Examination Number

Set:

Section I

0 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 A computer costs $\$ 1364.00$ including 10% GST. What is the pre-GST cost of the computer?
(A) $\$ 136.40$
(B) $\$ 1227.60$
(C) $\$ 1240.00$
(D) $\$ 1500.40$

2 The quadratic equation $x^{2}+5 x-2=0$ has roots α and β. What is the value of $\alpha \beta-(\alpha+\beta)$?
(A) 3
(B) 7
(C) -3
(D) $\quad-7$

3 What is the equation of the locus of a point that is always 5 units from the point $(2,-3)$?
(A) $(x-2)^{2}+(y+3)^{2}=5$
(B) $(x+2)^{2}+(y-3)^{2}=25$
(C) $(x+2)^{2}+(y-3)^{2}=5$
(D) $(x-2)^{2}+(y+3)^{2}=25$
$4 \quad y=f(x)$ is shown on the number plane.

Which of the following statements is true?
(A) $y=f(x)$ is decreasing and concave up.
(B) $y=f(x)$ is decreasing and concave down.
(C) $y=f(x)$ is increasing and concave up.
(D) $y=f(x)$ is increasing and concave down.

5 What are the solutions to $2 \sin x=-\sqrt{3}$ for $0 \leq x \leq 2 \pi$?
(A) $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$
(B) $\frac{4 \pi}{3}$ and $\frac{5 \pi}{3}$
(C) $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$
(D) $\frac{4 \pi}{3}$ and $\frac{2 \pi}{3}$

6 If $a=\log _{5} 2$ and $b=\log _{5} 3$, what expression is equivalent to $\log _{5} 36$?
(A) $2(a+b)$
(B) $2 a b$
(C) $a^{2}+b^{2}$
(D) $(a b)^{2}$

7 The limiting sum of the geometric series $4+8 x+16 x^{2}+32 x^{3}+\ldots$ is 140 .
What is the value of x ?
(A) $\frac{18}{35}$
(B) $\frac{1}{2}$
(C) $-\frac{1}{70}$
(D) $\frac{17}{35}$

8 The parabola $y=-2 x^{2}+8 x$ and the line $y=2 x$ intersect at the origin and at point A.

Which expression could be used to calculate the area enclosed by the parabola and the line?
(A) $\int_{0}^{4}-2 x^{2}+6 x d x$
(B) $\int_{0}^{4}-2 x^{2}+8 x d x-\int_{0}^{3} 2 x d x$
(C) $\int_{0}^{3}-2 x^{2}+6 x d x$
(D) $\int_{0}^{3}-2 x^{2}+8 x d x-\int_{0}^{4} 2 x d x$

9 The numbers 1 to 20 are written on cards and placed in a bag. One card is drawn at random.

What is the probability that the number on the card is even or a multiple of 3 ?
(A) $\frac{1}{2}$
(B) $\frac{4}{5}$
(C) $\frac{13}{20}$
(D) $\frac{7}{20}$

10
The graph shows the equation $y=\sin (A x-B)$ over the domain $-2 \pi \leq x \leq 2 \pi$.

What are the values of A and B ?
(A) $A=2, B=\frac{\pi}{3}$
(B) $\quad A=\frac{1}{2}, B=\frac{\pi}{3}$
(C) $\quad A=2, B=\frac{\pi}{6}$
(D) $\quad A=\frac{1}{2}, B=\frac{\pi}{6}$

Section II

90 marks
Attempt Questions 11-16
Allow about $\mathbf{2}$ hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPERATE writing booklet.
(a) Factorise $x^{3}-8 y^{3}$.
(b) Solve $|2 x+1|=5$.
(c) Express $\frac{1}{3-\sqrt{2}}$ with a rational denominator.
(d) Differentiate $3 e^{x^{2}+1}$.
(e) Differentiate $\frac{x^{2}}{5 x+1}$.
(f) Find a primitive of $\cos 2 x$.
(g) Find the exact value of $\int_{0}^{1} \frac{x}{x^{2}+1} d x$.
(h) The angle of a sector in a circle of radius 6 cm is 40°, as shown in the diagram below.

