St George Girls High School

Trial Higher School Certificate Examination

2017

Mathematics

General Instructions

- Reading time 5 minutes •
- Working time 3 hours •
- Write using black or blue pen •
- Board-approved calculators may be used •
- A reference sheet is provided •
- In Questions 11 15, show relevant • mathematical reasoning and/or calculations

Total Marks - 100

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

90 marks

- Attempt Questions 11 15
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I	/10
Section II	
Question 11	/18
Question 12	/18
Question 13	/18
Question 14	/18
Question 15	/18
Total	/100

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10

- 1. The graph of $y = x(x^2 1)$ intersects with the *x* axis at:
 - (A) 1 point
 - (B) 2 points
 - (C) 3 points
 - (D) 4 points
- 2. Which of the following quadratic expressions is positive definite?
 - (A) $x^2 + 7x + 1$
 - (B) $x^2 + 7x 1$
 - (C) $x^2 + 7x + 15$
 - (D) $x^2 + 7x 15$
- 3. What is the <u>range</u> of the function $f(x) = \sqrt{4 x^2}$
 - (A) 0 < y < 2
 - (B) $0 \le y \le 2$
 - (C) -2 < y < 2
 - (D) $-2 \le y \le 2$
- 4. The focus of the parabola $x^2 = 8(y 1)$ is at:
 - (A) (0,1)
 - (B) (0,3)
 - (C) (0,−1)
 - (D) (0,8)

Section I (cont'd)

- 5. What is the period of $y = \tan 6x$.
 - (A) $\frac{\pi}{6}$
 - (B) $\frac{\pi}{3}$
 - (C) 6π
 - (D) 12π
- 6. What is the value of $\int_{-4}^{3} |x+2| dx$
 - (A) $\frac{21}{2}$ (B) $\frac{53}{2}$ (C) $\frac{3}{2}$
 - (D) $\frac{29}{2}$
- 7. If $y = xe^{2x}$ then $\frac{dy}{dx} =$
 - (A) $x e^{2x}$
 - (B) $2x e^{2x}$
 - (C) $(1+2x) e^{2x}$
 - (D) $(1+x) e^{2x}$
- 8. |2x + 4| = -x + 4 when solved has:
 - (A) no solution
 - (B) 1 solution
 - (C) 2 solutions
 - (D) 3 solutions

Section I (cont'd)

9. If
$$f(x) = \frac{3x^4 - x}{x^2}$$
 then $f'(1) =$
(A) 5
(B) 7
(C) 0
(D) 2
10. $\sum_{r=1}^{5} (-1)^r 2^r =$
(A) 6
(B) -62
(C) 22
(D) -22

Section II

90 marks Attempt Questions 11 – 15 Allow about 2 hours and 45 minutes for this section.

Start each question in a new writing booklet.

 $2x^3 - 12x^2 + 18x - 3?$

Your responses should include relevant mathematical reasoning and/or calculations.

Que	estion 11 (18 marks) Start a New Writing Booklet.	Marks
a)	Simplify $\sqrt{75} - \frac{1}{2}\sqrt{48}$.	1
b)	Find to 2 decimal places sec 40°15′.	1
c)	Draw a neat sketch of $y = 3 \cos 2x$ for $0 \le x \le 2\pi$, showing clearly all relevant features.	2
d)	A point $P(x, y)$ moves so that its distance from the <i>x</i> -axis is always twice its distance from the <i>y</i> -axis. Describe this locus geometrically.	1
e)	Find the radius of the circle $x^2 + 4x + y^2 - 6y - 12 = 0$.	2
f)	Write in simplest form $\frac{x+3}{x^{-1}+3^{-1}}$.	1
g)	Differentiate with respect to x	
	(i) $\log_e \sqrt{3x^2 - 2}$ (ii) $\frac{x+3}{2x-5}$	4
h)	Prove $\frac{1}{\sin\theta\cos\theta} - \tan\theta = \cot\theta$.	2
i)	(i) Find the stationary points of the function $y = 2x^3 - 12x^2 + 18x - 3$ and determine their nature.	3
	(ii) In the domain $\{x: -5 \le x \le 5\}$ what is the greatest value of	1

Que	stion 12 (18 marks) Start a New Writing Booklet.	Marks
a)	State the domain of x if $x = 3^y$.	1
b)	Find the area between the curve $y = e^x - 2$ and the <i>x</i> -axis from $x = 0$ and $x = 3$.	3
c)	For the arithmetic sequence 400, 350, 300, find:	
	(i) An expression for T_n .	1
	(ii) Which is the first negative term of the sequence?	2
	(iii) The sum of the first 20 terms.	1
d)	A particle moves along the x axis with acceleration $(t - 2)$ m/s ² . Initially it is 1 m to the right of the origin, with velocity 3 m/s. What is the position of the particle after 6 seconds?	3

after 6 seconds?

