S.Moncriett.

St George Girls High School

Trial Higher School Certificate Examination

2013

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using blue or black pen
- Begin each question in a new booklet
- Write your student number on each booklet.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-16.
- Diagrams are not to scale.
- The mark allocated for each question is listed at the side of the question.

Total Marks - 100
Section I - Pages 2-4
10 marks

- Attempt Questions 1 - 10 using the answer sheet provided at the end of the paper
- Allow about 15 minutes for this section

Section II - Pages 5-10
90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1 to 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. If the line $4 x-k y=6$ passes through the point $(-1,-2)$. The value of k is:
(A) -1
(B) 1
(C) -5
(D) 5
2. A parabola with equation $(x-2)^{2}=8(y+4)$ has its focus at the point:
(A) $(2,-4)$
(B) $(2,-2)$
(C) $(4,-4)$
(D) $(4,-2)$
3. From a block of clay exactly 10 statues can be made. If the linear dimensions of the statues are all halved then the number of smaller statues that can be made is:
(A) 10
(B) 20
(C) 40
(D) 80
4.

If $A B \| C D, E D=F D$
and $\angle D F G=112^{\circ}$ then $\angle B E D=$
(A) 44°
(B) 68°
C. 24°
D. 112°

Section I (cont'd)

5. Which graph best illustrates $y=x(x-1)(2-x)$
(A)

(B)

(C)

(D)

6. $y=4 \sin \frac{1}{2} x$ has amplitude and period of
(A) $4, \frac{1}{2}$
(B) $4,2 \pi$
(C) $\frac{1}{2}, 4$
(D) $4,4 \pi$
7. A particle moves according to the rule $x=\frac{1}{2} t^{2}-4 t+c$ where x is the displacement from the origin after t seconds. Initially the particle is 8 metres from the origin. When the particle is at rest its displacement from the origin is:
(A) 0 metres
(B) 4 metres
(C) 8 metres
(D) 16 metres

Section I (contd)
8.

(A) $f^{\prime}(a)>0$ and $f^{\prime \prime}(a)<0$
(B) $f^{\prime}(a)>0$ and $f^{\prime \prime}(a)>0$
(C) $f^{\prime}(a)<0$ and $f^{\prime \prime}(a)<0$
(D) $f^{\prime}(a)<0$ and $f^{\prime \prime}(a)>0$
9.

(A) $2 x-y-4<0$
(B) $2 x-y-4>0$
(C) $2 x-y-4 \leq 0$
(D) $2 x-y-4 \geq 0$

Marks
Which of the following is true at $x=a$

The shaded region is best described by the inequality.
10. The perpendicular distance from the line $3 x-y=4$ and the point $(2,1)$ is given by:
(A) $\frac{9}{\sqrt{5}}$
(B) $\frac{9}{\sqrt{10}}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\frac{1}{\sqrt{10}}$

Section II
90 Marks
Attempt Questions 11-16
All about 2 hours and 45 minutes for this section
Answer each question in the appropriate writing booklet. Extra writing booklets are available,

In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 - Start A New Booklet - (15 marks)
a) Evaluate $\frac{1.9^{3}-18}{\sqrt{2.1^{4}-0.8^{3}}}$ to 2 decimal places.
b) Solve $|4-2 x| \leq 6$
c) Express as a single fraction with a rational denominator $\frac{1}{2-\sqrt{3}}+\frac{1}{2 \sqrt{2}+3}$
d) Differentiate $x^{3} \ln x$
e) Solve $\tan \theta=\sqrt{3}$ for $0 \leq \theta \leq 2 \pi$
f) Factorise $125-8 p^{3}$
g) Find the primitive of $\frac{6-3 x^{2}}{x^{2}}$

Question 12 - Start A New Booklet - (15 marks)
a) Evaluate $e^{3.7}$ correct to 4 significant figures.
b)

$A B$ is an arc of the circle centre O.