NOT TO
SCALE

Find the exact length of arc $A B$.
(a) The points $A(3,1), B(8,3), C(10,6)$ and $D(5,4)$ are the vertices of a parallelogram.

(i) Find the length of interval $B C$.

1
(ii) Show that the equation of $B C$ is $3 x-2 y-18=0$. 2
(iii) Find the perpendicular distance from D to $B C$. 2
(iv) Hence, or otherwise, find the area of parallelogram $A B C D$.
(b) 50 tickets are sold in a raffle. The raffle has two prizes, with the winning ticket not being replaced after each draw. Don has bought 4 tickets in the raffle.
(i) Find the probability Don wins only one prize.
(ii) Find the probability Don does not win a prize.
(iii) Find the probability Don wins at least one prize.
(c) A parabola has equation $x^{2}-6 x+8 y+17=0$.
(i) Find the coordinates of the vertex of the parabola.
(ii) Sketch the parabola, clearly showing the vertex, focus and directrix. 2

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The first three terms of an arithmetic series are $-2,0.5$ and 3 .
(i) Find the $24^{\text {th }}$ term.
(ii) Find the sum of the first 24 terms.
(b) Consider the curve $y=x^{3}+3 x^{2}-9 x-2$.
(i) Find any stationary points and determine their nature.
(ii) Find the coordinates of any point(s) of inflexion.
(iii) Sketch the curve labelling the stationary points, point of inflexion
(c) The point $Q(e, 2)$ lies on the curve $y=\ln x^{2}$.

(i) Use Simpson's rule with 5 function values to approximate $\int_{1}^{5} \ln x^{2} d x$, correct to two decimal places.
(ii) Find the equation of the tangent to the curve $y=\ln x^{2}$ at point Q.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Find the values of k for which the equation $y=3 x^{2}+k x-4 k$ is positive definite.
(b) A particle moves in a straight line. It's velocity, $V \mathrm{~m} / \mathrm{s}$, is given by the function $V=-3 t^{2}+4 t+4$. Initially the particle is 3 metres to the right of the origin.
(i) Find when the particle is at rest.
(ii) Find an expression for the displacement of the particle after t seconds. 2
(iii) Find the displacement of the particle after 4 seconds.
(iv) Find the total distance travelled by the particle in the first 4 seconds.
c) Henry borrows $\$ 820000$ to purchase an apartment. The loan is to be repaid at a reducible interest rate of 4.8% p.a. The loan is repaid in monthly instalments of $\$ M$.
(i) Show that the amount owing after 2 months, A_{2}, is given by

$$
A_{2}=820000(1.004)^{2}-M(1+1.004) .
$$

(ii) If the length of the loan is 25 years, show that the value of M, the monthly repayment, is $\$ 4698.58$.
(iii) Instead, Henry makes monthly repayments of \$5100. After how many months will he have fully repaid the loan?

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) A parabola has equation $y^{2}=x-1$

The area bounded by the curve $y^{2}=x-1$, the y-axis and the lines $y=0$ and $y=3$ is rotated about the y-axis to form a solid.

Find the volume of the solid.
(b) The value, $\$ V$, of a car after t years is given by the equation $V=A e^{-k t}$, where A and k are positive constants which depend on the make and model of the car.
(i) Kate buys a new hatchback for $\$ 15000$. After 1 year her car is valued at $\$ 13000$

Show that, for Kate's car, $k=0.143$ correct to 3 significant figures
(ii) At the same time Brian buys a new sports car. Its value is given by the equation $V=20000 e^{-0.2 t}$.

Find how long it is before Brian's and Kate's cars have the same value.
(iii) At what rate is the value of Brian's car decreasing after 3 years?