Solve $x^2 > 3x$. f)

For what values of x is $y = x^3 - 3x + 5$ an increasing function? g)

2

2

Question 13 (18 marks) Start a New Writing Booklet.

b) If
$$0 \le \theta \le 2\pi$$
 solve $\sin 2\theta = -\frac{\sqrt{3}}{2}$.

c) If α and β are the roots of $3x^2 - 4x - 1 = 0$ find the values of:

- (i) $\alpha + \beta$ 1
- (ii) $\alpha\beta$ (iii) $\alpha^2 + \beta^2$
- d) Use Simpson's Rule with 5 function values to approximate $\int_{1}^{9} \log_e x \, dx$, giving your answer to 2 significant figures.
- e) A particle moving in a straight line at time t (in seconds) has displacement x (in cm) given by $x = 6t t^3$. When is the particle at rest and what is the acceleration at that time?

1

2

2

1

1

Marks

3

Ques	stion 14 (18 marks) Start a New Writing Booklet.	Marks
a)	The fourth term of a geometric sequence is 96 and the seventh term is 12.	
	Find the	
	(i) first term and common ratio.	2
	(ii) first term smaller than 0.0001 .	2
b)	Find the equation of the tangents to the curve $y = 4 \cos x$ at the point where $x = \frac{\pi}{6}$	3
c)	Annie was born on the 1 st January 2000. Her parents invest \$1000 on this day and on every birthday thereafter. The interest is paid at 6% compounded annually. After completing her HSC she decides to use the account to fund a gap year. She withdraws all the funds on 31/12/17 (getting paid her interest for 2017).	
	(i) What is the value of the investment on the 31/12/01 (after the interest for 2001 is paid)?	2
	(ii) How much does Annie collect on 31/12/17?	3
d)	Solve $2\log_2 x - \log_2(2x + 6) = 1$.	3
e)	Find:	
	(i) $\int 2\sin(\frac{\pi}{4} + x)dx$	1
	(ii) $\int \frac{x}{x^2+3} dx$	2

Question 15 (18 marks) Start a New Writing Booklet.

a) Evaluate
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 2

b) For what value of *n* is
$$\frac{6^{3n} \times 9^{n+1}}{8^n} = 1$$
.

c) The parabola $y = ax^2 + bx + c$ passes through the points (0, 5), (1, 3) and (-1, 5). 3 Find the value of *a*, *b* and *c*.

f) A cylindrical container closed at both ends is made from thin sheet metal. The container is to have a radius of r cm and height of h cm, such that its volume is 1000π cm³.

[So $V = \pi r^2 h$ and $SA = 2\pi r^2 + 2\pi r h$]

(i) Show that the area of sheet metal required to make the container is

$$\left(2\pi r^2 + \frac{2000\pi}{r}\right) \mathrm{cm}^2 \tag{1}$$

(ii) Hence find the minimum area of sheet metal required to make the container. 4

End of Examination

Factorisation

$$a^{2}-b^{2} = (a+b)(a-b)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

Angle sum of a polygon

 $S = (n-2) \times 180^{\circ}$

Equation of a circle

 $(x-h)^2 + (y-k)^2 = r^2$

Trigonometric ratios and identities

 $\sqrt{3}$

Exact ratios

Sine rule

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule $c^2 = a^2 + b^2 - 2ab\cos C$

Area of a triangle

Area = $\frac{1}{2}ab\sin C$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left|ax_1 + by_1 + c\right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line $y - y_1 = m(x - x_1)$

*n*th term of an arithmetic series $T_n = a + (n-1)d$

Sum to n terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

 $n {\rm th} \ {\rm term} \ {\rm of} \ {\rm a} \ {\rm geometric} \ {\rm series}$ $T_n = a r^{n-1}$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

$$S = \frac{a}{1-r}$$

Compound interest

$$A_n = P \bigg(1 + \frac{r}{100} \bigg)^n$$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$
If $y = uv$, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
If $y = \frac{u}{v}$, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
If $y = F(u)$, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$
If $y = e^{f(x)}$, then $\frac{dy}{dx} = f'(x)e^{f(x)}$
If $y = \log_e f(x) = \ln f(x)$, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$
If $y = \sin f(x)$, then $\frac{dy}{dx} = f'(x)\cos f(x)$
If $y = \cos f(x)$, then $\frac{dy}{dx} = -f'(x)\sin f(x)$
If $y = \tan f(x)$, then $\frac{dy}{dx} = f'(x)\sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a} \qquad \qquad \alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

Integrals

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$
$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C$$
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$
$$\int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + C$$
$$\int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + C$$
$$\int \sec^2(ax+b) dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

 $180^\circ = \pi$ radians

Length of an arc $l = r\theta$

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

Student Name: _____ Class Teacher: _____

Section I

Year 12 Trial HSC Examination 2017

Mathematics

Multiple-choice Answer Sheet - Questions 1 - 10

Allow about 15 minutes for this section.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A 🔿	В	C 🔿	D 🔿

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer. B $C \bigcirc$ $D \bigcirc$ A 🔴

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

Student Name: ______ Class Teacher: ______

Section I

Year 12 Trial HSC Examination 2017

Mathematics

Multiple-choice Answer Sheet - Questions 1 - 10

Allow about 15 minutes for this section.

