

St Catherine's School Waverley

2016

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Task Weighting 40%

Total Marks – 100

Section I Pages 3-5

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section.

Section II Pages 6 - 12

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section.

BLANK PAGE

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 – 10.

1.	Evaluate $\frac{2.48 \times 0.034}{\sqrt{0.081} - 0.029}$, giving you	ur answer correct to 2 decimal places.
	(A) 0.32	(B) 0.33
	(C) 0.36	(D)0.37
2.	Solve for <i>x</i> , $ 4x + 2 = 6$	
	(A) $x = 1$, $x = -2$	(B) $x = -1$, $x = 2$
	(C) $x = 1$, $x = 2$	(D) $x = -1$, $x = -2$
3.	Express 215° in radian measure.	
	(A) $\frac{\pi}{215}$	(B) $\frac{215}{\pi}$
	(C) $\frac{43\pi}{36}$	(D) $\frac{36\pi}{43}$
4.	Which of the following is equal to	$\frac{\cos(\frac{\pi}{2}-\alpha)}{\sin(2\pi-\alpha)}$?

- (A) 1 (B) cotα
- (C) -1 (D) $\cos(\frac{\pi}{2})$

Find
$$\int (2x+1)^5 dx$$

(A) $\frac{(2x+1)^6}{6} + c$
(B) $5(2x+1)^4 + c$
(C) $10(2x+1)^4 + c$
(D) $\frac{(2x+1)^6}{12} + c$

6.
$$\frac{3\sqrt{3}}{\sqrt{7}-2}$$
 is equal to:
(A) $\frac{3\sqrt{3}(\sqrt{7}+2)}{5}$
(B) $\frac{3\sqrt{3}(\sqrt{7}-2)}{5}$
(C) $\sqrt{3}(\sqrt{7}+2)$
(D) $\sqrt{3}(\sqrt{7}-2)$

7. Which point on the graph satisfies the description: y < 0, $\frac{dy}{dx} > 0$, $\frac{d^2y}{dx^2} < 0$

(A) Point A

5.

(B) Point B

8. The graph below represents $y = a \cos mx$. Which statement is correct?

(A)
$$a = -3, m = 1$$

(B) $a = 3, m = 2$
(C) $a = 3, m = 1$
(D) $a = 1, m = 3$

9. If $\log_a 7 = x$ and $\log_a 3 = y$, evaluate $\log_a 63$.

(A)
$$x + y^2$$
 (B) $x + 2y$
(C) xy^2 (D) $2x + y$

10. The common difference *d* of the arithmetic series $ln8 + ln16 + ln32 + \cdots$ is:

(C) *ln*2 (D) *ln*8

END OF SECTION I

Section II 90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) **Use a SEPARATE writing booklet**

(a)	If $\sqrt{50} - 3\sqrt{75} + \sqrt{18} = a\sqrt{2} - b\sqrt{3}$, find the values of <i>a</i> and <i>b</i> .	2
(b)	State the domain and range of the function $y = \sqrt{2x - 1} - 4$	2
(c)	Find $\lim_{x \to 0} \frac{\sin 5x}{4x}$	2
(d)	Differentiate with respect to t: $y = (5t^4 - 8)^9$	2
(e)	Find a primitive function of $5x^3 + \sin 4x$	2
(f)	A function $y = f(x)$ has $\frac{d^2y}{dx^2} = 6x - 2$ and a stationary point at (3,0). Find $f(x)$.	3

(g) For the parabola $x^2 - 4x - 8y - 4 = 0$, find the coordinates of the vertex. **2**

End of Question 11

Question 12 (15 marks) **Use a SEPARATE writing booklet**

(a) Solve the equation for *x*:

 $3 \times 9^x + 2 \times 3^x - 1 = 0$

- **(b)** α and β are the roots of the quadratic equation $3x^2 4x 8 = 0$. Without calculating the roots, find the value of:
 - (i) $\alpha^2 + \beta^2$ 2