Question 15 continues on the following page

Question 15 (continued)

(c) $\quad P Q R S$ is a rectangle and lines $P R$ and $S M$ intersect at T. Point M divides $R Q$ in the ratio $1: 2$

NOT TO SCALE

Copy or trace the diagram into your writing booklet.
(i) Show that $\triangle M T R \| \triangle S T P$
(ii) Given $P R=30 \mathrm{~cm}$, find the length of $R T$.

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\int_{-\log _{e} 3}^{0} \frac{4}{e^{2 x}} d x$.
(b) A 30 cm length of wire is used to make two frames. The wire is to be cut into two parts. One part is bent into a square of side $x \mathrm{~cm}$ and the remaining length is bent into a circle of radius $r \mathrm{~cm}$.

(i) The circumference of a circle, C, is found using the formula $C=2 \pi r$. Show that the expression for r in terms of x is $r=\frac{15-2 x}{\pi}$.
(ii) Show that the combined area, A, of the two shapes can be written as $A=\frac{(4+\pi) x^{2}-60 x+225}{\pi}$.
(iii) Find the value of x for which the combined area of the two frames will be minimised. Give your answer correct to 2 significant figures.

Question 16 (continued)

(c) The diagram below shows the cross-section of a rudder

rudder

detail of construction
$B C$ is an arc of a circle with centre A and radius $80 \mathrm{~cm} . \angle C A B=\frac{2 \pi}{3}$.
$E C$ is an arc of a circle with centre D and radius $r \mathrm{~cm} . \angle C D E$ is a right angle.
(i) Show the area of sector $A B C$ is $\frac{6400 \pi}{3} \mathrm{~cm}^{2}$. 1
(ii) Show that $r=40 \sqrt{3}$. 2
(iii) Hence, or otherwise, calculate the area of the cross-section of the rudder, 3 correct to two decimal places.

BLANK PAGE
BLANK PAGE

$$
\text { Year } 12 \text { Triat-2 unit-2016 }
$$

Muntiple Choice
(1) C

C
(2) A
(毛 D
(3) D
(8) C
(4) C
(5) B
(d) C
(10) A
(1) $x \times 1.1=1364$

$$
x=1240
$$

$$
\subseteq
$$

(2)

$$
\begin{aligned}
x^{2}+5 x-2 \\
\alpha \beta=-\frac{7}{1} \quad \alpha+\beta=\frac{-5}{1} \\
=-2 \quad=-\frac{5}{2} \\
\alpha \beta-(x+\beta)=-2-(-5)
\end{aligned}
$$

A
(3) centre $(2,-3)$ radius 5

$$
\begin{aligned}
& (x-2)^{2}+(y+3)^{2}=5^{2} \\
& (x-2)^{2}+(y+3)^{2}=25
\end{aligned}
$$

D
(4) concave up, positive gradient
(5)

$$
\begin{aligned}
2 \sin x & =-\sqrt{3} \\
\sin x & =-\frac{\sqrt{3}}{2} \\
x & =\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right) \\
& =\frac{\pi}{3} \\
x & =\pi+\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\
& =\frac{4 \pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

B
(6) $a=\log _{5} 2$
$b=\log _{5} 3$

$$
\begin{aligned}
\log _{5} 36 & =\log _{5} 4+\log _{5} 9 \\
& =\log _{5} 2^{2}+\log _{5} 3^{2} \\
& =2 \log _{5} 2+2 \log _{5} 3 \\
& =2\left(\log _{5} 2+\log _{5} 3\right) \\
& =2(9+b)
\end{aligned}
$$

A
(1)

$$
\begin{aligned}
S_{\infty}=\frac{a}{1-r} & r=\frac{8 x}{4} \\
140 & =\frac{4}{1-2 x} \\
140-280 x & =4 \\
-280 x & =-136 \\
x & =\frac{17}{35}
\end{aligned}
$$

