

Student Number

St. Catherine's School Waverley

August 2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time - 5 minutes
- Working Time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16
- Task weighting -45%

Total Marks - 100

Section I

 Pages 3-510 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided.

Section II Pages 6-13

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section
- Answer each question in the booklet provided.

BLANK PAGE

Section I

Total marks - 10
Attempt Questions 1-10
All questions are of equal value.

Answer either $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ or \boldsymbol{D} on the multiple choice answer sheet provided.
Q1. Factorise $x^{2} y-x y^{2}-x+y$.
(A) $\quad(x y-1)(x+y)$
(B) $(x y-1)(x-y)$
(C) $(x y+1)(x+y)$
(D) $(x y+1)(x-y)$

Q2. Find $\int(2 x+1)^{5} d x$
(A) $\frac{(2 x+1)^{6}}{3}+C$
(B) $\frac{(2 x+1)^{6}}{6}+C$
(C) $\frac{(2 x+1)^{6}}{12}+C$
(D) $\frac{5(2 x+1)^{4}}{4}+C$

Q3. Find the limiting sum of the geometric series

$$
1+\frac{\sqrt{2}}{\sqrt{2}+1}+\frac{2}{(\sqrt{2}+1)^{2}}+\frac{2 \sqrt{2}}{(\sqrt{2}+1)^{3}}+\ldots \ldots
$$

(A) $\sqrt{2}+1$
(B) $\sqrt{2}-1$
(C) $-\sqrt{2}-1$
(D) $\frac{1}{\sqrt{2}+1}$

Q4. For what values of k does the quadratic equation $k x^{2}+k x+1=0$ have no real roots?
(A) $k<0$ or $k<4$
(B) $0<k<4$
(C) $k>4$
(D) $k<0$ or $k>4$

Q5. Solve the equation $\sqrt{3} \tan x+3=0$ for $0 \leq x \leq 2 \pi$
(A) $x=\frac{5 \pi}{6}, \frac{11 \pi}{3}$
(B) $\quad x=\frac{\pi}{3}, \frac{4 \pi}{3}$
(C) $x=\frac{2 \pi}{3}, \frac{5 \pi}{3}$
(D) $\quad x=\frac{\pi}{6}, \frac{7 \pi}{6}$

Q6. The table below shows the values of a function $f(x)$ for five values of x.

x	2	2.5	3	3.5	4
$f(x)$	4	1	-2	3	8

What value is an estimate for $\int_{2}^{4} f(x) d x$ using Simpson's Rule with five function values?
(A) 12
(B) 6
(C) 8
(D) 4

Q7. If α and β are the roots of $2 x^{2}+3 x-6=0$, what is the value of $\frac{\alpha \beta}{\alpha+\beta}$?
(A) 2
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) -2

Q8.

The diagram above shows XY parallel to $\mathrm{UW}, \angle X Y U=54^{\circ}, \angle U Z V=107^{\circ}$ and $\angle Z V W=\theta^{\circ}$. The value of θ is:
(A) 161
(B) 19
(C) 54
(D) 107

Q9. What are the solutions to the equation $2^{6 x}-9\left(2^{3 x}\right)+8=0$?
(A) $x=1$ or $x=8$
(B) $x=0$ or $x=\frac{8}{3}$
(C) $\quad x=0$ or $x=1$
(D) $\quad x=1$ or $x=\frac{1}{6}$

Q10. The diagram shows the region bounded by the curve $y=\sqrt{3 \cos 2 x}$ and the x-axis for $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$.

The region is rotated about the x-axis to form a solid.

Which of the following gives the volume of the solid?
(A) $\quad V=3 \pi \int_{0}^{\frac{\pi}{4}} \cos 2 x d x$
(B) $\quad V=9 \pi \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \cos 2 x d x$
(C) $\quad V=6 \pi \int_{0}^{\frac{\pi}{4}} \cos 4 x d x$
(D) $\quad V=6 \pi \int_{0}^{\frac{\pi}{4}} \cos 2 x d x$

End of Section I

Section II

Total marks - 90
Attempt Questions 11-16
All questions are of equal value
Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use the Question 11 Writing Booklet Marks
(a) Simplify $\frac{2 x}{3}-\frac{3 x+8}{12}$
(c) If $h(x)=\left\{\begin{array}{ll}a x+1 & \text { if } x \leq 1 \\ x^{2}-5 & \text { if } x>1\end{array}\right.$ and $h(-2)=h(4)$, find a.
(d) If $(3+\sqrt{5})^{2}=a+\sqrt{b}$, find a and b.
(e) In the diagram below $B C=1$ unit, $\angle B C A=60^{\circ}$ and $\angle C D A=30^{\circ}$.

figure not
to SCALE
(i) Find the exact length of AB
(ii) Hence, or otherwise, find the length of $C D$.
(f) The first term of a geometric series is 4 and the eighth term is 8748 . Find the twelfth term.
(g) Find the equation of the normal to the curve $y=\tan x$ at the point $\left(\frac{\pi}{3}, \sqrt{3}\right)$.