(ii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 1

- (c) Differentiate the following with respect to *x*:
 - (i) $y = xe^{\sin x}$ 2

(ii)
$$y = \frac{lnx}{x}$$
 2

(d) (i) Find
$$\int \frac{x^3+1}{x^2} dx$$
 2

(ii) Show that $\frac{d}{dx}\left(\sin x - \frac{1}{3}\sin^3 x\right) = \cos^3 x$ 2

Hence, find
$$\int 3\cos^3 x \, dx$$
 1

End of Question 12

3

Question 13 (15 marks) **Use a SEPARATE writing booklet**

In the diagram above A(-3,1), B(2,4) and C(-1,-1).

(i)	Show that $\triangle ABC$ is isosceles.	2
(ii)	Find the equation of AC.	2
(iii)	Find the perpendicular distance of point B from the line AC.	1
(iv)	Find the area of $\triangle ABC$.	1

(b) Consider the function $y = 5xe^{-x}$.

(i)	Copy and complete the table below, giving the value correct to 2	1
	decimal places.	

x	0	1	2	3	4
у	0			0.75	0.37

(ii)	Using Simpson's rule with 5 function values evaluate $\int_0^4 5x e^{-x} dx$	2
(iii)	Show that $\frac{d^2y}{dx^2} = 5e^{-x}(x-2)$.	2
(iv)	Find the stationary points and the points of inflection.	4

(iv) Find the stationary points and the points of inflection.

End of Question 13

Question 14 (15 marks) **Use a SEPARATE writing booklet**

The diagram above shows a sector with radius r and angle α . The area of the sector is $625m^2$.

(i)	Find the expression for α in terms of r .	1
(ii)	Show that the perimeter of the sector is $P = 2r + \frac{1250}{r}$	1
(iii)	Find the value of r such that the sector has minimum perimeter.	3
(iv)	Find the value of α to the nearest degree such that the perimeter is minimum.	1

In the diagram above, AD and BC intersect at point P so that AP=10, BP=4, CP=12 and DP=30.

- (i) Prove that $\triangle ABP$ is similar to $\triangle CPD$.
- (ii) Hence, prove that $AB \parallel CD$.

2 2

Question 14 continues on page 10

The population *P* of a town is changing exponentially $P = P_0 e^{kt}$, *t* is the time **(c)** in years.

- (i) At the start of 2000, the population was 15000 people and at the start of 2010 it was 35000. Show that the growth rate *k* is approximately 8.5%.
 3
- (ii) Using k = 0.085, after how many years the population will reach 50000 people?

2

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet

(a) The velocity of a particle is given by $v = \frac{4}{2t+1}ms^{-1}$. Initially the particle is 2*m* to the left of the origin.

(i)	Find the expression for the displacement <i>x</i> .	2
(ii)	Find the exact time when the particle is at the origin.	2
(iii)	Show that the acceleration of the particle is always negative.	2
Two	cards are chosen at random without replacement from six cards	
1.00		

- **(b)** numbered: 1, 1, 3, 4, 4, 4. What is the probability that:
 - (i) First card is 1 and second card is 4? 1 2
 - (ii) The sum of two numbers on the cards is less than 5?

P(12,12) is a point on the parabola $x^2 = 12y$. F is the focus of the parabola. The tangent of the parabola at P intersects the directrix at point D.

(i)	Find the equation of the tangent at point P.	2
(ii)	Show that the coordinates of point D are $(\frac{9}{2}, -3)$.	2
(iii)	Show that $\angle PFD = 90^{\circ}$.	2

End of Question 15

Question 16 (15 marks) **Use a SEPARATE writing booklet**

The region between the curve $y = 2\sqrt{x}$ and $y = \frac{x}{2}$ is rotated about the x (a) axis.