D
(8) $\begin{aligned} A(3,6) & A=\int_{0}^{3}-2 x^{2}+8 x-2 x \\ C & =0\end{aligned} \int_{0}^{-2 x^{2}+6 x}$
c
(9)

$$
\begin{aligned}
& P(\text { ever ork3 })=P_{(\text {cuver }}+P_{(x 3)}-P(\text { with }) \\
&=\frac{10}{20}+\frac{6}{20}-\frac{3}{20} \\
&=\frac{13}{20} \\
& \underline{C}
\end{aligned}
$$

(i0)

$$
\begin{array}{ll}
y=\sin \left[2\left(x-\frac{\pi}{6}\right)\right. \\
=\sin \left(2 x-\frac{\pi}{3}\right) & \therefore A=2 \\
A & B=\frac{\pi}{3}
\end{array}
$$

a) $\begin{aligned} x^{3}-8 y^{3} & =x^{3}-(2 y)^{3} \\ & =(x-2 y)\left(x^{2}\right.\end{aligned}$

$$
=(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)
$$

b)

$$
\begin{array}{rlrl}
|2 x+1| & =5 \\
2 x+1 & =5 \\
2 x & =4 \\
x & =2 & \text { oe } \begin{aligned}
2 x+1 & =-5 \\
2 x & =-6 \\
x & =-3
\end{aligned}
\end{array}
$$

c)

$$
\begin{aligned}
\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} & =\frac{3+\sqrt{2}}{\left.3^{2}-\sqrt{2}\right)^{2}} \\
& =\frac{3+\sqrt{2}}{9-2} \\
& =\frac{3+\sqrt{2}}{7}
\end{aligned}
$$

$$
\text { 4) } \begin{aligned}
\frac{d}{d x} 3 e^{x^{2}+1} & =3 e^{x^{2}+1} \times 2 x \\
& =6 x e^{x^{x^{2}}}
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
\frac{d}{d x} \frac{x^{2}}{5 x+1} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \quad \begin{array}{l}
u=x^{2} \\
u^{\prime}=2 x
\end{array} \quad v^{\prime}=5 x+1 \\
& =\frac{2 x(5 x+1)-5 x^{2}}{(5 x+1)^{2}} \\
& =\frac{10 x^{2}+2 x-5 x^{2}}{(5 x+1)^{2}} \\
& =\frac{5 x^{2}+2 x}{(5 x+1)^{2}} \\
& =\frac{x(5 x+2)}{(5 x+1)^{2}}
\end{aligned}
$$

1) $\int \cos 2 x=\frac{\sin 2 x}{2}+c$

$$
\text { و } \begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}+1} d x & =\left[\frac{1}{2} \ln \left|x^{2}+1\right|\right] \\
& =\frac{1}{2}\left[\ln \left|2^{2}+1-\ln \right| 0^{2}+1\right] \\
& =\frac{1}{2}[\ln 2-\ln 1] \\
& =\frac{1}{2} \ln 2 \\
& =\ln \sqrt{2}
\end{aligned}
$$

11) $40^{\circ}=40 \times \frac{\pi}{180}$ radias
$=\frac{2 \pi}{9}$
Are lenghl $=$ r θ
$=6 \times \frac{2 \pi}{9}$
$=\frac{4 \pi}{3} \mathrm{~cm}$

$$
\begin{aligned}
&\text { (a) }) B(8,3), c(10,6) \\
& B C=\sqrt{(10-3)^{2}+(6-3)^{2}} \\
&=\sqrt{4+9} \\
&=\sqrt{13} \\
& \text { i) } M_{B C}=\frac{6-3}{10-8} \\
&=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore y-6 & =\frac{3}{2}(x-10) \\
2 y-12 & =3(x-10) \\
2 y-12 & =3 x-30 \\
0 & =3 x-2 y-18
\end{aligned}
$$

iii) $d=\frac{|a x+b y+c|}{\sqrt{a^{2}+2^{2}}} \quad 0=3 x-2 y-\frac{b}{c}, \quad D(5,4)$