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.
(a) Jenny is setting up part of an orienteering course.

She follows the course from F to G to H as shown in the diagram below.

(i) Show that the distance FH to the nearest metre is 1053 metres.
(ii) Hence, or otherwise, calculate the size of $\angle G F H$ to the nearest degree.
(iii) If the bearing of G from F is 063° calculate the bearing of H from F to the nearest degree.
(b) $A B C D$ is a trapezium, and $A B$ is parallel to $D C$.

The diagonals $A C$ and $B D$ intersect at $X . A X=4 \mathrm{~cm}, C X=10 \mathrm{~cm}, B D=12 \mathrm{~cm}$.

FIGURE NOT
TO SCALE

Copy the diagram neatly into your answer booklet.
(i) Prove $\triangle A X B$ is similar to $\triangle C X D$.
(ii) Find the length of $B X$.

Question 12 continued

(c) $\quad R S$ is a straight line where R has co-ordinates $(0,3)$ and S is the focus of the parabola $y^{2}=4 x-12$.

(i) Show that the co-ordinates of the focus S are $(4,0)$. $/ 2$
(ii) Show that the equation of the line $R S$ is $3 x+4 y-12=0$
(iii) Find the perpendicular distance from a point $P\left(0, \frac{1}{2}\right)$ to the line $R S$.
(iv) Hence, write the equation of the circle that has its centre at P and has RS as a tangent

End of Question 12

Question 13 (15 marks) Use the Question 13 Writing Booklet.
(a) For the equation $y=\frac{1}{4} x^{2}+2 x-1$
(i) Show that $(x+4)^{2}=4(y+5)$
(ii) Hence, or otherwise, find:
(α) the coordinates of the vertex
(β) the equation of the directrix
(b) Show that $\operatorname{cosec} \theta-\sin \theta=\cot _{\theta} \cos _{\theta}$
(c) Find the volume obtained by rotating about the x axis the area beneath the curve $y=e^{x}$ from $x=0$ to $x=2$. Give your answer as an exact value.
(d) If $1, a, b$ form an arithmetic sequence and $1, b, a$ form a geometric sequence and $a \neq b$:
(i) Show that $2 a-b=1$ and $a=b^{2}$
(ii) Hence, or otherwise, find a and b.
(e) (i) On the same set of axes, sketch the graphs of the functions $y=2 \sin x$ and $y+1=0$ where $-\pi \leq x \leq \pi$.
(ii) Hence, or otherwise, find the number of solutions for $\sin x=-\frac{1}{2}$ in the same domain.

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.
(a) Find:
(i) $\frac{d y}{d x}$ if $y=x^{2} \log _{e} x$
(ii) $\int \frac{\sin x}{1+\cos x} d x$
(b) (i) Differentiate $e^{\tan x}$
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} e^{\tan x} \sec ^{2} x d x$.
(c) Find the value of m for which $x^{2}+(m-1) x-m=0$ has equal roots
(d) A rectangular sheet of cardboard measures 12 cm by 9 cm . From two corners, squares of side $x \mathrm{~cm}$ are removed as shown. The remainder is folded along the dotted lines to form a tray as shown.

FIGURE NOT TO SCALE
(i) Show that the volume, V cm , of the tray is given by $V=2 x^{3}-33 x^{2}+108 x$.
(ii) Find the maximum volume of the tray

End of Question 14

Question 15 (15 marks) Use the Question 15 Writing Booklet.
(a) The diagram below shows the graphs of the functions $y=\sqrt{3} \sin x$ and $y=\cos x$ between $x=0$ and $x=\pi$. The two graphs intersect at $x=\frac{\pi}{6}$.

Show that the area of the shaded region between $x=0$ and $x=\frac{\pi}{2}$ is $(\sqrt{3}-1)$ square units.
(b) At the beginning of 2008 the population N of birds on an island was 10000 .

At the beginning of 2012 this population was 160000 .
Assume that the population N was increasing exponentially and satisfies the equation $N=A e^{k t}$, where A and k are constants and the time t is measured in years from the beginning of 2007.
(i) Find the constants A and k.
(ii) Find the time t, to the nearest year, required for the population N to reach 1.28 million.