- Show that the coordinates of point P are 8 and 16. (i) 1 2
- (ii) Find the volume of the solid in exact form.
- (b) Kate wants to save \$30000 for her holiday. She invests \$150 at the beginning of each month. Interest is paid at the rate of 12% per annum compounded monthly.
 - How much money will Kate save after 5 years? 2 (i) (ii) How many months will it take Kate to reach her goal? 2
- (c) Consider the function $y = 1 2 \sin x$.

(i)	Find the exact values where the function y cuts the x-axis for	2
	$0 \le x \le 2\pi.$	
(ii)	Find the values of <i>y</i> when $x = 0$ and $x = 2\pi$.	1
(iii)	Draw a neat sketch of the function y for $0 \le x \le 2\pi$.	2
(iv)	Find the area bounded by the curve $y = 1 - 2 \sin x$, the x-axis and the	3

lines x = 0 and $x = \frac{\pi}{2}$, in exact form.

End of paper

Student Number: Solutions

2016 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

Multiple Choice Answer Sheet

Completely fill the response circle representing the most correct answer

	A	В	С	D
١.	0	0	0	0
2.	٥	0	0	0
3.	0	0	0	0
4.	0	0	۲	0
5.	0	0	0	۲
6.	0	0	۲	0
7.	0	0	0	0
8.	0	•	0	0
9.	0	0	0	0
10.	0	0	0	0

2016 Moths Trial (solutions)

0.33 B 145c+2 = 6 4 x+2=6 -4x+2=-643c = 44x = -8A $\chi = 1$ x = -22150 3 180° = 1 $215^{\circ} = \frac{1}{180} \times 215$ C - 4311 (9) $\cos(\frac{\pi}{2} - \alpha)$ sind sind C $\sin(2\pi - \alpha)$ ((2>c+1) d> = (2x+1)+C 6×2 $= (2x+1)^{6}$ 12 $\sqrt{7+2} = 3\sqrt{3}(\sqrt{7+2}) = \sqrt{3}(\sqrt{7+2})$ 6 353 C 17-2 7-4 VT+2 log 7 = > log 3 = y loga = loga = loga + loga = loga + 2loga = > + 2 4 To) ln8+ln16+ln32+ - $\ln 2^3 + \ln 2^4 + \ln 2^5 + \cdots$ 3ln2+4ln2+5ln2+ -- .: d=ln2 1.

Question 11 (cont.)

f' = 6x - 2 S.P. at (3,0) $J' = \int 6x - 2 dx$ $M = 6x^2 - 2x + e$ $= 3x^2 - 2x + e$ SP. at (3,0): y'=0 27-6+c=0 .: c=-21 $y' = 3x^{2} - 2x - 21$ $y = \int (3x^{2} - 2x - 21) dx$ $y = 3x^{2} - 2x^{2} - 21x + C,$ $y = x^{3} - 3c^{2} - 21x + c,$ x = 3, y = 0 $27 - 9 - 63 + c_{1} = 0 \quad \therefore \quad c_{1} = 45$ $f(x) = x^3 - x^2 - 2|x + 45$ · | mark for CORRECT PRIMITIVE DF y" · 2 marks for CORRECT PRIMITIVE OF Y' · 3 marks for CORRECT ANSWER

9)(i) $x^{2}-4x-8y-4=0$ $x^{2}-4x=8y+4$ $x^{2}-4x+4=8y+4+4$ $(x-2)^{2}=8(y+1)$ $\sqrt{(2_{1}-1)}$

· [MARK for PUTTING EQUATION IN THE FORM (X-h)= 4a(y-k) OR SUBSTRATIAL EFFORT USING A CORRECT TECHNQUE TO FIND THE VERIER · 2 MARKS for CORRECT ANSWER