Find the exact area of the sector $A O B$
c) If

$$
f(x)= \begin{cases}x+2 & \text { for } x \leq-2 \\ 4-x^{2} & \text { for }-2<x<2 \\ 3 x-6 & \text { for } x \geq 2\end{cases}
$$

Evaluate $f(3)+f(0)-f(-2)$
d) Solve $3^{2 x}-6\left(3^{x}\right)-27=0$
e) The first term of an arithmetic series is 5 and the $10^{\text {th }}$ term is 4 times the second. Find the common difference.

Prove $A B \| C D$, stating all reasons.
g) Find $\frac{d}{d x} \log _{e}(\cos x)$, and hence find $\int \tan x d x$

Question 13 - Start A New Booklet - (15 marks)
a)

The points A, B and C have co-ordinates $(1,0),(0,8)$ and $(7,4)$ as shown on the diagram. The angle between $C A$ and the positive x-axis is θ°.
(i) Find the gradient of CA
(ii) Calculate the size of θ, to the nearest degree.
(iii) Find the equation of $C A$
(iv) Find the coordinates of D, the midpoint of $C D$.
(v) Show $C A \perp B D$
(vi) Calculate the area of $\triangle A B C$2
b) Prove $2 \cos ^{2} \theta+1=3-2 \sin ^{2} \theta \quad 2$
c) Differentiate with respect to x
(i) $\left(2 e^{x}-3\right)^{6} \quad 2$
(ii) $\frac{x^{2}}{\sin x}$
d) Integrate $x e^{x^{2}}$

Question 14 - Start A New Booklet - (15 marks)
a)

Ship A sails 20 nautical miles from Port P on a bearing of 035°. Ship B is 36 nautical miles from Port P on a bearing of 110°.
(i) Copy the diagram into your answer booklet and mark on it all the given information.
(ii) Show $\angle A P B=75^{\circ}$
(iii) Use the cosine rule to determine the distance between the two ships, to the nearest nautical mile.
b) State the domain and range of $y=\sqrt{1-x}$
c) The gradient function of a curve is given by $f^{\prime}(x)=2(x-1)(x+4)$ and the curve passes through the point $(0,8)$
(i) Find the equation of $f(x)$
(ii) Sketch the curve clearly labelling turning points and the y-intercept.
(iii) For what values of x is the curve concave up?
d) Consider the function

$$
y=\ln (x-3) \quad x>3
$$

(i) Sketch the function, showing its essential features.
(ii) Use Simpson's Rule with 3 function values to find an approximation to

$$
\int_{4}^{6} \ln (x-3) d x
$$

Question 15 - Start A New Booklet - (15 marks)
a) The first three terms of a GP are $0.1,0.12,0.144$
(i) Find the $40^{\text {th }}$ term, correct to 1 decimal place.
(ii) Calculate the sum of the first 40 terms, correct to 1 decimal place.
b) A particle moves in a straight line so that its displacement, in metres, is given by:

$$
x=\frac{t-4}{t+1}
$$

where t is measured in seconds.
(i) What is the displacement when $t=0$
(ii) Show that $x=1-\frac{5}{t+1}$, and hence find expressions for the velocity and acceleration in terms of t
(iii) Is the particle ever at rest? Give a reason for your answer.
c) The population of a certain insect is growing exponentially according to

$$
N=400 e^{k t}
$$

where t is the time in weeks after the insects are first counted. At the end of five weeks the insect population has doubled.
(i) Calculate the exact value of k. 2
(ii) How many insects will there be after 8 weeks?
(iii) At what rate is the population increasing after 5 weeks.
d) (i) Write down the discriminant of $2 x^{2}+4 x+k$
(ii) For what values of k does $2 x^{2}+4 x+k=0$ have real roots.