A (

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample	2+4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A 🔿	B 🌰	C ()	D 🔿

B

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

...

 $1) Y = \chi(\chi^2 - 1)$ $O = \chi(\chi - 1)(\chi + 1)$ $\therefore \chi = O, 1, -1 \qquad \therefore 3pts$ 2) a > 0 $b^2 - 4ac < 0$ $\gamma^{2} - 4(1)(c) < 0$ 49-46 0 c > 122 $3) \quad \gamma = \sqrt{4 - \chi^2}$ RANGE +) $ze^2 = 4a(y-k)$ 4a=8 : a=2 (0,1) S(0,3)B y=ten 62 5) y = tan x D: - Ecn K = - E 26n 2 E R: all Nelly - Ecn 2 E Ψ 6) $\int_{-4}^{3} |x+2| dx$ (-4, 2) $2 + 12^{2}$ = 24 $\frac{\gamma}{y^{2} - \chi e^{2n}} + 2n e^{2n}}{y^{1} - \frac{1}{e^{2n}} + 2n e^{2n}}$

8) 2n+4 = -n+4 $\begin{array}{rcl} & 2n+4=-(-n+4) \\ & 2n+4=x-4 \\ & x=-8 \end{array}$ 2x + 4 = -x + 43n=0 <u>z=0</u> LHS = 4 RHS = 4LHS=12 RHJ=12 : 2 sol~ C 3n4-n n2 a) f(n) = $= 3n^2$ $f'(n) = 6n + n^{-2}$ f'(1) = 6 + 1 $\sum_{i=1}^{5} (-i)^{i} 2^{i}$ (0) $= -1(2)^{1} + (-1)^{2}(2)^{2} + (-1)^{3}(2)^{3} + (-1)^{4}(2)^{4} + (-1)^{5}(2)^{5}$ = -2 +4-8+16-32 = 20 - 42 = -22

MATHEMATICS-QUESTION 11 2017 MSC TRIAL. 24 MARKS | MARKER'S COMMENTS SUGGESTED SOLUTIONS $\sqrt{55} - \frac{1}{2}\sqrt{48} = 5\sqrt{5} - \frac{1}{2}(4\sqrt{3})$ 12 = 3 J3 12 = 1.31 113 2 MARK FULL MARKS FOR CORRECT PERIDO AMPLITUDE, SUAPE 12 04041 2. 至 3万 27 Π T Z 31 17 π X 12 ; f 2 or less x intercepts slown NOTE SCALE · I se P(x,y) $\frac{2PN = PM}{4PN^2 = Pm^2}$ $\frac{4x^2 = y^2}{y^2}$ or 14/=122 (o.y) $y = \pm 2x$ $M(x, \sigma)$ on y = 2n/ [POORLY DONE] $y = \pm 2x$ 1 - MARK FOR pradients ± 2 passing through (0,0) y=2x w.H_ some supporting working.

MATHEMATICS-QUESTION 11 (Cont) SUGGESTED SOLUTIO MARKS **MARKER'S COMMENTS** e) x2+4x+y2-6y-12=0 n²+4n+4+ + y²-6y+9=12+4+9 1 $(n+2)^{2} + (y-3)^{2} = 25$ Mostly well .: Radms = 5 $\frac{3x+3}{\frac{1}{x}+\frac{1}{3}}, \frac{3x}{3^{n}}, \frac{3x(x+3)}{3+n}$ fMany did unusual things when trying to take recipioca = 3 pe g) i) y = loge J3x2-2 Let $m = (3n^2 - 2)^{1/2}$ $\frac{dm}{dx} = \frac{1}{2} (3x^2 - 2)^{-1/2} \cdot 6x$ = 3x (3n - 2) 12 y = loge m $\frac{dy}{dm} = \frac{1}{m}$ dy dy dn the dr dr = m × 3x (3x2-2) Ξ

MATHEMATICS- QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS OR y = loge J3n2-2 This is a bother nethod loge (3n2-2) dy Jr 1 0 <u>1</u> · 6 n 3n 3n²-2 2 - <u>x+3</u> 2n-5 y = x + 3 v = 2x - 5v = 2Ĺ dy 1(2n-5) - 2(n+3)dx $(2n-5)^{\perp}$ l 2n-5-2n-6 ERRORS FROM HORE 2 (2n-5)2 ON IGNORED. (2n-5)2 -Sindes O LMS - tan O gind cos O s. O Sind Cost of Sind Cost of -1-s.~20 Well down by 1 s-0 cs 0 = <u>cos²0</u> = <u>sin 0 cos</u> .

