St Catherine's School
Waverley

HIGHER SCHOOL CERTIFICATE
2016 TRIAL EXAMINATION

Mathematics

General Instructions

- Reading Time - 5 minutes
- Working Time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations
- Task Weighting - 40\%

Total Marks - 100

Section I
 Pages 3-5

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section.

Section II Pages 6-12
90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section.

BLANK PAGE

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Evaluate $\frac{2.48 \times 0.034}{\sqrt{0.081}-0.029}$, giving your answer correct to 2 decimal places.
(A) 0.32
(B) 0.33
(C) 0.36
(D) 0.37
2. Solve for $x, \quad|4 x+2|=6$
(A) $x=1, x=-2$
(B) $x=-1, x=2$
(C) $x=1, x=2$
(D) $x=-1, x=-2$
3. Express 215° in radian measure.
(A) $\frac{\pi}{215}$
(B) $\frac{215}{\pi}$
(C) $\frac{43 \pi}{36}$
(D) $\frac{36 \pi}{43}$
4. Which of the following is equal to $\frac{\cos \left(\frac{\pi}{2}-\alpha\right)}{\sin (2 \pi-\alpha)}$?
(A) 1
(B) $\cot \alpha$
(C) -1
(D) $\cos \left(\frac{\pi}{2}\right)$
5. Find $\int(2 x+1)^{5} d x$
(A) $\frac{(2 x+1)^{6}}{6}+c$
(B) $5(2 x+1)^{4}+c$
(C) $10(2 x+1)^{4}+c$
(D) $\frac{(2 x+1)^{6}}{12}+c$
6. $\frac{3 \sqrt{3}}{\sqrt{7}-2}$ is equal to:
(A) $\frac{3 \sqrt{3}(\sqrt{7}+2)}{5}$
(B) $\frac{3 \sqrt{3}(\sqrt{7}-2)}{5}$
(C) $\sqrt{3}(\sqrt{7}+2)$
(D) $\sqrt{3}(\sqrt{7}-2)$
7. Which point on the graph satisfies the description: $y<0, \frac{d y}{d x}>0, \frac{d^{2} y}{d x^{2}}<0$

(A) Point A
(B) Point B
(C) Point C
(D) Point D
8. The graph below represents $y=a \cos m x$. Which statement is correct?

(A) $a=-3, m=1$
(B) $a=3, m=2$
(C) $a=3, m=1$
(D) $a=1, m=3$
9. If $\log _{a} 7=x$ and $\log _{a} 3=y$, evaluate $\log _{a} 63$.
(A) $x+y^{2}$
(B) $x+2 y$
(C) $x y^{2}$
(D) $2 x+y$
10. The common difference d of the arithmetic series $\ln 8+\ln 16+\ln 32+\cdots \quad$ is:
(A) 1
(B) 2
(C) $\ln 2$
(D) $\ln 8$

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) If $\sqrt{50}-3 \sqrt{75}+\sqrt{18}=a \sqrt{2}-b \sqrt{3}$, find the values of a and b.
(b) State the domain and range of the function $y=\sqrt{2 x-1}-4$
(c) Find $\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}$
(d) Differentiate with respect to t :
$y=\left(5 t^{4}-8\right)^{9}$
(e) Find a primitive function of $5 x^{3}+\sin 4 x$
(f) A function $y=f(x)$ has $\frac{d^{2} y}{d x^{2}}=6 x-2$ and a stationary point at $(3,0)$. Find $f(x)$.
(g) For the parabola $x^{2}-4 x-8 y-4=0$, find the coordinates of the vertex.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Solve the equation for x :
$3 \times 9^{x}+2 \times 3^{x}-1=0$
(b) α and β are the roots of the quadratic equation $3 x^{2}-4 x-8=0$. Without calculating the roots, find the value of:
(i) $\alpha^{2}+\beta^{2}$
(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
(c) Differentiate the following with respect to x :
(i) $y=x e^{\sin x} \quad 2$
(ii) $y=\frac{\ln x}{x}$
(d) (i) Find $\int \frac{x^{3}+1}{x^{2}} d x$
(ii) Show that $\frac{d}{d x}\left(\sin x-\frac{1}{3} \sin ^{3} x\right)=\cos ^{3} x \quad 2$

Hence, find $\int 3 \cos ^{3} x d x \quad \mathbf{1}$

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet

(a)