Question 16 - Start A New Booklet - (15 marks)
a) (i) Find the equations of the tangent and normal to the curve with equation

$$
y=4 x^{2}(1-x)
$$

at the point $(1,0)$.
(ii) The tangent and normal cut the y-axis at A and B respectively. If the point of intersection of the tangent and the normal is C find the area of $\triangle A B C$.
b) (i) Sketch the graphs of $y=e^{-x}, y=x+1$ and $x=2$ on the same set of axes.
(ii) Find, by integration, the area bounded by $y=e^{-x}, y=x+1$ and $x=2$ (leave your answer in exact form)
c) Find:
(i) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
d) A store offers a special deal where it will charge no interest on loans on purchases for the first year, and charge 1% per month on the balance owing each month thereafter. However, normal repayments must be made at the end of each month. Emily decides to buy a $\$ 4000$ television using the special deal.

She agrees to repay the loan over 24 equal monthly repayments of $\$ M$. Let $\$ A_{n}$ be the amount owing at the end of the nth month.
(i) Find an expression for A_{1} and A_{12}
(ii) Show $A_{15}=(4000-12 M)(1.01)^{3}-M\left(1+1.01+1.01^{2}\right)$
(iii) Find the value of M

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

2013 Trial Higher School Certificate Examination Mathematics
Section 1 Multiple Choice

1. D
2. B
3. 3
4. A
5. B
6. D
7. A
8. D
9. A
10. D
11.

$$
\begin{aligned}
4 x-1-k x-2 & =6 \\
-4+2 k & =6 \\
2 k & =10 \\
k & =5
\end{aligned}
$$

6. Amplitude 4

$$
\begin{aligned}
\text { Period } & =\frac{2 \pi}{1 / 2} \\
& =4 \pi
\end{aligned}
$$

2.

$$
\int_{(2,-4)} \begin{array}{r}
4 a=8 \\
a=2 \\
F(2,-2)
\end{array}
$$

3.

$$
\begin{aligned}
& V=\left(\frac{1}{2}\right)^{3} \text { of original } \\
& =\frac{1}{8} \text { of original } \\
& \therefore \text { \# of statues: } 8 \times 1 \\
& \angle D F E=180^{\circ}-112^{\circ} \\
& =68^{\circ} \\
& \angle D E F=68^{\circ} \\
& \therefore x+68=112 \\
& x=44
\end{aligned}
$$

$$
\therefore \text { \# of statues: } 8 \times 10=80
$$

4.
5. $y=0$ when $x=0,1,2$
when $x<0 \quad y>0$

$$
\therefore B(\operatorname{not} A)
$$

9. Test $(0,0) \Rightarrow A$
a. $d=\frac{|3 \times 2-1-4|}{\sqrt{3^{2}+(-1)^{2}}}$
$=\frac{|6-1-4|}{\sqrt{10}}$
10. Negative gradient $f^{\prime}(a)<0$ Concave up $f^{\prime \prime}(a)>0$
$=\frac{1}{\sqrt{10}}$

Question 11
(a)

$$
\begin{aligned}
& -2.5602295 \ldots \\
= & -2.56(2 \mathrm{dp})
\end{aligned}
$$

(b)

$$
\begin{array}{r}
|4-2 x| \leqslant 6 \\
-6 \leqslant 4-2 x \leqslant 6 \\
-10 \leqslant-2 x \leqslant 2 \\
5 \geqslant x \geqslant-1 \\
-1 \leqslant x \leqslant 5
\end{array}
$$

(f)

$$
\begin{aligned}
& 125-8 p^{3} \\
& =(5-2 p)\left(25+10 p+4 p^{2}\right)
\end{aligned}
$$

(g) Prmitive of $\frac{6-3 x^{2}}{x^{2}}$

$$
\begin{aligned}
& =\int 6 x^{-2}-3 d x \\
& =\frac{6 x^{-1}-3 x+c}{-1}
\end{aligned}
$$