Question 12 3×9×+2×3×-1=0 Ø. $3x(3^{x})^{2} + 2x3^{x} - 1 = 0$ Let $3^{x} = t$ $t = -2 \pm \sqrt{4 + 12} - 2 \pm 4$ $3t^2 + 2t - 1 = 0$ $6 \\ t = -1, t = \frac{1}{2}$ t = += -1 or 3---1 32=13 no solutions $3^{2}=3^{-1}$. (x=-1)· I mark for correct simplification to a guadratic equation · 2 marks for correct solving of the guadratic equation · 3 marks for correct solution of x and dismissing one solution b) $3x^2 - 4x - 8 = 0$ Gi) x+B=-b a a+B= 4 x/3= -8 x2+B= (x+B)2- 2x B $\frac{16}{9} + \frac{16}{3}$ · Mark for correct sum = 16+48 and product · 2 marks for recognising - 64 (a+B) -2x B and correct answer 64 d+ A= d+B (ii) 9 83 · I mark for correct answer

Question 12 (cont.)

$$C(i) = x e^{\sin x}$$

 $y' = e^{\sin x} + x e^{\sin x} \times cosx$
 $= e^{\sin x} (1 + x cosx)$

(ii) $j = \frac{\ln x}{\frac{1}{2}x^2} - \frac{\ln x}{\frac{1}{2}x^2} = \frac{1 - \ln x}{2^2}$

· I mark for correctly using either the quotient or product rule · 2 marks for correct answer

d)
(i)
$$\int \frac{x^3 + 1}{x^2} dx = \int \frac{x^3}{x^2} dx + \int \frac{dx}{x^2}$$

$$= \int x dx + \int x^{-2} dx$$

$$= \frac{x^2}{2} + \frac{x^{-1}}{-1} + C$$

$$= \frac{x^2}{2} - \frac{1}{x} + C$$

$$= \frac{x^2}{2} - \frac{1}{x} + C$$

$$= \frac{x^2}{2} - \frac{1}{x} + C$$

· 1 mark for sprong and simplifying the fraction · 2 marks for correct integration + c

ii)
$$d \left(\frac{\sin x - 1}{3} \frac{\sin^3 x}{3} \right) = \cos x - 3 \frac{\sin^2 x \cos x}{3}$$

$$= \cos x \left(1 - \frac{\sin^2 x}{3} \right)$$

$$= \cos x \times \cos^2 x$$

$$= \cos^3 x$$

$$\cdot 1 \mod x \text{ for correct differentiation}$$

$$\cdot 2 \mod x \text{ for substituting trip. identity to show the RHS.}$$

Question 12 (cont.)

$$\int 3\cos^{3}x \, dx = 3\int \cos^{3}x \, dx$$

$$= 3\left(\sin x - \frac{1}{3}\sin^{3}x\right) + C$$

$$= 3\sin x - \sin^{3}x + C$$

$$\cdot | mare for carect integration
Question 13
a) $+ (-3,1) = B(2/4) = C(-1,-1)$
A) $d(A, B) = \sqrt{5^{2} + 3^{2}} = \sqrt{34}$
 $d(A, C) = \sqrt{4^{2} + 2^{2}} = \sqrt{34}$
 $A = BC \therefore A + BC is isosceles.
 $\cdot | mark for | correct distance$
 $\cdot 2marks for 2 correct distance
 $\cdot 2marks for 2 correct distance$
 $\cdot | mark for | correct distance
 $\cdot 2marks for 2 correct distance$
 $\cdot | mark for gradient$
 $\cdot 2marks for gradient$
 $\cdot 2marks for gradient$
 $\cdot 2marks for correct application of $3 - 3 = \ln(x - x_{1})$
(iii) $B(2,4) = \frac{8}{2} \text{ or } \frac{8\sqrt{2}}{2} = 4\sqrt{2}$
 $\cdot | mark for correct subst. and simplification$$$$$$$

Question 13 (cont.)

