frac{1}{2}e^{-4h^{2}}+h^{2}\right]$ |
| $\frac{1}{r} + \frac{1}{p} = \frac{1}{2}$                                                                               | =                                                                                             | $(\frac{1}{2}e^{2}+2e^{2}+0)$ ]<br>= $\pi \int (2+4+4e^{2}) - (\frac{1}{2}+2)$ ]                         |
|                                                                                                                         | Maximum T.P. at (1,4)                                                                         | $= T \left[ \frac{7}{2} + \ln 2 \right] u^{3}$                                                           |
|                                                                                                                         | Minimu T.P. at (3,0)                                                                          |                                                                                                          |

------

| Questionto                                     | Quest            |
|------------------------------------------------|------------------|
| (a) (i) a= 45in 2t                             | (b) ( <i>m</i> ) |
| $V = -2\cos 2t + C$                            | 100 D            |
| $t=0, v=2$ $2=-2\cos 0+C$                      |                  |
| 2 = -2 + C                                     |                  |
| C = 4                                          |                  |
| $= -2 \cos 2t$                                 |                  |
| (i) $I \neq v = 0$ $0 = 4 - 2\cos 2t$          |                  |
| $2\cos 2t = 4$                                 | (e) (i)          |
| cos 2t = 2                                     |                  |
| no solution particle is reser                  |                  |
| in) distance = f 4-2cos2t dt                   |                  |
| = [4t - sidt]4                                 | (ii)             |
| = (16 - Sin 8) - (0-0)                         |                  |
| = is metres                                    | For n            |
| (b) (1) A, = 400000 (1.05) - 25000             |                  |
| = \$395000                                     |                  |
| $(ii)  A_2 = A_1 (1.05) - 25000$               |                  |
| = 400000 (1.05) <sup>2</sup> -25000(1.05)-2500 |                  |
| $= 400000 (1.05)^{2} - 25000 (1+1.05)$         |                  |
| Ha = 400 000 (1.05) - 25000 (141.05 + . + 1.05 | -1 /             |
| = 400000 (1.05) - 25000 (1.05 -1)              | Check            |
| = 400 000 (105)" - 500000 (105)"+500000        |                  |
| = 500 000 - 100000 (1.05)~                     | ,                |

|                        | Question 16 continued                                                                        |
|------------------------|----------------------------------------------------------------------------------------------|
|                        | $(b)(\tilde{m})  0 = 500000 - 100000(1-05)^{n}$                                              |
|                        | 100 Das (1-05) = 500 000                                                                     |
|                        | (1-05) <sup>K</sup> = 5                                                                      |
|                        | $n = \frac{l_{x} 5}{l_{x} (l_{x})}$                                                          |
|                        | (1.05)                                                                                       |
|                        | = 32.986                                                                                     |
|                        | - Money tens out in 2032                                                                     |
|                        | (c) (i) $RB = \sqrt{x^2 + 2^2}$ $BJ = 6 - 32$                                                |
|                        | Time = Distance<br>Speed                                                                     |
| le is rever<br>at rest | $\mathcal{T} = \frac{RB}{8} + \frac{BJ}{16}$                                                 |
| lt                     | $= \frac{\sqrt{x^{2}+4}}{8} + \frac{6-x}{16}$                                                |
| ],"                    | (i) $\frac{dT}{dn} = \frac{1}{2} \frac{(n^2 + 4)^{-\frac{1}{2}} \cdot 2n}{9} = \frac{1}{16}$ |
| (0-0)                  | For minimum time $\frac{x}{8\sqrt{x^2+y}} = \frac{1}{16} = 0$                                |
| 000                    | $2x - \sqrt{x^2 + 4} = 0$                                                                    |
|                        | $2\pi = \sqrt{\pi^2 + 4}$                                                                    |
| 200/105-2000           | $4x^2 = x^2 + 4$                                                                             |
| 100(1+1.05)            | $3x^2 = 4$                                                                                   |
| (1+1.05 ++1.05         | Check $x + \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}}$                                          |
| 0.05                   | dT<br>Ix 0.0100.03                                                                           |
| 5)~                    | Minimum time when BJ = 6 - 2 km                                                              |