In the diagram above $\mathrm{A}(-3,1), \mathrm{B}(2,4)$ and $\mathrm{C}(-1,-1)$.
(i) Show that $\triangle A B C$ is isosceles. 2
(ii) Find the equation of $A C$.
(iii) Find the perpendicular distance of point B from the line $A C$.
(iv) Find the area of $\triangle A B C$.
(b) Consider the function $y=5 x e^{-x}$.
(i) Copy and complete the table below, giving the value correct to 2 decimal places.

x	0	1	2	3	4
y	0			0.75	0.37

(ii) Using Simpson's rule with 5 function values evaluate $\int_{0}^{4} 5 x e^{-x} d x$
(iii) Show that $\frac{d^{2} y}{d x^{2}}=5 e^{-x}(x-2)$.
(iv) Find the stationary points and the points of inflection.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet

(a)

The diagram above shows a sector with radius r and angle α. The area of the sector is $625 \mathrm{~m}^{2}$.
(i) Find the expression for α in terms of r.
(ii) Show that the perimeter of the sector is $P=2 r+\frac{1250}{r}$
(iii) Find the value of r such that the sector has minimum perimeter.
(iv) Find the value of α to the nearest degree such that the perimeter is minimum.
b)

In the diagram above, $A D$ and $B C$ intersect at point P so that $A P=10, B P=4$, $\mathrm{CP}=12$ and $\mathrm{DP}=30$.
(i) Prove that $\triangle A B P$ is similar to $\triangle C P D$.
(ii) Hence, prove that $A B \| C D$.

The population P of a town is changing exponentially $P=P_{0} e^{k t}, t$ is the time (c) in years.
(i) At the start of 2000, the population was 15000 people and at the start of 2010 it was 35000 . Show that the growth rate k is approximately 8.5%.
(ii) Using $k=0.085$, after how many years the population will reach 50000 people?

Question 15 (15 marks) Use a SEPARATE writing booklet

(a) The velocity of a particle is given by $v=\frac{4}{2 t+1} m s^{-1}$. Initially the particle is $2 m$ to the left of the origin.
(i) Find the expression for the displacement x.
(ii) Find the exact time when the particle is at the origin.
(iii) Show that the acceleration of the particle is always negative.
(b) Two cards are chosen at random without replacement from six cards numbered: $1,1,3,4,4,4$. What is the probability that:
(i) First card is 1 and second card is 4?
(ii) The sum of two numbers on the cards is less than 5 ?
(c)

$\mathrm{P}(12,12)$ is a point on the parabola $x^{2}=12 y . \mathrm{F}$ is the focus of the parabola. The tangent of the parabola at P intersects the directrix at point D .
(i) Find the equation of the tangent at point P.
(ii) Show that the coordinates of point D are $\left(\frac{9}{2},-3\right)$.
(iii) Show that $\angle P F D=90^{\circ}$.

End of Question 15

(a) The region between the curve $y=2 \sqrt{x}$ and $y=\frac{x}{2}$ is rotated about the x axis.

(i) Show that the coordinates of point P are 8 and $16 . \quad 1$
(ii) Find the volume of the solid in exact form.
(b) Kate wants to save $\$ 30000$ for her holiday. She invests $\$ 150$ at the beginning of each month. Interest is paid at the rate of 12% per annum compounded monthly.
(i) How much money will Kate save after 5 years?
(ii) How many months will it take Kate to reach her goal?

2
(c) Consider the function $y=1-2 \sin x$.
(i) Find the exact values where the function y cuts the x -axis for $0 \leq x \leq 2 \pi$.
(ii) Find the values of y when $x=0$ and $x=2 \pi$.
(iii) Draw a neat sketch of the function y for $0 \leq x \leq 2 \pi$. 2
(iv) Find the area bounded by the curve $y=1-2 \sin x$, the x-axis and the 3 lines $x=0$ and $x=\frac{\pi}{2}$, in exact form.

End of paper

\qquad

2016 Highers school ceartricate TRIAL EXAMINATION

Mathematics

Multiple Choice Answer Sheet

Completely fill the response circle representing the most correct answer

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{2 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{3 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{4 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{5 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{6}$.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{7 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{8 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{1 0 .}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

2016 Maths. Trial (Solutions)
(1) $0.33 \quad \mathrm{~B}$
(2)

$$
\begin{array}{rr}
|4 x+2|=6 & \\
4 x+2=6 & 4 x+2=-6 \\
4 x=4 & 4 x=-8 \\
x=1 & x=-2
\end{array}
$$