(iv)
$$A = \frac{1}{2} AC \times d = \frac{1}{2} \times \frac{120}{202} \times \frac{1402}{202} = \frac{2120}{2400}$$

. Imourk for correct opplication of area $8u^2$
b) $x_0 \times x_1 \times x_2 \times x_3 \times u$

$$\begin{array}{ccc} (ii) & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

· I mark for h and substitution · 2 marks for correct opplication and answer

(iii)
$$y' = 5e^{-x} + 5xe^{-x} \times (-1)$$

 $= 5e^{-x} - 5xe^{-x}$
 $y'' = -5e^{-x} - 5e^{-x} + 5xe^{-x}$
 $= 5e^{-x} (x-2)$
. | mark for y'
. 2 marks for y''

· 2 moirks for

Question 13 (cont.)
(iv) $u' = 5e^{-x}(1-x)$
H'=0 if $I-X=0$.". $X=1$
$ -x + - -x > 0 e^{-x} > 0$
$y' + - x \leq 1$
3115
for x = 1 $g = 1.84$
(1,1.84) is a max
$u' = 5e^{-\chi}(x-2)$
$\frac{H}{2} = 0 = 1 \qquad (12 - \lambda)$
(2135) is a possible point of inflection
5e-x >0
<u>x-2</u> - 1 + x-2>0
$\frac{y'' - + x>2}{2}$
- y' concavity changes
(2, 1.35) is a paint of inflection
. I mark for x-coord. of St.
· 2 marks for SP
· 3 marks for SP and a point of influence + all above
he has been been and the here the

. Il marks for testing the point of infile

8

Question 14
(R) i)
$$A = \frac{1}{2}r^{2}d$$

 $625 = \frac{1}{2}r^{2}d$ $x = \frac{2}{2} \times 625$
 r^{2}
 $d = \frac{1250}{r^{2}}$
(ii) $P = r + r + rd$
 $= 2r + \frac{1250}{r}$
(iii) $P = 2r + \frac{1250}{r}$
.] mark for correct answer
(iii) $P = 2r + \frac{1250}{r}$
 $dP = 2 + \frac{1250}{r^{2}}$
 $dP = 2 + \frac{1250}{r^{2}}$
 $dP = 2 + \frac{1250}{r^{2}}$
 r^{2}
 $dP = -\frac{1250}{r^{2}}$
 $r^{2} = \frac{625}{r}$
 $r^{2} = 625$
 $r = 25$
($r - 25$)($r + 25$)=0
 $r = 25$
($r - 25$)($r + 25$)=0
 $r = 25$
 $r = 25$

Question 14 (cont.) for r=25 (v)1250 = 2 rad T = (80° x= 2vad = 180 x Z X = 115° " | mark for & in deprees 6) 20 10 A DAPBand ACPP < APB = < CPD (vertically opposite angles are equal.) $\frac{AP}{PB} = \frac{10}{4} = \frac{5}{2}$ $\frac{PD}{PC} = \frac{30}{12} = \frac{5}{7}$ 2 pairs of matching sides are in the same ratio and included angles are equal ... BAPBIII DCPD . I mark for ratio of sides 2 marks for correct reasoning (including vertically opp anyles) (ii) All matching angles in similar triangles are equal ?. < ABP = < PCD These are alternate ayles .: ABIICD . I Mark for KABP= <PCD with correct reason · 2 marks for alternate anges with reason

Question 14 (cont.)

c)
$$P = P_0 e^{kt}$$

(a) $t = 0$ $P = [5000]$
 $15000 = P_0 e^{kx0}$, $P_0 = 15000$
 $P = 15000 e^{kt}$
 $2010!, t = 10$ $P = 35000$
 $35000 = 15000 e^{10k}$
 $e^{10k} = 35$ $e^{k} = 7$
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15

· Markfor Po = 15000 or P= 15000e kt

· 2 marks for correct substitution 35000=15000e lok

· 3 marks for K = 0.08472. or K = 8.5%

Question 15 (cond.)