$$
=\frac{|3 \times 5+-2 \times 4+-18|}{\sqrt{3^{2}+(-2)^{2}}}
$$

$$
=\frac{|15-8-18|}{\sqrt{13}}
$$

$$
=\frac{|-11|}{\sqrt{13}}
$$

$$
=\frac{11}{\sqrt{13}}
$$

iv)

$$
\begin{aligned}
A & =b n \\
& =\sqrt{13} \times \frac{11}{\sqrt{3}} \\
& =11 u^{2}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
P_{(\omega-)}+P_{(L \omega)} & =\frac{4}{50} \times \frac{46}{49}+\frac{46}{50} \times \frac{4}{49} \\
& =\frac{184}{1225}
\end{aligned}
$$

ii)

$$
\begin{aligned}
P_{(L)} & =\frac{46}{50} \times \frac{45}{49} \\
& =\frac{207}{245}
\end{aligned}
$$

iii)

$$
\begin{aligned}
P(\text { at kastore }) & =1-\frac{207}{2045} \\
& =\frac{38}{245}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& x^{2}-6 x+8 y+17=0 \\
& \text { i) } x^{2}-6 x=-8 y-17 \\
& x^{2}-6 x+9=-8 y-17+9 \\
& (x-3)^{2}=-8 y-8 \\
& (x-3)^{2}=-8(y+1) \\
& \therefore \text { voter }(3,-1)
\end{aligned}
$$

ii) ur tax $(3,-1)$

$$
\begin{aligned}
& a=2 \\
& \text { focus }(3,-3)
\end{aligned}
$$

directrix $y=1$
sad face parabola
a)

$$
\begin{aligned}
&-2,0.5,3 \\
& 1 \text { a }=-2, \quad d=3-0.5 \\
&=2.5 \\
& T_{24}=-2+(24-1) \times 2.5 \\
&=55.5
\end{aligned}
$$

ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{24}{2}(-2+55.5) \\
& =642
\end{aligned}
$$

b) y

$$
\begin{aligned}
& y=x^{3}+3 x^{2}-9 x-2 \\
& y^{\prime}=3 x^{2}+6 x-9 \\
& y^{\prime \prime}=6 x+6
\end{aligned}
$$

stat, points when $y^{\prime}=0$

$$
\begin{aligned}
0 & =3 x^{2}+6 x-4 \\
0 & =x^{2}+2 x-3 \\
0 & =(x+3)(x-1) \\
\therefore x & =-3, \quad x=1
\end{aligned}
$$

at $x=-3$

$$
\begin{aligned}
& y^{\prime \prime}=6 x-3+6 \\
&=-12 \\
&<0
\end{aligned}
$$

$\therefore(-3,25)$ is max tip.
$=12$
>0 $\therefore(1,-7)$ is min tip.
ii) pto of inflexion when $y^{\prime \prime}=0$

$$
\begin{aligned}
0 & =6 x+6 \\
-6 & =6 x \\
x & =-1
\end{aligned}
$$

when $x=-1, y=9$

x	-2	-1	0
$y^{\prime \prime}$	-6	0	6

\therefore charge in concavity
\therefore Point of inflexion at $(-1,9)$
iii)

d) i)

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l|c|c|c|c|}
x & 1 & 2 & 3 & 4 \\
y & 5 \\
\ln 1 & \ln 4 & \ln 9 & \ln 16 & \ln 25
\end{array} \\
5 \\
\int_{1}^{5} \ln x^{2}+6=\frac{3-1}{6}(\ln 1+4 \times \ln 4+\ln 9)+\frac{5-3}{6}(\ln 9+4 \times \ln 16+\ln 25) \\
\\
\vdots 8.08295 \\
\\
\vdots 8.08
\end{array}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
y & =\ln x^{2} \quad(e, 2) \\
y^{\prime} & =\frac{1}{x^{2}} \times 2 x \\
& =\frac{2}{x}
\end{aligned}
$$