(3)

$$
\begin{aligned}
& 215^{\circ} \\
& 180^{\circ}=\pi \\
& 215^{\circ}=\frac{\pi}{180} \times 215 \\
&=\frac{43 \pi}{36}
\end{aligned}
$$

(4)

$$
\frac{\cos \left(\frac{\pi}{2}-\alpha\right)}{\sin (2 \pi-\alpha)}=\frac{\sin \alpha}{-\sin \alpha}=-1 \quad c
$$

(5)

$$
\begin{aligned}
\int(2 x+1)^{5} d x & =\frac{(2 x+1)^{6}}{6 \times 2}+c \\
& =\frac{(2 x+1)^{6}}{12}+c
\end{aligned}
$$

(6) $\frac{3 \sqrt{3}}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}=\frac{3 \sqrt{3}(\sqrt{7}+2)}{7-4}=\sqrt{3}(\sqrt{7}+2) \quad C$
(7) A
(8) B
(9) $\log _{3} 7=x \quad \log _{a} 3=y$

$$
\log _{a}^{63}=\log _{a}^{7 \times 9}=\log _{2}^{1}+\log _{a}^{3^{2}}=\log _{a}^{3}+2 \log _{a}^{3}
$$

(10)

$$
\begin{array}{ll}
\ln 8+\ln 16+\ln 32+ \\
\ln 2^{3}+\ln 2^{4}+\ln 2^{5}+ \\
3 \ln 2+4 \ln 2+5 \ln 2+\cdots & \therefore d=\ln 2
\end{array}
$$

Question 11
(11)

$$
\begin{aligned}
L H S & =5 \sqrt{2}-15 \sqrt{3}+3 \sqrt{2} \\
& =8 \sqrt{2}-15 \sqrt{3} \quad \therefore a=8 \quad b=15
\end{aligned}
$$

- I mark for simplifying correctly
- 2marks for correct values of a and b.
b) $y=\sqrt{2 x-1}-4$
D. $\quad 2 x-1 \geqslant 0$

R: $\quad \sqrt{2 x}-1 \geqslant 0$
$2 x \geqslant 1$

$$
x \geqslant \frac{1}{2}
$$

$$
\sqrt{2 x}-4-4 \geqslant-4
$$

domain: all real $x \geqslant \frac{1}{2}$
range : all real $y \geqslant-4$

- I mark for correct domain or range
- 2marks for correct domain ard range.
c) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}=\lim _{x \rightarrow 0} \frac{1}{4} \frac{\sin 5 x}{5 x} \times 1=\frac{5}{4}$
- I mark for express limit as a function of $\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}$
- 2 marks for CORRECT ANSWER
d)

$$
\begin{aligned}
y & =\left(5 t^{4}-8\right)^{9} \\
y^{\prime} & =9\left(5 t^{4}-8\right)^{8} \times 20 t^{3} \\
& =180 t^{3}\left(5 t^{4}-8\right)^{8}
\end{aligned}
$$

- 1 mark for substantial effort to differentiate correctly
- 2 marks for correct ansule
e)

$$
\begin{aligned}
\int\left(5 x^{3}+\sin 4 x\right) d x & =5 \times \frac{x^{4}}{4}-\frac{\cos 4 x}{4}+c \\
& =\frac{5 x^{4}-\cos 4 x}{4}+c
\end{aligned}
$$

- I mark for integrating a term correctly
- 2 marks for: CORRECT Arsine

Question II (cont.)
f)

$$
\begin{aligned}
y^{\prime \prime} & =6 x-2 \text { SiP. at }(3,0) \\
y^{\prime} & \left.=\int 6 x-2\right) d x \\
y^{\prime} & =\frac{6 x^{2}}{2}-2 x+c \\
& =3 x^{2}-2 x+c
\end{aligned}
$$

Sp. at $(3,0) \therefore y^{\prime}=0$

$$
\begin{gathered}
27-6+c=0 \quad \therefore c=-21 \\
y^{\prime}=3 x^{2}-2 x-21 \\
y=\int\left(3 x^{2}-2 x-21\right) d x \\
y=3 \frac{x^{3}}{3}-\frac{2 x^{2}}{2}-21 x+c_{1} \\
y=x^{3}-x^{2}-21 x+c_{1} \\
x=3, y=0 \\
27-9-63+c_{1}=0 \therefore c_{1}=45 \\
f(x)=x^{3}-x^{2}-21 x+45
\end{gathered}
$$