(c) $\frac{1}{2-\sqrt{3}}+\frac{1}{2 \sqrt{2}+3}$

$$
=-\frac{6}{x}-3 x+c
$$

$$
=\frac{2+\sqrt{3}}{4-3}+\frac{2 \sqrt{2}-3}{8-9}
$$

$$
=\frac{2+\sqrt{3}}{1}+\frac{2 \sqrt{2}-3}{-1}
$$

$$
=2+\sqrt{3}-2 \sqrt{2}+3
$$

$$
=5+\sqrt{3}-2 \sqrt{2}
$$

(d)

$$
\text { x) } \begin{aligned}
& d\left(x^{3} \ln x\right) \\
= & 3 x^{2} \cdot \ln x+x^{3} \cdot \frac{1}{x} \\
= & 3 x^{2} \ln x+x^{2}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\tan \theta & =\sqrt{3} 0 \leqslant \\
\theta_{\text {ocute }} & =\frac{\pi}{3} \\
\theta & =\frac{\pi}{3}, \pi+\frac{\pi}{3} \\
& =\frac{\pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

Question 12
(a)

$$
\begin{aligned}
& e^{3.7} \\
= & 40.447304 \ldots \\
= & 40.45 \text { (4sigfigs) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 16^{2} \times \frac{\pi}{3} \\
& =\frac{128 \pi}{3}
\end{aligned}
$$

Area is $\frac{128 \pi}{3} \mathrm{~cm}^{2}$
(c)

$$
\text { } \begin{aligned}
& f(3)+f(0)-f(-2) \\
= & 3 \times 3-6+\left(4-0^{2}\right)-(-2+2) \\
= & 3+4-0 \\
= & 7
\end{aligned}
$$

(d) $3^{2 x}-6\left(3^{x}\right)-27=0$ Let $m=3^{x}$

$$
\begin{gathered}
m^{2}-6 m-27=0 \\
(m-9)(m+3)=0 \\
m=9,-3 \\
3^{x}=9 \text { or } 3^{x}=-3 \\
x=2 \text { no solution } \\
\text { since } 3^{x}>0 \\
\text { for all } x .
\end{gathered}
$$

(e) Let d be the common diff

$$
\begin{aligned}
\dot{t}_{2} & =a+d \\
& =5+d \\
t_{10} & =a+9 d \\
& =5+9 d
\end{aligned}
$$

Question 13
(a) (i)

$$
\begin{aligned}
\text { Grad } C A & =\frac{4-0}{7-1} \\
& =\frac{4}{6} \\
& =\frac{2}{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan \theta & =\frac{2}{3} \\
\theta & =34^{\circ}\left(\frac{\text { nearest }}{\text { degree }}\right)
\end{aligned}
$$

(iii) Equation of $C A$

$$
\begin{array}{r}
y-0=\frac{2}{3}(x-1) \\
y=\frac{2}{3} x-\frac{2}{3}
\end{array}
$$

(iv)

$$
\begin{aligned}
\text { Midpoint CA } & =\left(\frac{1+7}{2}, \frac{0+4}{2}\right) \\
D & =(4,2)
\end{aligned}
$$

(v)

$$
\begin{aligned}
\text { Grad BD } & =\frac{8-2}{0-4} \\
& =\frac{6}{-4} \\
& =-\frac{3}{2}
\end{aligned}
$$

$\operatorname{Grad} B D \times \operatorname{Grad} C A=\frac{2}{3} x-\frac{3}{2}$

$$
=-1
$$

$$
\therefore B D \perp C A
$$

(vi)

$$
\begin{aligned}
A C & =\sqrt{(7-1)^{2}+(4-0)^{2}} \\
& =\sqrt{52}
\end{aligned}
$$

Question 14
(i)

(ii)

$$
\begin{aligned}
\angle A P B & =110^{\circ}-35^{\circ} \\
& =75^{\circ}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
A B^{2} & =20^{2}+36^{2}-2 \times 20 \times 36 \cos 75^{\circ} \\
& =1323.30 \ldots \\
A B & =36.3771 \ldots
\end{aligned}
$$

\therefore Ships are 36 niles (nearest nm) apart.
(h) $y=\sqrt{1-x}$

Domain: $1-x \geqslant 0$

$$
x \leq 1
$$

Range: $y \geqslant 0$

(c)

$$
\begin{aligned}
f^{\prime}(x) & =2(x-1)(x+4) \\
& =2\left(x^{2}+3 x-4\right) \\
& =2 x^{2}+6 x-8 \\
f(x) & =\frac{2 x^{3}}{3}+\frac{6 x^{2}}{2}-8 x+c
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=8 \quad \therefore \quad c=8 \\
& f(x)=\frac{2}{3} x^{3}+3 x^{2}-8 x+8
\end{aligned}
$$