at $x=e, y^{\prime}=\frac{2}{e}$

$$
\begin{aligned}
& \therefore M=\frac{2}{e} \quad A(e, 2) \\
& y-2=\frac{2}{e}(x-e) \\
& e y-2 e=2(x-e) \\
& e y-2 e=2 x-2 e \\
& 0=2 x-e y
\end{aligned}
$$

a)

$$
\begin{aligned}
& y=3 x^{2}+k x-4 k \\
& \Delta<0 \\
& k^{2}-4 \times 3 x-4 k<0 \\
& k^{2}+48 k<0 \\
& k(k+48)<0
\end{aligned}
$$

critical points inequality

$$
\begin{aligned}
& k(k+48)=0 \\
& k=0 \quad k=-48, \quad \underbrace{x}_{-48}, \quad \\
& \therefore-48<k<0
\end{aligned}
$$

b) $) V=-3 t^{2}+4 t+4$
at rest when $V=0$

$$
\begin{aligned}
& 0=-3 z^{2}+4 t+4 \\
& 0=-3 t^{2}+6 t-2 t+4 \\
& 0=-3 z(z-2)-2(z-2) \\
& 0=(t-2)(-3 z-2) \\
& \therefore t-2=0 \quad-3 t=2 \\
& \quad z=2 \quad z=-\frac{2}{3} \\
& \begin{array}{l}
p-12 \\
s 4 \\
56_{1}-2
\end{array}
\end{aligned}
$$

\therefore stationary when $t=2$.
ii) displacement= $\int v$.

$$
\begin{aligned}
\int-3 t^{2}+4 t+4 d t & =-\frac{3 t^{3}}{3}+\frac{4 t^{2}}{2}+4 t+c \\
& =-t^{3}+2 t^{2}+4 t+c
\end{aligned}
$$

when $t=0, x-3$

$$
\begin{gathered}
\therefore 3=-0^{3}+20^{2}+4 r 0+c \\
c=3 \\
\therefore x=-t^{3}+2 t^{2}+4 t+3
\end{gathered}
$$

iii) $x=-4^{3}+2 \times 4^{2}+4 \times 4+3$

$$
=-13
$$

iv) $V=0$ at $z=2$.

$$
\therefore \text { at } t=2 \quad x=-2^{3}+2 \times 2^{2}+4 \times 2+3
$$

$$
=11
$$

$$
\begin{aligned}
\therefore \text { total distance } & =(11-3)+(11--13) \\
& =8+24 \\
& =32
\end{aligned}
$$

$$
\text { a) } \begin{aligned}
A_{1} & =820000 \times(1+0.004)^{\prime}-M \\
& =820000 \times 1.004-M \\
A_{2} & =A_{1} \times 1.004-M \\
& =(820000 \times 1.004-M) \times 1.004-M \\
& =820000 \times 1.0044^{2}-M \times 1.004-M \\
& =820000 \times 1.004^{2}-M(1+1.004) \\
\text { ii) } A_{1} & =820000 \times 1.004^{n}-M\left(1+1.004+\ldots+1.004^{1-1}\right)
\end{aligned}
$$

loan repaid after 25 yews, $\therefore n=300$

$$
\begin{aligned}
\therefore A_{300} & =0 \\
0 & =820000 \times 1.004^{300}-M\left(1+1.004+\ldots+1.004^{299}\right) \\
0 & =820000 \times 1004^{300}-M\left(\frac{1\left(1-1.004^{300}\right)}{1-1.004}\right) \\
0 & =820000 \times 1.004^{300}-M \times 578.0448 \ldots . \\
M & =\frac{820000 \times 1.004^{300}}{578.0448} \\
& =4698.5753 . \\
& =\$ 4698.58
\end{aligned}
$$

iii) $A_{n}=820000 \times 1.004^{n}-M\left(1+1.004+\ldots+1.004^{n-1}\right)$
let $M=5100, A_{n}=0$