- I mark for correct primitive oF $y^{\prime \prime}$
- 2 marks for correct primitive of y^{\prime}
- 3 marks for CORRECT ANSWER
$g)(i)$

$$
\begin{aligned}
& x^{2}-4 x-8 y-4=0 \\
& x^{2}-4 x=8 y+4 \\
& x^{2}-4 x+4=8 y+4+4 \\
& (x-2)^{2}=8(y+1) \\
& V(2,-1)
\end{aligned}
$$

- I mark for putting equation in the Form $(x-h)^{2}=4 a(y-k)$ OR
- 2 marks for correct ansener

Question IV
a)

$$
\begin{aligned}
& 3 \times 9^{x}+2 \times 3^{x}-1=0 \\
& 3 \times\left(3^{x}\right)^{2}+2 \times 3^{x}-1=0
\end{aligned}
$$

Let $3^{x}=t$

$$
3 t^{2}+2 t-1=0
$$

$$
\begin{gathered}
t=\frac{-2 \pm \sqrt{4+12}}{6}=\frac{-2 \pm 4}{6} \\
t=-1, t=\frac{1}{3}
\end{gathered}
$$

$$
\begin{array}{lll}
t=-1 & \text { or } t=\frac{1}{3} \\
3^{x}=-1 & 3^{x}=\frac{1}{3}
\end{array}
$$

no solutions

$$
3^{x}=3^{-1} \quad \therefore x=-1
$$

- I mark for correct simplification to a quadratic equation
- 2 marks for correct solving of the quadratic equation
- 3 marks for correct solution of x and dismissing one solution
b)

$$
3 x^{2}-4 x-8=0
$$

(i)

$$
\begin{aligned}
\alpha+\beta & =-\frac{b}{a} & \alpha \beta=\frac{c}{a} \\
\alpha+\beta & =\frac{4}{3} & \alpha \beta=-\frac{8}{3} \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta & \\
& =\frac{16}{9}+\frac{16}{3} & \\
& =\frac{16+48}{9} & .1 \mathrm{ma} \\
& =\frac{64}{9} &
\end{aligned}
$$

- I mark for correct sum oud product
- 2 marks for recognising $(\alpha+\beta)^{2}-2 \alpha \beta$ and correct answer.
(ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{\frac{64}{9}}{-\frac{8}{3}}=-\frac{8}{3}$
- I mark for correct answer

Question 12 (cont.)

$$
\text { c)(i) } \begin{aligned}
y & =x e^{\sin x} \\
y^{\prime} & =e^{\sin x}+x e^{\sin x} \times \cos x \\
& =e^{\sin x}(1+x \cos x)
\end{aligned}
$$

- I mark for correctly using the product rule
- 2 marks for correct answer
(ii) $y=\frac{\ln x}{x}$

$$
y^{\prime}=\frac{\frac{1}{x} x^{x}-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}
$$

- I mark for correctly using either the gustient or product rube
- 2 marks for correct answer
d)

$$
\text { (i) } \begin{aligned}
\int \frac{x^{3}+1}{x^{2}} d x & =\int \frac{x^{3}}{x^{2}} d x+\int \frac{d x}{x^{2}} \\
& =\int x d x+\int x^{-2} d x \\
& =\frac{x^{2}}{2}+\frac{x^{-1}}{-1}+c \\
& =\frac{x^{2}}{2}-\frac{1}{x}+c
\end{aligned}
$$

- I mark for splaying and simplifying the fraction
- 2 marks for correct integration +C
ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\sin x-\frac{1}{3} \sin ^{3} x\right) & =\cos x-\frac{3}{3} \sin ^{2} x \cos x \\
& =\cos x\left(1-\sin ^{2} x\right) \\
& =\cos x \times \cos ^{2} x \\
& =\cos ^{3} x
\end{aligned}
$$

- I mark for correct differentiation
- 2 marks far substituting trig. identity to show the RHS.

Question 12 (cont.)

$$
\begin{aligned}
\int 3 \cos ^{3} x d x & =3 \int \cos ^{3} x d x \\
& =3\left(\sin x-\frac{1}{3} \sin ^{3} x\right)+c \\
& =3 \sin x-\sin ^{3} x+c
\end{aligned}
$$

- I mark for correct integration

Question 13
a) $\quad A(-3,1) \quad B(2,4) \quad C(-1,-1)$
i)

$$
\begin{aligned}
& d(A, B)=\sqrt{5^{2}+3^{2}}=\sqrt{34} \\
& d(A, C)=\sqrt{4^{2}+2^{2}}=\sqrt{20} \\
& d(B, C)=\sqrt{9+25}=\sqrt{34}
\end{aligned}
$$

$A B=B C \therefore \quad \triangle A B C$ is isosceles.