= 4 (2++1) (511) 2++1 $a = -4 (2+1)^{-2} \times (2)$ $-\frac{8}{(2+1)^2}$ 1 $(2+1)^2 > 0 - 820$, a < 0 · I mare for correct differentiation » 2 marks for correct reasoning to prove sico b) (3) $P(1,4) = \frac{1}{3} \times \frac{3}{5} = \frac{1}{5}$. I mark for correct answer (i) P(sum less than 5) = P(1,1) + P(1,3) + P(3,1) $= \frac{1}{3} \times \frac{1}{5} + \frac{1}{3} \times \frac{1}{5} + \frac{1}{6} \times \frac{2}{5}$ = 1 + 15 = 3 = +

· I mark for correct combinations and one correct poid.

· 2 marks for two other correct potobabilities

Question 15 (cont.) P(12,12) x=12y 0 x2 12 (i)J 26 22 = 12 dy dx $m_t = \frac{12}{6} - \frac{2}{2}$ at x=12 y - 12 = 2(x - 12)y - 12 = 2x - 242x - y - 12 = 0· I mark for gradient · 2 marks for equation of the tangent (ii) 4a=12 : a=3 divect. M=-3 2x-y-12=0 y=-3 2x+3-12=0 2x=9 20 = 9 · I mark for clearly showing the y-value of D · 2 marks for x-value of D

Question 15 (cont.) (iii) $\angle PFD = 90^\circ$? $F(0,3) = \frac{6}{-\frac{9}{2}} = \frac{-\frac{12}{2}}{-\frac{9}{2}} = \frac{-\frac{12}{2}}{-\frac{9}$ $m_{FP} = \frac{12-3}{12-0} = \frac{9}{12} = \frac{3}{4}$ $M_{FD} \times M_{FP} = -\frac{4}{3} \times \frac{3}{4} = -1$ · FDLFP · I'mark for gradients of FP and FD · 2 marks for showing FP L FD. dearly

· I MARK for CORRECT SIMPLIFIED EXPRESSION FOR THE VOLUME INTEGRAL

· 2 marks for CORRECT ANSWER

Question 16 (cont.)

b)
(1) V=12% p.a = 0,12
r= 0.01 per mouth
$n = 5 \times 12 = 60$
First annuity will earn preinterest for 60 months
$A_{1} = 150(1+0.01)^{60}$
$= (50 \times 1.01^{60})$
Second anuity will earn the interest for 54 months
A2= 150 x 1.0159
60th annity will earn the interest for I month
A62 150 x 1.01
Total = A, + A2+ + A60
= 150 x 1.01 00 + 150 x 1.01 + + 150 x 1.01
= 150 (1.01 "+ 1.01 59 + + 1.01)
=150 (1.01+1.01 ² ++ 1.01 ⁶⁰)
1.01+1.012++ 1.0160 is a permetric series
with $a = 1.01$ $r = 1.01$
$S_{co} = a(r^{n}-1) = 1.01(1.01^{60}-1)$
r-1 1.01-1
1
T= 150 × 1.01 (1.01°-1) - \$12372.95

Kote will save \$12372.95 after 5 years.

" I mark for CORRECT EXPRESSION FOR THE TOTAL INVESTMENT

· 2 marks for CORRECT ANSWER.

· 2 marks for CORRECT ANSWER.

· | MATIC for CORRECT ACUTE SOLUTION X = T

· 2 manes for CORRECT ANSWER

Question 16 (cout.) (ii) x=0 y=1-2sin0=1 $x=2\pi$ $y=1-2sin 2\pi = 1$. I mark for CORRECT ANSWERS (iii)15 8년 9년 1년 1년 TG T 2TT -1 - sinx = 1 -2 = 25mx = 2 -25-25inx52 $-1 \leq 1 - 2 \sin x \leq 3$

· I mark for CORRECT SHAPE AND RANGE

· 2 Marks for CORRECT CURVE, INCLUDING CORRECT INTERCEPTS AND ENDPOINTS.

Question 16 (eard.)

I mark for CORRECT INTEGRAL SPLIT INTO TWO AREAS BETWEEN
 2 marks for CORRECT INTEGRATION
 3 marks for CORRECT ANSWER

- End of solutions -

20