MATHEMATICS-QUESTION 11 Gout SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS = co x 8 = RHS. i) $y = 2n^3 - 12n^2 + 18n + 3$ $y' = 6n^2 - 24n + 18$ $y' = 6(n^2 - 4n + 3)$ 6 MUST HAVE 6(x-3)(x-1)y1=0 when n=1or3 y" = 12n - 24 when x=1 y''=-1220. " max t.p (1,5) y"= 12 7 30 U when n=3 <u>" m. +p (3,-3)</u> i) Max value of end points of domain or at local maxima x=5 $y=2(5)^3-12(5)^2+18(5)^{-3}$ x=-5 $y=2(-5)^3-12(-5)^2+18(-5)^{-3}$ Many students did not seend how max/in read « Max value is 37 to be checked

MATHEMATICS-QUESTION 12 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 12a) x>0 ł <u>b</u>) This question was when y=0 poorly done. Stress to $e^{x}=2$ students to x = ln 2ALWAYS draw ÷ 0.69. . . a diagram. $A = \int \frac{1}{(e^{x} - 2)} dx + \int \frac{3}{(e^{x} - 2)} dx$ $= \left| \left[e^{x} - 2x \right]_{0}^{in2} \right| + \left[e^{x} - 2x \right]_{i=2}^{3}$ Took off 1/2 mark for silly errors $= \left[e^{\ln^2} - 2\ln^2 - (e^2 - 2\cos) \right] + \left[e^3 - 6 - (e^2 - 2\ln^2) \right]$ $= 2 - 2\ln 2 - 1 + e^{3} - 6 - 2 + 2\ln 2$ Students . received $= |1-2\ln 2| + e^3 - 8 + 2\ln 2$ G/z if $\frac{5ince}{1-2in2} < 0$ = $2in2 - 1 + e^3 - 8 + 2in2$ they had the answer e^3 -7 or $= 4/n2 + e^{3} - 9$ units² 13-085 --accepted 13.86 u2 (10 2dp) and did not take into account the <u>neative area</u>.

MATHEMATICS- QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS c) (i) $T_n = a + (n-1)d$ = 400 + (n-1)(-50)= 450 - 50n or 5(9-n) (ii) T, < 0 450-50n KO 450 < 50n 9<n <u>n>9</u> $\frac{1}{10} = 10$ The 10th term is the first negative term $T_{0} = 400 + (10-1)(-50)$ = -50 (iii) $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $=\frac{20}{7}\left[\frac{2(400)}{2(400)} + (20-1)(-50)\right]$ = - 1500 d) a=t-2 $v = \frac{t^2}{7} - 2t + c$ t = 0 v = 31/2 $3=\frac{0^2}{2}-2(0)+C$ C = 3 $\frac{t^2}{1}$ 1,

MATHEMATICS- QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $x = \frac{t^3}{2} - t^2 + 3t + C$ t = 0 x = 11/2 $1 = \frac{0^3}{6} - 0^2 + 3(0) + C$ C = I• $r = \frac{t^3}{5} - t^2 + 3t + 1$ ら when t=6 $x = \frac{6}{6} - \frac{2}{6} - \frac{3}{6} - \frac{3}{6} + 1$ x = 19: Position of the particle is 19m to the right of the origin. Poorly done. e) M A lot of Ζ students In AZWY and AZXY chose incorrect WZ = XY (opposite sides rectangle equal) 3 triangles to prove congruera と ZY is common (wzy = < xyz = 90° (all angles 90° in 1/2 They still a redangle) <u>AZWY E AZXY (SAS)</u> .: XZ = WY (corresponding sides in achieved . ろ marks for Knowing congruent triangles congruency proofs and correct final statement.

MATHEMATICS – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
OR		
ZZWX = < XYZ = 90° (all angles 90°		
<u> </u>		
$\frac{11}{2} \frac{1}{2} 1$	<u>`</u>	
(By Pythanan)	. 	
In AWYZ		
$WY^2 = WZ^2 + ZY^2$		
Now $Wx = zy$ (opposite sides	<u> </u>	
• $WY^2 - W7^2 + WX^2$	<u>}</u>	
$Wy^2 = XZ^2$		
:. WY = XZ		
$f = \frac{1}{x^2 - 3x} > 0$		16 ~2 > 2~
x(x-3) > 0		17 2 > 32
considering_[] 3		only Or
both jutions.		V 2
: x>3 or x<0		
(2) (2) (2) (2)		
$3(x^2-1) > 0$		Only O/2
3(x-1)(x+1) > 0		if equality
		sign used.
: x>1 or		V
-1 1 21-1		
	44 (440404))(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-	

MATHEMATICS-QUESTION 13 2017 24 TRIAL SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a), 2x+3y = 12 Generally well done y=0 x=6 B(6,0)x=0 y=4A (4,0) 1- $AB^{2} = 6^{2} + 4^{2}$ A few students wrote distance = 52 Limula incorrect $AB = \sqrt{52}$ Surd should 12 = 2513 be simplified 1) $M_{AB} = \frac{0-4}{6-0}$ 1 Use The or $= -\frac{2}{3}$ M_{DC} = $\frac{3}{2}$ 72-4, not 4 other methods $\frac{3}{2} = \frac{p-2}{4-1}$ 1/2 Some students 9 = 2p - 413 = 2p did not use ABLDC then MAB × MDC =- , p=62 1/2 $\frac{OR}{-2} = \frac{3}{2}(x-1)$ $\frac{2y - 4}{-4} = \frac{3x - 3}{-3x - 3y + 1}$ C(4,p) $O = \frac{12 - 2p + 1}{2p = 13}$ $p = 6\frac{1}{2}$ 1/2 M= 3/2 Usnally well done. ł 1