- I mark for 1 correct distance
- 2 marks for 2 correct dist. and making a statement
(ii) $A C: \quad m_{A C}=\frac{2}{-2}=-1$

$$
\begin{gathered}
y+1=-1(x+1) \\
y+1=-x-1 \\
x+y+z=0
\end{gathered}
$$

- I mark for gradient
- 2mark's for correct application of $y-y_{1}=m\left(x-x_{1}\right)$
(iii) $\quad B(2,4) \quad x+y+z=0$

$$
d=\frac{|2+4+2|}{\sqrt{2}}=\frac{8}{\sqrt{2}} \text { or } \frac{8 \sqrt{2}}{2}=4 \sqrt{2}
$$

- I mark for correct subset. and simpification

Question 13 (cont.)
(iv) $A=\frac{1}{2} A C \times d=\frac{1}{2} \times \frac{20}{205} \times 4 \sqrt{2}=2 \sqrt{20}$

$$
=\frac{4 \sqrt{10} u^{2}}{8 u^{2}}
$$

- I mark for correct application of area
b)

(i) | x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0 | 1.84 | 1.35 | 0.79 | 0.37 |

- I mark for y value
(ii)

$$
\begin{aligned}
& 1 \int_{a}^{b} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4 \times \text { odds }+2 \times \text { evens }\right] \\
& h=\frac{4-0}{4}
\end{aligned}=1 .
$$

- I mark for h and substitution
- 2marks for correctopplication and answer
(iii)

$$
\begin{aligned}
y^{\prime} & =5 e^{-x}+5 x e^{-x} \times(-1) \\
& =5 e^{-x}-5 x e^{-x} \\
y^{\prime \prime} & =-5 e^{-x}-5 e^{-x}+5 x e^{-x} \\
& =5 e^{-x}(x-2)
\end{aligned}
$$

- Imark for y^{\prime}
- 2 marks for $y^{\prime \prime}$

Question 13 (cont.)
(iv) $y^{\prime}=5 e^{-x}(1-x)$
$y^{\prime}=0$ if $1-x=0 \quad \therefore x=1$

1		
$1-x$	+	-
y^{\prime}	+	-
y	-	\searrow

$$
\begin{aligned}
& 1-x \geqslant 0 \quad e^{-x}>0 \\
& x \leq 1
\end{aligned}
$$

for $x=1 \quad y=1.84$

$$
\begin{aligned}
& (1,1,84) \text { is a max } \\
& y^{\prime \prime}=5 e^{-x}(x-2) \\
& y^{\prime \prime}=0 \text { if } \quad x-2=0 \quad \therefore x=2
\end{aligned}
$$

$(2,1.35)$ is a possible point of inflection

$$
5 e^{-x}>0
$$

$2-2$	$-1^{2}+$	
$y^{\prime \prime}$	-	\pm
y	\sim	\succeq

$$
\begin{gathered}
x-2>0 \\
x>2
\end{gathered}
$$

concavity changes ($2,1.35$) is a paint of inflection

- I mark for x-cord. of 57 .
- 2 marks for $S P$
- 3 markS for SP and a point of inflexion
- 4 marks for testing the point of inflex. + all above

Question 14
Q) i)

$$
\left.\begin{array}{rl}
A & =\frac{1}{2} r^{2} \alpha \\
625 & =\frac{1}{2} r^{2} \alpha \quad \therefore \quad \alpha
\end{array}\right)=\frac{2 \times 625}{r^{2}}, \quad \alpha=\frac{1250}{r^{2}}
$$

1 mark for $\alpha=\frac{1250}{r^{2}}$
(ii)

$$
\begin{aligned}
& P=r+r+r \alpha \\
& =2 r+\frac{1250}{r}
\end{aligned}
$$

I mark for correct answer
(iii)

$$
\begin{aligned}
P & =2 r+1250 r^{-1} \\
\frac{d P}{d r} & =2+1250 r^{-2} \times(-1) \\
& =2-\frac{1250}{r^{2}} \\
& =\frac{2 r^{2}-1250}{r^{2}}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{d P}{d r}=0 \text { if } \quad 2 r^{2}-1250=0 \\
r^{2}-625=0
\end{array}
$$

$$
\begin{gathered}
r^{2}-625=0 \\
r^{2}=625 \\
r=25
\end{gathered}
$$

$$
(r-25)(r+25)=0
$$

$\frac{d P}{d r}$	-	+
P	λ	π

- Imarkfor $2 r^{2}-1250=0$
at $25 \rightarrow$ min.
- 2 marks for

$$
r=25
$$

- 3 marks for checking $r=25$ is min.