Question 15 continued

(c) The velocity v in ms^{-1} of a particle moving in a straight line is given by: $v=36-4 e^{2 t}$ where t is the time in seconds and d is the distance travelled in metres.
(i) Find the initial velocity of the particle. /1
(ii) Show that the exact time at which the particle first comes to rest is $t=\log _{e} 3$. $/ 2$
(iii) Find the distance travelled by the particle during this time. $/ 2$
(iv) Find an expression for the acceleration a in terms of v. $/ 2$

End of Question 15

Question 16 (15 marks) Use the Question 16 Writing Booklet.
(a) Water is flowing into a container which can be filled to a depth (D) of 900 millimetres. When the water began to flow, the container already held water to a depth of 150 millimetres. The rate, at which the depth of water in the container is increasing, in millimetres per minute, is given by $R=6 t+5,(t \geq 0)$. Find:
(i) the depth of water in the container after eight minutes
(ii) the time it takes to fill the container.
(b) The diagram shows a sector with angle θ at the centre and radius $r \mathrm{~cm}$, where $6<r<12$. The arc length is $6 \pi \mathrm{~cm}$.

FIGURE NOT
TO SCALE
(i) Show why θ is an obtuse angle
(ii) Calculate the area of the shaded minor segment when $\theta=\frac{3 \pi}{4}$ radians.
(Hint: first find the value of r)
(c) Given the function $y=\frac{10}{3+2 \sin x}$ in the domain $0 \leq x \leq 2 \pi$:
(i) Show that $\frac{d y}{d x}=\frac{-20 \cos x}{(3+2 \sin x)^{2}}$
(ii) Show that there are stationary points at $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$ and describe their nature.
(iii) Graph the function in the given domain showing all essential features

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, x>0 \\
& \int e^{a x} d x \\
& =\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \\
& =\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \\
& =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{2} x, \quad x>0
\end{aligned}
$$

Student Number

YEAR 12 TRIAL HSC MATHEMATICS 2014 MULTIPLE CHOICE ANSWER SHEET

Section I - Mark your answer in the appropriate box with an X.

	A	B	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Begin Section II using your writing booklets

Qn	MC Solutions	Marks	Comments: Criteria
1.	$\begin{aligned} & x^{2} y-x y^{2}-x+y \\ & =x y(x-y)-(x-y) \\ & =(x-y)(x y-1) \end{aligned}$		
2.	$\begin{aligned} & \int(2 x+1)^{5} d x \\ = & \frac{(2 x+1)^{6}}{6 x 2}+c \\ = & \frac{(2 x+1)^{6}}{12}+c \end{aligned}$		
3.			

On	Solutions	Marks	Comments: Criteria
5.	$\begin{aligned} \sqrt{3} \tan x+3 & =0 \\ \sqrt{3} \tan x & =-3 \\ \tan x & =\frac{-3}{\sqrt{3}} \\ & =-\frac{3 \sqrt{3}}{3} \\ & =-\sqrt{3} \end{aligned}$ $\text { acete angle }=\frac{\pi}{3}$ $\begin{aligned} \therefore \theta & =\pi-\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\ & =\frac{2 \pi}{3}, \frac{5 \pi}{3} \end{aligned}$		
6.	$\begin{aligned} A & =\frac{0.5}{3}\{4+4(1+3)+2(-2)+8\} \\ & =\frac{1}{6}\{4+16-4+8\} \\ & =\frac{1}{6}\{24\} \\ & =4 \end{aligned}$		
7.	$\begin{aligned} & 2 x^{2}+3 x-b=0 \\ & a=2=3 \quad c=-6 \\ & \alpha+\beta=\frac{-b}{a} \quad \alpha \beta=\frac{c}{a} \\ & \\ & =\frac{-3}{2} \quad=\frac{-6}{2} \\ & \begin{aligned} \alpha \beta & =\frac{-3}{-3} \\ \therefore+\beta & =-3 \times \frac{2}{-3} \\ & =2 \end{aligned} \end{aligned}$		
8.			