MATHEMATICS- QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 2(1) + 3(2)Some students) -12 111 ara not know V4+9 to apply how this dormula 2+6-12 4 J13 1 OR 13 x 2/13 x 1 エシ 10 シ 4 Ξ 4 units Anea 1 dotted line 2 Mark エン Shadi Arc $Y = \frac{-2}{3}x + 4$ b' E mark Not well done $\Theta \leq 2 \Phi$ \leq Majority only had 2 answer 205 4TT \leq Sin 20 = - J3 Quadrants 3,47.8 / all 4 values 20 First quadrant related angle II 1 4 correct arlivers 2日= #+等, 2#-等, 3#+等, 4#-等 <u>4# 5</u> <u>3</u>,<u>3</u> Ξ <u>, ""</u> / <u>ST</u>

MATHEMATICS EXTENSION I – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$C 1 < + B = \frac{4}{3}$		Some errors
	****	with signs.
$- 1) \alpha \beta = \overline{3}$	<u> </u>	
$(11) \chi^{2} + \beta^{2} = (\chi + \beta)^{2} - 2\chi \beta$	1	
$=\frac{16}{9}+\frac{2}{3}$		
= 22	- <u>'</u> -	
1		
d) $A \approx \frac{4}{6} (1 + 41 + 3 + 1 - 5) + \frac{4}{6} (1 - 5 + 41 - 7 + 6)$	-1-2) 1	Some did not
$= \frac{2}{3} \left(0 + 41 \times 3 + 1 \times 5 \right) + \frac{2}{3} \left(1 \times 5 + 41 \times 7 \right)$	+1_9)	know loge x = ln x
~ 11.73	 	Some mixed up
= 12		
·	121 3~ 1.9)
e) $x = 6t - t^3$		1 La differentiate
$x^2 = 6 - 3t^2$		and x:0
$\hat{x} = 0$ $3t^{2} = 6$	1	
f=== 12 as x>0		• • • • • • • • • • • • • • • • • • •
$t = \sqrt{2}$	1	
$\dot{x} = -6t$		
$at t = 52$ $\dot{x} = -652$		
Acceleration -652 cm/st	1	

MATHEMATICS-QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** (a)(i) GP: $T_4 = ar^3 = 96$ $T_7 = ar^6 = \frac{96}{14}$ $T_7 = ar^6 = \frac{96}{14}$ $T_7 = \frac{12}{14}$ $T_7 = \frac{12}{14}$ r = 1 — () for correct common ratio $a(\frac{1}{8}) = 96$ $a = 96 \times 8$: a = 768 - 1) for correct first term (ii) $ar^{n-1} \perp 0.0001$ 768 $(\pm)^{n-1} \perp 0.0001$ $\left(\frac{1}{2}\right)^{n-1} \perp \frac{0.0001}{76R}$ $n-1\left(\ln\frac{1}{2}\right) \perp \ln\left(\frac{0.0001}{768}\right)$ $n-1 > \ln(\frac{0.0001}{765})$ NOTE: inequality sign reverses as $ln(\pm)$ H+40. $n > \ln\left(\frac{0.0001}{768}\right) + 1$ $ln(\pm)$ n>23.87267488 n=24 ... The is the first term for correct 6.0001 $-(\frac{1}{2})$ (12) marks if the inequality sign was not reversed, but everything else correct

MATHEMATICS- QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS (b) y= 4 wsx at x= I (30° = 413 = 413 = 213 = 213 = 213 = 213 = 213 = 213 = 213 = 213 = 213 = 213 = 213 = 210 = 200 =at x= I, =-4x± = -2 - O for correct gradient : Equation of tangent: 4 - 2/3 = -2(x - I) $y - 2i3 = -2x + \pi$ 9=-2x+II +253-0 for warrect equation (c) (i) let An be the value of the investment after n years. 50 A, is at 31/12/2000 A, 15 at 31/12/2001 $A_1 = 1000(1.06)$ = \$ 1060 $A_2 = A_1 + A_1 (1.06)$ $= 1000(1.06) + 1000(1.06)^{2}$ = 1000(1.06)(1+1.06) = \$ 2183.60 - D .: Value on 31/12/2001 is \$2183.60