Question 14 (cont.)
(iv) for $r=25$

$$
\begin{array}{lrl}
\alpha & =\frac{1250}{25^{2}}=2 \mathrm{rad} . & \pi=180^{\circ} \\
\alpha \approx 115^{\circ} & 2 \mathrm{ad}=\frac{180}{\pi}
\end{array}
$$

- I mark for α in degrees
b)
(i)

$\triangle A P B$ and $\triangle C P D$
$\angle A P B=\angle C P D$ (vertically opposite angles are equal.)

$$
\begin{aligned}
& \frac{A P}{P B}=\frac{10}{4}=\frac{5}{2} \\
& \frac{P D}{P C}=\frac{30}{12}=\frac{5}{2}
\end{aligned}
$$

2 pairs of matching sides are in the same ratio and included angles are equal
$\therefore \triangle A P B \| \triangle C P D$.

- I mark for ratio of sides
- 2 marks for correct reasoning (including vertically opp angles)
(ii) All matching angles in similar triangles are equal $\therefore \angle A B P=\angle P C D$

These are alternate angles $\therefore A B \| C D$

- I mark for $\angle A B P=\angle P C D$ with correct reason
- 2 marks for alternate angles with reason

Question 14 (cont.)
c) $P=P_{0} e^{k t}$

$$
\begin{aligned}
& \text { (i) } \quad t=0 \quad P=15000 \\
& 15000=P_{0} e^{k \times 0} \therefore P_{0}=15000 \\
& P=15000 e^{k t}
\end{aligned}
$$

2010:,$t=10 \quad P=35000$

$$
35000=15000 e^{10 k}
$$

$$
e^{10 k}=\frac{35}{15} \quad e^{10 x}=\frac{7}{3}
$$

$$
10 k=\ln \frac{7}{3}
$$

$$
\begin{aligned}
k=\frac{1}{10} \ln \frac{7}{3} \quad k & =0.0847247 \ldots \\
k & \approx 8.5 \%
\end{aligned}
$$

- I mark for $P_{0}=15000$ or $P=15000 e^{k t}$
- 2 marks for correct substitution $35000=15000 e^{10 \mathrm{~K}}$
. 3 marks for $k=0.84472$ or $k=8.5 \%$
(it)

$$
\begin{aligned}
& P=50000 \\
& P=15000 e^{0.085 t} \\
& 50000=15000 e^{0.085 t} \\
& e^{0.085 t}=\frac{50}{15}=\frac{10}{3} \\
& 0.085 t=\ln \frac{10}{3} \\
& t=\frac{1}{0.085} \ln \frac{10}{3} \\
& t=14.16438 \ldots
\end{aligned}
$$

after 15 years

- I mark for $50000=15000 e^{0.085 t}$
- 2 marks for $t=15$ years or $t=14.2$ years

Question 15
(15) $v=\frac{4}{2 t+1} \mathrm{~m} / \mathrm{s}^{\text {a }}$
(i) initially: $t=0 \quad x=-2$

$$
\begin{gathered}
x=\int \frac{4 d t}{2 t+1}=\frac{4}{2} \int \frac{2 d t}{2 t+1}=2 \ln (2 t+1)+c \\
t=0: \quad x=2 \ln 1+c=-2 \\
c=-2 \\
x=2 \ln (2 t+1)-2
\end{gathered}
$$

- I mark for correct integration $+C$
- 2 marks for correct value of c
(ii)

$$
\begin{gathered}
x=0 \\
2 \ln (2 t+1)-2=0 \\
\ln (2 t+1)=1 \\
2 t+1=e \\
2 t=e-1 \\
t=\frac{e-1}{2} \sec .
\end{gathered}
$$

- I mark for solving to $2 t+1=e$
- 2marksfor correct value of t.