	Solutions	Marks	Comments: Criteria
(a)	$\begin{aligned} & 11 \\ & \frac{2 x}{3}-\frac{3 x+8}{12}=\frac{8 x-3 x-8}{12} \\ &=\frac{5 x-8}{12} \end{aligned}$	1	$\begin{aligned} \frac{1}{2} \text { Foo } & \frac{8 x-3 x+8}{12} \\ = & \frac{x+8}{2} \end{aligned}$
(b)	$\begin{aligned} & \|x-3\| \leq 7 \\ & -7 \leq x-3 \leq 7 \\ & -4 \leq x \leq 10 \end{aligned}$ $\begin{array}{rl} x-3 \leqslant 7 \text { or }-(x-3) \leqslant 7 \\ x \leqslant 10, & x(-3 \geqslant-7 \\ x & x \geqslant-4 \end{array}$ $-4 \leqslant x \leqslant 10$	12	
(c)	$\begin{aligned} h(-2) & =-2 a+1 \quad \frac{1}{2} \\ h(4) & =4^{2}-5=11 \frac{1}{2} \\ \text { if } h(-2) & =h(4) \\ -2 a+1 & =11 \quad \frac{1}{2} \\ -2 a & =10 \\ a & =-5 \quad \frac{1}{2} \end{aligned}$	2	
(d)	$\begin{aligned} (3+\sqrt{5})^{2} & =9+6 \sqrt{5}+5 \\ & =14+6 \sqrt{5} 1 \quad \therefore a=14 \quad b=180 \\ & =14+\sqrt{180} \quad \therefore \quad \frac{1}{2} \end{aligned}$	2	
(c)	$\begin{array}{rl} \tan 60^{\circ} & =\frac{A B}{1} \\ \therefore A B & =1 / 2 \\ \therefore 3 & 1 / 2 \end{array}$	1	
ii)	$\begin{aligned} & \tan 30=\frac{A B}{B D} \\ & B D=\frac{1}{2} \\ &=\frac{\sqrt{3}}{\tan 30} \\ & \frac{1}{3} \\ &=\frac{1}{\sqrt{3}} \\ & 3 \frac{1}{2} \\ & \therefore C D=B D-B C \\ &=3-1 \text { units } \frac{1}{2} \\ &=2 \text { uns } \end{aligned}$	2	
(f)	$\begin{aligned} a=4 \quad a r^{7} & =8748 \quad 1 / 2 \\ 4 r^{7} & =8748 \\ r^{7} & =2187 \\ r & \frac{1}{2} \\ & =3 \\ \therefore T_{12} & =a r^{\prime \prime} \\ & =4 \times 3^{\prime \prime} \\ & =708588 \frac{1}{2} \end{aligned}$	2	有在 IF DONE fis fiv A.f.

Qi 14 Solutions
(a)
(i)

$$
\begin{array}{rlrl}
y & =x^{2} \log _{e} x & u=x^{2} & v=\log _{e} x \\
\frac{d y}{d x} & =2 x \log _{e} x+x^{2} \times \frac{1}{x} & \frac{d x}{d x}=2 x & \frac{d v}{d x}=\frac{1}{x} \\
& =2 x \log _{e} x+x & & \\
& =x\left(2 \log _{e} x+1\right)
\end{array}
$$

(ii)

$$
\begin{aligned}
\int \frac{\sin x}{1+\cos x} d x & =-\int \frac{-\sin x}{1+\cos x} d x \\
& =-\log (1+\cos x)+c
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{\tan x}\right)=\sec ^{2} x \tan x \\
& \int_{0}^{\frac{\pi}{4}} \frac{d}{d x} e^{\tan x} d s=\int_{0}^{\frac{\pi}{4}} \sec ^{2} x \tan x d x \\
& \left.e^{\tan x}\right]_{0}^{\frac{\pi}{4}}=\int_{0}^{\frac{\pi}{4}} \sec ^{2} x \tan x d x \\
& e^{\tan \frac{\pi}{4}}-e^{\tan 0}= \\
& e^{1}-e^{0}= \\
& \therefore \int_{0}^{\frac{\pi}{4}} \sec ^{2} x \tan x d x=e-1
\end{aligned}
$$

1 For log
(ii)

$$
\begin{aligned}
& x^{2}+(m-1) x-m=0 \\
& \alpha+\alpha=\frac{-b}{a} \\
& 2 \alpha=\frac{-(m-1)}{1} \\
& \alpha \alpha=1-m \\
& \alpha=\frac{1-m}{2} \text { (1) } 1 / 2
\end{aligned}
$$

1 for
(c)

$$
\alpha \times \alpha=\frac{c}{a}
$$

sub (1) into (2)

$$
\alpha^{2}=\frac{-m}{1} \Theta \frac{1}{2}
$$

$$
\begin{gathered}
\left(\frac{(1-m)}{1-2 m+m}\right)^{2}=-m \\
\frac{1}{2}=-m \\
1-2 m+m^{2}=-4 m \\
m^{2}+2 m+1=0 \\
(m+1)^{2}=0 \\
\therefore m=-1
\end{gathered}
$$