$$
\begin{aligned}
0 & =820000 \times 1.004^{n}-5100\left(1+1.004+\ldots+1.004^{1-1}\right) \\
0 & =820000 \times 1.004^{n}-5100\left(\frac{1\left(1004^{n}-1\right)}{1.004-1}\right) \\
0 & =820000 \times 1.004^{n}-1275000\left(1.004^{n}-1\right) \\
0 & =820000 \times 1.004^{n}-1275000 \times 1.004^{n}+1275000 \\
-1275000 & =1.004^{n}(820000-1275000) \\
1.004^{n} & =\frac{-1275000}{-455000} \\
\log _{e} 1.004^{n} & =\log _{e}\left(\frac{255}{91}\right) \\
1 \times \log _{e} 1.004 & =\log _{e}\left(\frac{255}{91}\right) \\
n & =\log _{e}\left(\frac{255}{91}\right) \div \log _{e}(1.004) \\
n & =258-1158
\end{aligned}
$$

\therefore Repaid after 259 months.

Question 15
(13)

$$
\text { a) } \begin{aligned}
\int_{0}^{3}[f(y)]^{2} d y \quad y^{2}=x-1 \\
x=y^{2}+1 \\
x^{2}=\left(y^{2}+1\right)^{2} \\
x^{2}=y^{4}+2 y^{2}+1
\end{aligned} \quad \begin{aligned}
& \therefore V=\pi x \int_{0}^{3} y^{4}+2 y^{2}+1 d y \\
&= \pi\left[\frac{y^{5}}{5}+\frac{2 y^{3}}{3}+y\right]_{0}^{3} \\
&=\left.\pi \times\left[\frac{3^{5}}{5}+\frac{2 \times 3^{3}}{3}+3\right)-\left(\frac{0}{5}+\frac{0}{3}+0\right)\right] \\
&= \pi \times \frac{348}{5} \\
&=\frac{348 \pi}{5} u^{3}
\end{aligned}
$$

h.) $V=A e^{-k t}$

$$
\begin{aligned}
& \text { at } t=0, V=15000 \quad \therefore 15000=A e^{0} \\
& A=15000 \\
& \text { at } t=1, V=13000 \quad 13000=15000 e^{-k} \\
& \therefore \frac{13000}{15000}=e^{-k} \\
& \log _{g}\left(\frac{11}{15}\right)=-k \\
&-0.431 .=-k \\
& k=0.143
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
V=20000 e^{-0.2 t} \quad V & =15000 e^{-0.437 t} \\
20000 e^{-0.2 t} & =15000 e^{-0.143 t} \\
4 e^{-0.2 t} & =3 e^{-0.143 t} \\
\frac{4 e^{-0.2 t}}{3 e^{-0.143 t}} & =1 \\
\frac{4 e^{-0.2 t-(-0.43 t)}}{3} & =1 \\
\frac{4 e^{-0.057 t}}{3} & =1 \\
e^{-0.057 t} & =\frac{3}{4} \\
\log _{e}\left(\frac{3}{4}\right) & =-0.057 t \\
t & =\frac{\log _{e}\left(\frac{3}{4}\right)}{-0.057} \\
t & =5.047 \ldots
\end{aligned}
$$

\therefore after 5 years

$$
\begin{aligned}
& \text { 6) } V=20000 e^{-0.2 t} \\
& \begin{array}{l}
\frac{d V}{}=20000 e^{-0.2 t} \\
d t=-0.2
\end{array}
\end{aligned}
$$

d)

i) In $\triangle M T R$ \& \triangle STP

- $\angle M T R=\angle S T P$ (urtically opposite $L s$ are equal)
$-\angle T R M=\angle T P S$ (alternate L_{s} ore equal, $S P \| R Q$ opposite sides of a rectangle are equal)
$\therefore \triangle M T R \| I S T T P$ (equiangular)
ii) let $T R=x, \therefore T P=30-x$

$$
\begin{aligned}
\therefore \frac{x}{30-x} & =\frac{1}{3} \quad \frac{R T}{P T}=\frac{R M}{P S} \\
3 x & =30-x \\
4 x & =30 \\
x & =7.5 \\
\therefore R T & =7.5 \mathrm{~cm}
\end{aligned}
$$