Question 15 (cont.)
(iii)

$$
\begin{aligned}
v= & \frac{4}{2 t+1}=4(2 t+1)^{-1} \\
a & =-4(2 t+1)^{-2} \times(2) \\
& =-\frac{8}{(2 t+1)^{2}} \\
& (2 t+1)^{2}>0 \quad-8<0 \\
& \therefore a<0
\end{aligned}
$$

- I mark for correct differentiation
- 2 marks for correct reasoning to prove $\ddot{x}<0$
b) (1) $P(1,4)=\frac{1}{3} \times \frac{3}{5}=\frac{1}{5}$
- I mark for correct answer
(i)

$$
\begin{aligned}
& P(\text { sum lessthon } 5)=P(1,1)+P(1,3)+P(3,1) \\
& =\frac{1}{3} \times \frac{1}{5}+\frac{1}{3} \times \frac{1}{5}+\frac{1}{6} \times \frac{2}{5} \\
& =\frac{2}{15}+\frac{1}{15} \\
& =\frac{3}{15} \\
& =\frac{1}{5}
\end{aligned}
$$

- I mark for correct combinations and one correct prob.
* 2 marks for two other correct probabilities

Question 15 (cont.)
c) $P(12,12) \quad x^{2}=12 y$
(i)

$$
\begin{aligned}
& y=\frac{x^{2}}{12} \\
& \frac{d y}{d x}=\frac{2 x}{12}=\frac{x}{6}
\end{aligned}
$$

at $x=12 \quad m_{t}=\frac{12}{6}=2$

$$
\begin{gathered}
y-12=2(x-12) \\
y-12=2 x-24 \\
2 x-y-1 z=0
\end{gathered}
$$

- I mark for gradient
- 2 marks for equation of the tangent
(ii) $4 a=12 \quad \therefore a=3$
divest. $y=-3$

$$
\begin{gather*}
2 x-y-12=0 \\
y=-3 \\
2 x+3-12=0 \tag{9}\\
2 x=9 \\
x=\frac{9}{2}
\end{gather*}
$$

- I markfor dearly showing the y-value of D
. 2 marks for x-value of D

Question 15 (cont.)
(iii) $\angle P F D=90^{\circ}$?

$$
\begin{gathered}
F(0,3) \quad D\left(\frac{9}{2},-3\right) \quad P(12,12) \\
m_{F D}=\frac{6}{-\frac{9}{2}}=-\frac{12}{9}=-\frac{4}{3} \\
m_{F P}=\frac{12-3}{12-0}=\frac{9}{12}=\frac{3}{4} \\
m_{F D} \times m_{F P}=-\frac{4}{3} \times \frac{3}{4}=-1 \\
\therefore F D \perp F D \\
\therefore<P F D=90^{\circ}
\end{gathered}
$$

- I mark for gradients of FP and FD
- 2 marksfor showing FP $\perp F D$.
clearly

Question 16
a) (i)

$$
\begin{aligned}
2 \sqrt{x}=\frac{x}{2} \quad \therefore & 4 x=\frac{x^{2}}{4} \quad / x^{4} \\
& x^{2}-16 x=0 \\
& x(x-16)=0 \\
& x=0, x=16
\end{aligned}
$$

for $x=16 \quad y=\frac{16}{2}=8$

$$
P(16,8)
$$

- I mark for correct Answer

$$
\text { (fir) } \begin{aligned}
V & =\pi \int_{0}^{16}\left((2 \sqrt{x})^{2}-\left(\frac{x}{2}\right)^{2}\right) d x \\
& =\pi \int_{0}^{16}\left(4 x-\frac{x^{2}}{4}\right) d x \\
& =\pi\left[4 \frac{x^{2}}{2}-\frac{x^{3}}{12}\right]_{0}^{16} \\
& =\pi\left[2 x^{2}-\frac{x^{3}}{12}\right]_{0}^{16} \\
& =\pi\left[2 \times 16^{2}-\frac{16^{3}}{12}\right]= \\
& =\pi\left(512-\frac{4096}{12}\right) \\
& =\pi\left(512-\frac{1024}{3}\right) \\
& =\frac{512 \pi}{3}
\end{aligned}
$$

- Imark for correct simplified expression for the volume integral
- 2 marks for correct answer

Question 16 (cont.)
b)
(1)

$$
\begin{gathered}
r=12 \% \text { e. } a=0.12 \\
r=0.01 \text { per mouth } \\
n=5 \times 12=60
\end{gathered}
$$