MATHEMATICS- QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** (ii) A1 -> 31/12/2000 A, -> 31/12/2001 Å18 -> 31/12/2017 18 $A_{18} = 1000 (1.06)' + 1000 (1.06)^2 + ... + 1000 (1.06)$ = 1000 (1.06) [1+1.06+1.062 + ... + 1.06 »a GP: = 1000 (1.06) 1 (1.06 -1 $\begin{array}{c}
0 \quad a=1 \\
f=1.06
\end{array}$ 1.06-1 n = 18= 32759.9917= 432760.00 - (1)(22 marks &r A17 with worrect working) (d) $2\log x - \log_2(2x+6) = 1$ $\log_2\left(\frac{\chi^2}{2\chi+6}\right) = \log_2 2$ D for applying correct log $\frac{\chi^2}{\chi^2} = 2$ laws, 22+6 $\chi^2 = 4\chi + i\lambda$ 25 marks - (1 fr x = -2 $\chi^2 - 4\chi - 12 = 0$ and 1=6 (x+a)(x-b)=0sith na $\chi = -2$ or $\chi = 6$ other Conclusion Test x=-2: 2log(-2) is not defined : x=-2 is not a solution Kest x=6: 2109,6 - 109, 18 = 109, 6 = 109,2 . X=6 is the only solution. - ()

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENT
$(e)(i) \int 2 \sin(I + x) dx$		
$= 2 \times - 205 (+ + 1) + ($		
$= -2 \cos(\frac{1}{4}+x) + C - (1)$	for w	rrect
	an	swer,
$\frac{(ii)}{2} \frac{1}{\chi^2 + 3} \frac{1}{\chi^2 + 3} = 0$	r sho	wing ± x2
$= \frac{1}{2} \ln(\chi^{2} + 3) + C = 0$ f	or wo	rect answer
$\bigcirc \text{mark for } \ln(x^2+3)+C$ $\bigcirc \text{mark for } \ln(x^2+3)+C$	u	
······································		
		Santa Marine a management a statistica da a companya da da a da a serie da da a serie da da a serie da da a ser
		۲۰۰۰ - ۱۹۹۵ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۹ (۱۹۹۵) - ۲۰۰۰ - ۲۹۹۵ - ۲۰۰۰ - ۲۹۹۵ - ۲۰۰۰ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ -

$\frac{1}{2^{3n}}$ $\frac{1}$	SUGGESTED SOLUTIONS MARKS M	ARKER'S COMMENTS
$\frac{2}{2 - 2} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + $	- 4	
$\frac{2 + 7}{2} = \frac{2}{2}$ $\frac{2 + 7}{2} = \frac{2}{2}$ $\frac{2 + 2}{2} = \frac{2}{2}$ $2 $		erally well done
$\frac{\ln (x-x)(x+2)}{(x+2)}$ $\frac{\ln (x-x)(x+2)}{(x+2)}$ $\frac{\ln x}{(x+2)}$ $\frac{\ln x}{(x+$	2 Som	e students did
$\frac{1}{2} \ln (\frac{x}{2})(\frac{x+2}{2}) = \frac{1}{2} (1) \qquad Correctly plastering plast$	(not	set this out
$\frac{1}{100} \frac{1}{100} \frac{1}$		rectly please
$\frac{100}{2} \times \frac{3}{2}$ $= 4$ $= 4$ (1) $\frac{3^{n} \times 9^{n+1}}{8^{n}} = 1$ (1) $\frac{3^{n} \times (3^{2})^{n+1}}{8^{n}} = 1$ $\frac{1}{8^{n}} = $	10-2) ing	prive setting
$\frac{2+2}{2+2}$ $= 4. (i)$ $\frac{3^{n} \times q^{n+1}}{8^{n}} = 1$ $\frac{2}{8^{n}} \frac{4}{8^{n}} \frac{1}{8^{n}} \frac{1}{8^$	x+2. OU	it in future
$2+2$ $= 4$ (1) $\frac{6^{3n} \times 9^{n+1}}{8^{n}} = 1$ 8^{n} $(2 \times 3)^{3^{n}} \times (3^{2})^{n+3} = 1$ (1) $(2 \times 3)^{3^{n}} \times (3^{2})^{n+3} = 1$ (1) $(2^{3})^{n}$ (1) $(2^{3})^{n}$ (1) $(2^{3})^{n}$ (1) (1) (1) (1) $(2^{3})^{n}$ (1) (1) (1) $(2^{3})^{n}$ (1)		
$= 4. \qquad (1)$ $\frac{6^{3n} \times 9^{n+1}}{8^{n}} = 1$ $\frac{2}{8^{n}} \qquad 2 few different$ $8^{n} \qquad \qquad$		
$\frac{6^{3n} \times 9^{n+1}}{8^n} = 1$ $\frac{2}{2} few different$ $\frac{8^n}{8^n} \qquad \qquad$	<u>()</u>	
$\frac{6^{3n} \times q^{n+1}}{8^n} = 1$ $\frac{2}{8^n}$		te was a
$\frac{8^{n}}{(2 \times 3)^{3^{n}} \times (3^{2})^{n+1}} = 1$ (1) $\frac{(2 \times 3)^{3^{n}} \times (3^{2})^{n+1}}{(2^{3})^{n}} = 1$ (1) $\frac{(2^{3})^{n}}{(2^{3})^{n}} = 1$ (1) $\frac{(2^{3^{n}} \times 3^{3^{n}} \times 3^{2n+2}}{(2^{3^{n}} \times 3^{n})^{n}} = 1$ (1) $\frac{(2^{3^{n}} \times 3^{3^{n}} \times 3^{2n+2}}{(2^{3^{n}} \times 3^{n})^{n}} = 1$ (1) $\frac{(2^{3^{n}} \times 3^{n} \times 3^{n})^{n}}{(2^{3^{n}} \times 3^{n})^{n}} = 1$ (1) $\frac{(2^{3^{n}} \times 3^{n})^{n}}{(2^{3^{n}} \times 3^{n})^{n}} = 1$ (1)	nti 2 feu	s different
$\frac{(2 \times 3)^{3^{n}} \times (3^{2})^{n+1}}{(2^{3})^{n}} = 1$ (1) $\frac{(2 \times 3)^{3^{n}} \times (3^{2})^{n+1}}{(2^{3})^{n}} = 1$ (1) $\frac{(2^{3})^{n}}{(2^{3^{n}} \times 3^{2^{n+2}})} = 1$ (1) $\frac{(2^{3^{n}} \times 3^{2^{n+2}})}{(2^{3^{n}} \times 3^{2^{n+2}})} = 1$ (1) $\frac{(2^{3^{n}} \times 3^{2^{n}})}{(2^{3^{n}} \times 3^{2^{n}})} = 1$ (2) $\frac{(2^{3^{n}} \times 3^{2^{n}})}{(2^{3^{n}} \times 3^{2^{n}})} = 1$ (3) $\frac{(2^{3^{n}} \times 3^{2^{n}})}{(2^{n} \times 3^{2^{n}})} = 1$ (4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	st	rakeres used.
$(2 \times 3)^{3^{n}} \times (3^{2})^{n+3} = 1$ (1) (2 \times 3)^{3^{n}} \times (3^{2})^{n+3} = 1 (1) (1) (2 × 3)^{3^{n}} \times (3^{2^{n+3}}) = 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)	Vac	. fewl student
$\frac{1}{(2^3)^n} = 1$ $\frac{1}$	$(3^2)^{n+3} - 1$ (1)	g iew gradeni
$\frac{2^{3n} \cdot 3^{3n} \cdot 3^{2n+2}}{2^{3n}} = 1$ $\frac{2^{3n} \cdot 3^{2n+2}}{2^{3n}} = 1$ $\frac{2^{3n} \cdot 3^{5n+2}}{2^{3n}} = 1$ $2^{$		ing logarithms
$\frac{2^{3n} \cdot 3^{3n} \cdot 3^{2n+2}}{2^{3n}} = 1$ $\frac{2^{3n} \cdot 3^{2n+2}}{2^{3n}} = 1$ $\frac{1 \cdot 4^{3n} \cdot 4^{3n}}{2^{3n} \cdot 3^{2n+2}} = 1$ $\frac{2^{3n} \cdot 3^{2n+2}}{2^{3n} \cdot 3^{2n+2}} = 1$ $\frac{2^{3n} \cdot 3^{2n+2}}{2^{3n} \cdot 3^{2n+2}} = 1$ $\frac{2^{3n} \cdot 4^{2n} \cdot 4^{2n$	<u> </u>	102 The
$\frac{1}{2^{3n}} = 1$ $\frac{1}{2^{3n}}$ $\frac{1}{2^{3n}} = 1$ $\frac{1}{2^{3n}} = $	2 2 n + 2 equ	<u>aahon</u>
$\frac{2^{3n}}{2^{3n}}$ $\frac{1 \text{ dex laws were restricting }}{2^{3n} \cdot 3^{5n+2}} = 1$ $\frac{2^{3n}}{2^{3n}}$ $\frac{1}{2^{3n}} = 1$ $\frac{1}{$	<u>5 = 1</u> <u>5 40</u>	ccesstolly.
$\frac{2^{3n} \cdot 3^{5n+2}}{2^{3n}} = 1$ $\frac{2^{3n} \cdot 3^{5n+2}}{2^{3n}} = 1$ $\frac{2^{3n} \cdot 3^{5n+2}}{5^{n+2}} = 1$ $\frac{3^{5n+2} - 3^{2n}}{5^{5n+2}} = 3^{2n}$ $\frac{5^{5n+2} - 3^{2n}}{5^{5n+2}} = 3^{2n}$ $\frac{-2}{3}}{(1)}$ $\frac{1}{2^{3n}} = 1$ $\frac{-2}{3}}{(1)}$	Ind	lax laws were
$\frac{2^{3^{n}} \cdot 3^{3^{n}}}{2^{3^{n}}} = 1$ $\frac{2^{3^{n}} \cdot 3^{3^{n}}}{2^{3^{n}}}$ $\frac{2^{3^{n}}}{2^{3^{n}}}$ $\frac{2^{3^{n}}}{2^{3^{n}}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ $\frac{2^{3^{n}}}{2^{n}}}$ 2	N Ø	t correctly
$\frac{2^{30}}{3^{5n+2}} = 1$ $\frac{3^{5n+2}}{3^{5n+2}} = 3^{0}$ $\frac{5n+2=0}{0=3}$ (1) $This topic woods to the second $	= 1 as	cd.
$\frac{3^{5n+2}}{3} = 1$ $\frac{3^{5n+2}}{3} = 3^{0}$ $5n+2=0$ $\frac{-\frac{2}{3}}{3}$ (1) $benefit from$ $revision.$	Th	is topic woold
$3^{5n+2} = 1$ $3^{5n+2} = 3^{0}$ $5n+2=0$ $-\frac{2}{3}$ (1)	be	nefit from
$3^{5n+2} = 3^{0}$ $5n+2=0$ $-\frac{2}{3}$ (1)	A+2 = 1	11°5100
$5 n + 2 = 0$ $-\frac{2}{3}$ (1)	5nt ¹ = 3 °	V. J. V
$-\frac{2}{3}$ (1)	5 041-0	
	- <u>2</u>	
		06-5-50-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMEN
$y = a 3c^2 + b x + c 0 (0,5) (1,3) (-1,5)$	3	generally well
substituting (0,5) in ()		done
$5 = a(0)^{2} + b(0) + c$	1	
5=0	<u>ر</u>	
: y=ax +bx +5 >		
substituting x=12 in 10		
אָד 52		
3 = a + b + 5		
a+b=-2 —(3)		
substituting, z=-17 in D		-
y=31		
$5 = a(-1)^{2} + b(-1) + 5$		
5 = a - b + s	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
<u>a-b=o</u> (4)		
3 + 4 = -2		
a-b= 0	uniceptititititi Hahamman ammana a	
2a = -2		
a = -1	1	
sub a = -1 in (4)	namuruppagi yi Kabahana ana ama ana ana ana ana ana ana ana	000144454555555555555555555555555555555
a - b = 0		
a=b		
<u></u>	+ Hommong	
$\left \cdot \cdot b \right = -1 \left \left(\cdot b \right) \right $) 	
a = -1, b = -1, c = 5		
and the equation is	• • • • • • • • • • • • • • • • • • •	
$\gamma = -x^2 - z + 5.$		