(ii) Stationary points occur when $f^{\prime}(x)=0$ ie $x=1$ or $x=-4$

$$
y=3 \frac{2}{3} \quad y=\frac{136}{3}=45 \frac{1}{3}
$$

$$
f(0)=8(\text { y intercept })
$$

(iii) $f^{\prime \prime}(x)=4 x+6$

Curve is concave up when $f^{\prime \prime}(x)>0$

$$
\begin{aligned}
4 x+6 & >0 \\
x & >-\frac{3}{2}
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
\text { (ii) } \begin{aligned}
& \int_{4}^{6} \ln (x-3) d x \div \frac{h}{3}\left(y_{1}+4 y_{2}+y_{5}\right) \\
& h=1=\frac{1}{3}(0+4 \ln 2+\ln 3) \\
& y_{1}=\ln (4-3)=0=\frac{1}{3} \ln 48 \\
& y_{2}=\ln (5-3)=\ln 2 \\
& y_{3}=\ln (6-3)=\ln 3
\end{aligned} \\
\end{aligned}
$$

Question 15
(a) $a=0.1 \quad r=1.2$
(i)

$$
\begin{aligned}
t_{40} & =a r^{39} \\
& =0.1 \times 1.2^{39} \\
& =122.480 \ldots \\
& =122.5(1 \mathrm{~d} \rho)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{40} & =\frac{a\left(r^{40}-1\right)}{r-1} \\
& =\frac{0.1\left(1.2^{40}-1\right)}{1.2-1} \\
& =734 \cdot 3875 \ldots \\
& =734.4(1 d \rho)
\end{aligned}
$$

(b) (i)

$$
\text { When } t=0 \quad x=\frac{-4}{1}
$$

Displacement is -4 m
(ii)

$$
\begin{aligned}
& 1-\frac{s}{t+1}=\frac{t+1-5}{t+1} \\
& =\frac{t-4}{t+1} \\
& \therefore \quad x=1-\frac{5}{t+1} \\
& \text { OR } \frac{t-4}{t+1}=\frac{t+1-5}{(t+1)} \\
& =\frac{t+1}{t+1}-\frac{5}{t+1} \\
& =1-\frac{5}{t+1} \\
& v=\dot{x}=\frac{d}{d t}\left(1-s(t+1)^{-1}\right) \\
& =+5(t+1)^{-2}+1 \\
& =\frac{5}{(t+1)^{2}} \\
& a=\ddot{x}=\frac{d}{d t} s(t+1)^{-2} \\
& =-10(t+1)^{-3} \cdot 1 \\
& =\frac{-10}{\left((+1)^{3}\right.}
\end{aligned}
$$

(iii) $\frac{5}{(t+1)^{2}}>0$ for all values of t and hence $v \neq 0$, ie particle is never at rest.
(c) $N=400 e^{k t}$
(i) When $t=0 \quad N=400 e^{\circ}=400$

When $t=5 \quad N=2 \times 400=800$

$$
\begin{aligned}
\therefore \quad 800 & =400 e^{5 k} \\
e^{5 k} & =2 \\
5 k & =\log _{e} 2 \\
k & =\frac{\log _{e} 2}{5}
\end{aligned}
$$

(ii) When t $=8$

$$
\begin{aligned}
N & =400 e^{8 k} \\
& =400 e^{\frac{8 \operatorname{tag} 2}{5}} \\
& =1212.57 \ldots
\end{aligned}
$$

\therefore There will be 12/3 insects after sweets
(iii)

$$
\begin{aligned}
& \frac{d N}{d t}=400 k e^{k t} \\
&=k N \\
& \text { When } t=5 N=800 \\
& \frac{d N}{d t}=\frac{\log _{e} \alpha}{s} \times 800 \\
&=110.903 \ldots
\end{aligned}
$$