First annuity will earn the interest for 60 mouths

$$
\begin{aligned}
A_{1} & =150(1+0.01)^{60} \\
& =150 \times 1.01^{60}
\end{aligned}
$$

second annuity will earn the interest for 54 mouths

$$
A_{2}=150 \times 1.01^{59}
$$

$60^{\text {th }}$ annuity will earn the interest for I mouth

$$
A_{60}=150 \times 1.01
$$

Total $=A_{1}+A_{2}+\cdots+A_{60}$

$$
\begin{aligned}
= & 150 \times 1.01^{60}+150 \times 1.01^{59}+\cdots+150 \times 1.01 \\
= & 150\left(1.01^{60}+1.01^{54}+\cdots+1.01\right) \\
= & 150\left(1.01+1.01^{2}+\cdots+1.01^{60}\right) \\
& 1.01+1.01^{2}+\cdots+1.01^{60} \text { is a geometric series }
\end{aligned}
$$

$$
\text { with } a=1.01 \quad r=1.01
$$

$$
\begin{gathered}
S_{60}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1.01\left(1.01^{60}-1\right)}{1.01-1} \\
T=150 \times \frac{1.01\left(1.01^{60}-1\right)}{1.01-1}=\$ 12372.95
\end{gathered}
$$

Kate will save $\$ 12372.95$ after 5 years.

- I mark for correct expression for the total investment
- 2 marks for correct answer.

Question 16 (cont.)
(ii)

$$
\begin{aligned}
& 30000=150 \times \frac{1.01\left(1.01^{n}-1\right)}{1.01-1} \\
& 1.01^{n}-1=\frac{30000(1.01-1)}{150 \times 1.01}+\frac{30000(1.01-1)}{150 \times 1.01}+1 \\
& 1.01^{n}=\frac{\ln }{n}=\frac{\left(\frac{30000(1.01-1)}{150 \times 1.01}+1\right)}{1.01}+\ln 1.000(1.01-1) \\
& n=1 \\
& n=109.744: .01 \\
& n=110 \text { montl25 }
\end{aligned}
$$

- I mark for CORRECT ExpRESSION FOR 1.O1 ${ }^{n}$
- 2 marks for CORRECT fiNSWER.
${ }_{c}^{c} f_{(1)} \quad 1-2 \sin x=0$

$$
\begin{aligned}
\sin x & =\frac{1}{2} \\
x & =30^{\circ}, 180^{\circ}-30^{\circ} \\
x & =30^{\circ}, 150^{\circ} \\
& =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

- I mark for CORRECT ACUTE SOLUTION $x=\frac{\pi}{6}$
- 2manks for CORRECT AIUSWER

Question 16 (cont.)
(ii)

$$
\begin{array}{ll}
x=0 & y=1-2 \sin 0=1 \\
x=2 \pi & y=1-2 \sin 2 \pi=1
\end{array}
$$

- I mark for CORRECT ANSWERS

$$
\begin{aligned}
& -1 \leq \sin x \leq 1 \\
& -2 \leq 2 \sin x \leq 2 \\
& -2 \leq-2 \sin x \leq 2 \\
& -1 \leq 1-2 \sin x \leq 3
\end{aligned}
$$

- I mark for CORRECT SHAPE find RANGE
- marks for correct curve, including correct INTERCEPTS AND ENDPOINTS.

Question 16 (end.)
(iv)

$$
\begin{aligned}
& A=\int_{0}^{\frac{\pi}{6}}(1-2 \sin x) d x-\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(1-2 \sin x) d x \\
& A=[x+2 \cos x]_{0}^{\frac{\pi}{6}}-[x+2 \cos x]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
&=\left[\frac{\pi}{6}+2 \cos \frac{\pi}{6}-2 \cos 0\right]-\left[\frac{\pi}{2}+2 \cos \frac{\pi}{2}-\frac{\pi}{6}-2 \cos \frac{\pi}{6}\right] \\
&=\left[\frac{\pi}{6}+2 \times \frac{\sqrt{3}}{2}-2\right]-\left[\frac{\pi}{2}-\frac{\pi}{6}-2 \frac{\sqrt{3}}{2}\right] \\
& \frac{\pi}{6}+\sqrt{3}-2-\frac{\pi}{2}+\frac{\pi}{6}+\sqrt{3} \\
& \quad \frac{\pi}{6} \frac{\pi}{3}-\frac{\pi}{2}+2 \sqrt{3}-2 \\
& 2 \sqrt{3}-2-\frac{\pi}{6} \approx 5.94 u^{2}
\end{aligned}
$$

- I mark for CORRECT INTEGRAL SPLIT INTO TWO AREAS BEtween

2 marks $x=0$ To $x=\frac{\pi}{6}$, AND $x=\frac{\pi}{6}$ to $x=\frac{\pi}{2}$

- 2 marks for correct inteciration
- 3 marks for correct rinsuver
- End of solutions -