OK

$$
b^{2}-4 a c=0
$$

$$
(m-1)^{2}-4 k 1 k-m=0
$$

$$
m^{2}-2 m+1+4 m=0
$$

$$
m^{2}+2 m+1=0
$$

$$
\left.\begin{array}{c}
(m+1)^{2}=0 \\
m=-1
\end{array}\right\}
$$

$$
m=-1 \quad 3
$$

| On | 15 | cont. Solutions |
| :--- | :--- | :--- | :--- |
| (c) | | |

$$
\begin{gathered}
V=36-4 e^{2 t} \\
t=0, V=36-42^{2(0)} \\
V=36 \times 4(1) \\
=32 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(ii) when $v=0$

$$
\begin{aligned}
36-4 e^{2 t} & =0 \\
36 & =4 e^{2 t} \\
9 & =e^{2 t} \\
\log _{e} 9 & =\log _{e} e^{2 t} \\
\log _{e} 9 & =2 t \log e a \\
\log _{e} 9 & =t \\
\frac{2 \log _{e} 3}{2} & =t \\
\therefore t & =\log _{e} 3
\end{aligned}
$$

iii)

$$
\left.\begin{array}{rl}
d & =\int v d t \\
& =\int_{0}^{\log _{e} 3} 36-4 e^{2 t} d t \\
& \left.=36 t-\frac{4 e^{2 t}}{2}\right]_{0}^{\log _{e} 3} \\
& =\left(36\left(\log _{e} 3\right)-4 e^{2 \log _{e} 3}\right)-\left(36(0)-4 e^{2(0)}\right. \\
2
\end{array}\right)
$$

iv)

$$
\begin{array}{rlrl}
a & =\frac{d v}{d t} & v=36-4 e^{2 t} \\
& =-8 e^{2 t}(1) \sqrt{2 t} & 4 e^{2 t}=36-v \\
\text { sub (2) into (1) } & e^{2 t}=\frac{36-v}{4}
\end{array}
$$

$$
\begin{aligned}
a & =-8\left(\frac{36-v}{4}\right) \frac{1}{2} \\
& =-2(36-v)
\end{aligned}
$$

ore 15 ciii)

Marks	Comments: Criteria
1	
	$\frac{1}{2}$ for $=0$

at

$$
\begin{aligned}
t & =\log _{2} 3 \\
\alpha & =36\left(\log _{2} 3\right)-2 e^{2 \log _{2} 3}+2 \\
& =36\left(\log _{2} 3\right)-2 \times 9+2 \\
& =36 \log _{2} 3-16
\end{aligned}
$$

Qn	16 Solutions	Marks	Comments: Criteria
(a) (i)	$\begin{aligned} R & =6 t+5 \\ D & =\int R d t \\ & =\int 6 t+5 d t \\ \therefore D & =\frac{6 t^{2}}{2}+5 t+c \end{aligned}$ wher $t=0 \quad D=150$ $\begin{aligned} 150 & =3(0)^{2}+5(0)+c \\ \therefore \quad & =150 \\ 50 D & =3 t^{2}+5 t+150 \end{aligned}$ wher $t=8$ $\begin{aligned} D & =3(8)^{2}+5(8)+150 \\ & =382 \mathrm{ral} \end{aligned}$	3	-
(ii)	when $D=900$ $\begin{aligned} & 900=3 t^{2}+5 t+150 \\ & (3 t+50)(t-15)=0 \end{aligned}$ $\therefore t=15 \text { since } t \geq 0$	2	$-\frac{1}{2}$ if give $t=-\frac{50}{3}$, as an comester.
(b) i) ii)	$\begin{aligned} & 6 \pi=r \theta \\ & \frac{6 \pi}{r}=\theta \end{aligned}$ since $6<r<12$ if $r=6 \cdot \theta=\frac{6 \pi}{6}$ $=\pi$ if $r=12 \theta=\frac{6 \pi}{12}$ $=\frac{\pi}{3}$ $\therefore \quad \frac{\pi}{2}<\theta<\pi$ so θ is obtionem $\begin{array}{rlrl} \text { if } \theta=\frac{3 \pi}{4} & A & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\ 6 \pi & =\frac{3 \pi}{4} r & & =\frac{1}{2}(8)^{2}\left(\frac{3 \pi}{4}-\sin \frac{3 \pi}{4}\right)^{\frac{1}{2}} \\ \therefore r=8 & & =32\left(\frac{3 \pi}{4}-\frac{1}{\sqrt{2}}\right) \\ & & & \\ & & & \\ & & 52.77-10 \sqrt{2} \end{array}$	2	1 for $r=8$ $+\frac{1}{2}$ har subusht $\frac{1}{2}$ for corroct 5 mprltan 人 semon wat