$$
\text { a) } \begin{aligned}
\int_{-\log _{3} 3}^{0} \frac{4}{e^{2 x}} d x & =\int_{-\log _{e} 3}^{0} 4 e^{-2 x} d x \\
& =4\left[\frac{e^{-2 x}}{-2}\right]_{-\log _{e} 3}^{0} \\
& =4 \times\left[\frac{e^{-2 \times 0}}{-2}-\frac{e^{-2 x-\log _{3} 3}}{-2}\right] \\
& =4 \times\left[\frac{1}{-2}+\frac{e^{2 \log _{e} 3}}{2}\right] \\
& =4 \times\left[-\frac{1}{2}+\frac{9}{2}\right] \\
& =4 \times(4) \\
& =16
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& C=2 \pi r \\
& C=30-4 x \\
& \therefore 30-4 x=2 \pi r \\
& r=\frac{30-4 x}{2 \pi} \\
& r=\frac{15-2 x}{\pi}
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =x^{2}+\pi r^{2} \\
& =x^{2}+\pi \times\left(\frac{15-2 x}{\pi}\right)^{2} \\
& =x^{2}+\pi \times\left(\frac{15^{2}-330 x+4 x^{2}}{\pi^{2}}\right) \\
& =x^{2}+\frac{225-60 x+4 x^{2}}{\pi} \\
& =\frac{\pi x^{2}+225-60 x+4 x^{2}}{\pi} \\
& =\frac{(4+\pi) x^{2}-60 x+225}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iii) } A=\frac{(4+\pi)}{\pi} x^{2}-\frac{60}{\pi} x+225 \\
& \frac{d A}{d x}=\frac{2(4+\pi)}{\pi} x-\frac{60}{\pi}
\end{aligned}
$$

$$
\frac{d^{2}}{d x^{2}}=\frac{2(4+\pi)}{\pi}, \therefore 0>0, \therefore \text { always min tip. }
$$

let $\frac{d t}{d x}=0 \quad 0=\frac{2(4+\pi)}{\pi} x-\frac{60}{\pi}$

$$
\begin{aligned}
\frac{60}{\pi} & =\frac{2(4+\pi)}{\pi} x \\
60 & =2(4+\pi) x \\
x & =\frac{60}{2(4+\pi)} \\
x & =\frac{30}{4+\pi} \quad \frac{d^{2} A}{d x^{2}}>0
\end{aligned}
$$

$\therefore x=4.2$ will give minimum area

$$
\text { c). } \begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 80^{2} \times \frac{2 \pi}{3} \\
& =\frac{6400 \pi}{3}
\end{aligned}
$$

iii) Area of $\triangle A D C$

$$
\begin{aligned}
A D & =\sqrt{80^{2}-(40 \sqrt{3})^{2}} \\
& =\sqrt{1600}
\end{aligned}
$$

$$
=40
$$

$$
\therefore \text { Area } \triangle A O C=\frac{1}{2} \times 40 \times 40 \sqrt{3}
$$

$$
=800 \sqrt{3} .
$$

$$
\begin{aligned}
\angle A C D & =180-90-60 \\
& =30^{\circ} \\
\therefore \text { Area } S_{A x} & =\frac{1}{2} \times 80 \times 400 \sqrt{3} \times \sin ^{\prime} 30 \\
& =1600 \sqrt{3} \times \frac{1}{2} \\
& =800 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Total Area } & =\text { Area Sector ABC }+ \text { Area } \triangle A D C-\text { Area Quadrat DEC } \\
& =\frac{6400 \pi}{3}+800 \sqrt{3}-\frac{1}{4} \times \pi \times(40 \sqrt{3})^{2} \\
& =\frac{64000 \pi}{3}+800 \sqrt{3}-1200 \pi \\
& =4317.7937 \ldots \\
& =4317.79 \mathrm{~cm}^{2}
\end{aligned}
$$