MARKS	MARKER'S COMMENTS
	. It was very
	well done by
	most students
	However, a significant
	multic of chidrot is
	tried to use deglees
	in the formules
	1-50 and 4. +5°
11100000000000000000000000000000000000	
(1)	
	-
49-16007/htmm//////////////////////////////////	

MATHEMATICS - QUESTION 15 (18 Marks) SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS pg 4 e) $y = \frac{x^4}{4}$ $\gamma = \frac{z^{*}}{z}$ 4 when seed, y= 0 $4y = x^4$ x = 2y=24 $\therefore x^2 = \sqrt{4y}$ $\frac{\chi^2}{\chi^2} = 2y^{\frac{1}{2}}$ V+ 11 * dz \bigcirc 2y2 dru ្ន ព្រ $\widehat{}$ = 2 11 / y = dic.
 1
 1

 1
 1

 1
 1

 1
 0

 1
 0
 2 п $= \frac{4\pi \left[y^{\frac{3}{2}}\right]_{0}}{3}$ = 417 4 - 0 23-0 <u>= 4</u>m evaluating = 321 integral. O F $V = 1Tr^{2}h$ 5.A= 2012 +2010 (1)Show all 1000 17 = Tr2h = 21TC + 21TC, 1000 necessary steps = 2 TT 5 + 2000 IT to receive full marks. .: h= 1000 · 12 ------

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(ii) $A = 2\pi c^2 + 2000\pi$	- A	eeseculu
<u> </u>		chore.
$= 2\pi r^{2} + 2000\pi r^{-1}$		Most problems for
		students occurred
$\frac{dA}{dA} = 4\pi r - 2000\pi r^{-2}$		when they were
		working with
if dA o		indices.
dr = '		setting out
$4\pi r - 2000\pi r^{-2} = 0$		could also be
4πr = 2000m	(¹ 111)	better. Ask
r²		for - another
$4 \pi r^3 = 2000 r$		booklet, even if
4 m 4 m		It is your
$\int_{-1}^{3} = 500$		last question,
r= 1500		rather than
		squeshing
0 ² A 417 + 4000 17 1-3		you work
		and perhaps
when $r = \sqrt[3]{500}$	51111de - 141-06-001-05-001-05-001-05-001-05-001-05-001-05-001-05-001-05-001-05-001-05-001-05-001-05-00-00-00-	causing mistale
01°A 417 × 4000 17 (500)3		
4 П + 4000 П 500 ³ ³		
_ 4 17 + 4000 rr [500 - 4]		
- 4# + HO dd IT		
5 <i>p q</i>		
= 1217 which is positive ()		
.: when n = \$500 there is a minimum		
here i = $\sqrt[3]{500}$ = $t = 2\pi r^2 + \frac{2000\pi}{r}$	a	
= 200 (500) = + 2000 F (5000)	3	
= 300011 can ³ =1187 cm ³		