Population is increasing at arate of III insects/week.
(d) (i)

$$
\Delta=4^{2}-4 \times 2 \times k=16-8 k
$$

(ii) $2 x^{2}+4 x+k=0$ hasreal roots when $\Delta \geqslant 0$

$$
\begin{array}{r}
16-8 k \geq 0 \\
8 k \leqslant 16 \\
k \leqslant 2
\end{array}
$$

Question 16
(a) (i)

$$
\begin{aligned}
y & =4 x^{2}(1-x) \\
& =4 x^{2}-4 x^{3} \\
\frac{d y}{d x} & =8 x-12 x^{2}
\end{aligned}
$$

When $x=1$

$$
\begin{aligned}
\frac{d y}{d x} & =8-12 \\
& =-4
\end{aligned}
$$

\therefore Grad of tangent $=-4$

$$
\text { at }(1,0)
$$

$\frac{\text { Grad of normal }}{\text { at }(1,0)}=\frac{1}{4}$
(ii)

$$
\begin{aligned}
A & =\int_{0}^{2} x+1-e^{-x} d x \\
& =\left[\frac{x^{2}}{2}+x+e^{-x}\right]_{0}^{2} \\
& =\left(\frac{4}{2}+2+e^{-2}\right)-\left(0+0+e^{0}\right) \\
& =0+03+e^{-2}
\end{aligned}
$$

Area $=3+\frac{1}{e^{2}}$ units 2
Eq of tangent is

$$
\begin{aligned}
y-0 & =-4(x-1) \\
y & =-4 x+4
\end{aligned}
$$

Eqnof normal is
(c) (i)

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} & =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{(x-3)} \\
& =\lim _{x \rightarrow 3}(x+3) \\
& =6
\end{aligned}
$$

$$
y-0=\frac{1}{4}\left(x-\frac{4}{4} 1\right)
$$

$$
y=\frac{1}{4} x-\frac{1}{4}
$$

(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(ii) \wedge_{4}^{y}
(d) (i)

$$
\begin{aligned}
& A_{1}=4000-M \\
& A_{2}=A_{1}-M=4000-2 M \\
& A_{3}=A_{2}-M=4000-3 \mathrm{M}
\end{aligned}
$$

B_{y} the same pattern

$$
A_{12}=4000-12 \mathrm{M}
$$

$$
\begin{aligned}
& A B=4 \frac{1}{4}=\frac{17}{4} \\
& O C=1
\end{aligned}
$$

(ii)

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{1}{2} \times O C \times A B \\
& =\frac{1}{2} \times 1 \times \frac{17}{4} \\
& =\frac{17}{8} \text { units }^{2}
\end{aligned}
$$

(ii) By the same pattern

$$
\begin{aligned}
A_{24} & =(4000-12 \mathrm{M}) \times 1.01^{12}-M \times 1.01^{11}-M \times 1.01^{10}-\cdots-M \\
& =(4000-12 \mathrm{M}) \times 1.01^{12}-M\left(1+1.01+1.01^{2}+\cdots+1.01^{11}\right) \\
& =(4000-12 \mathrm{M}) \times 1.01^{12}-M \frac{1\left(1.01^{12}-1\right)}{1.01-1}
\end{aligned}
$$

If loan repaid after 24 months then $A_{24}=0$

$$
\begin{aligned}
& O=(4000-12 M) \times 1.01^{12}-\frac{M\left(1.01^{12}-1\right)}{0.01} \\
& 100 M\left(1.01^{12}-1\right)=(4000-12 M) \times 1.01^{12} \\
& 100 M\left(1.01^{12}-1\right)+12 M \times 1.01^{12}=4000 \times 1.01^{12} \\
& M\left[100\left(1.01^{12}-1\right)+12 \times 1.01^{12}\right]=4000 \times 1.01^{12} \\
& M=\frac{4000 \times 1.01^{12}}{112 \times 1.01^{12}-100} \\
& =172.00544 \ldots
\end{aligned}
$$

Repayments are $\$ 172$ per month

