\qquad
\qquad

St George Girls High School

Trial Higher School Certificate Examination

2017

 Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions 11-15, show relevant mathematical reasoning and/or calculations

Total Marks - 100
Section I Pages 2-4
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II Pages 5-10

90 marks

- Attempt Questions 11-15
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I		
Section II		
Question 11	$/ 18$	
Question 12	$/ 18$	
Question 13	$/ 18$	
Question 14	$/ 18$	
Question 15		$\mathbf{1 0 0}$
Total		

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1-10

1. The graph of $y=x\left(x^{2}-1\right)$ intersects with the x axis at:
(A) 1 point
(B) 2 points
(C) 3 points
(D) 4 points
2. Which of the following quadratic expressions is positive definite?
(A) $x^{2}+7 x+1$
(B) $x^{2}+7 x-1$
(C) $x^{2}+7 x+15$
(D) $x^{2}+7 x-15$
3. What is the range of the function $f(x)=\sqrt{4-x^{2}}$
(A) $0<y<2$
(B) $0 \leq y \leq 2$
(C) $-2<y<2$
(D) $-2 \leq y \leq 2$
4. The focus of the parabola $x^{2}=8(y-1)$ is at:
(A) $(0,1)$
(B) $(0,3)$
(C) $(0,-1)$
(D) $(0,8)$

Section I (cont'd)

5. What is the period of $y=\tan 6 x$.
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) 6π
(D) 12π
6. What is the value of $\int_{-4}^{3}|x+2| d x$
(A) $\frac{21}{2}$
(B) $\frac{53}{2}$
(C) $\frac{3}{2}$
(D) $\frac{29}{2}$
7. If $y=x e^{2 x}$ then $\frac{d y}{d x}=$
(A) $x e^{2 x}$
(B) $2 x e^{2 x}$
(C) $(1+2 x) e^{2 x}$
(D) $(1+x) e^{2 x}$
8. $|2 x+4|=-x+4$ when solved has:
(A) no solution
(B) 1 solution
(C) 2 solutions
(D) 3 solutions

Section I (cont'd)

9. If $f(x)=\frac{3 x^{4}-x}{x^{2}}$ then $f^{\prime}(1)=$
(A) 5
(B) 7
(C) 0
(D) 2
10. $\sum_{r=1}^{5}(-1)^{r} 2^{r}=$
(A) 6
(B) -62
(C) 22
(D) -22

Section II

90 marks
Attempt Questions 11-15
Allow about 2 hours and 45 minutes for this section.

Start each question in a new writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (18 marks) Start a New Writing Booklet.
a) Simplify $\sqrt{75}-\frac{1}{2} \sqrt{48}$.
b) Find to 2 decimal places $\sec 40^{\circ} 15^{\prime}$.
c) Draw a neat sketch of $y=3 \cos 2 x$ for $0 \leq x \leq 2 \pi$, showing clearly all relevant features.
d) A point $P(x, y)$ moves so that its distance from the x-axis is always twice its distance from the y-axis. Describe this locus geometrically.
e) Find the radius of the circle $x^{2}+4 x+y^{2}-6 y-12=0$.
f) Write in simplest form $\frac{x+3}{x^{-1}+3^{-1}}$.
g) Differentiate with respect to x
(i) $\quad \log _{e} \sqrt{3 x^{2}-2}$
(ii) $\frac{x+3}{2 x-5}$
h) Prove $\frac{1}{\sin \theta \cos \theta}-\tan \theta=\cot \theta$.
i) (i) Find the stationary points of the function $y=2 x^{3}-12 x^{2}+18 x-3$ and determine their nature.
(ii) In the domain $\{x:-5 \leq x \leq 5\}$ what is the greatest value of $2 x^{3}-12 x^{2}+18 x-3 ?$

Question 12 (18 marks) Start a New Writing Booklet.
a) State the domain of x if $x=3^{y}$.
b) Find the area between the curve $y=e^{x}-2$ and the x-axis from $x=0$ and $x=3$.
c) For the arithmetic sequence $400,350,300, \ldots$ find:
(i) An expression for T_{n}.
(ii) Which is the first negative term of the sequence?
(iii) The sum of the first 20 terms.
d) A particle moves along the x axis with acceleration $(t-2) \mathrm{m} / \mathrm{s}^{2}$. Initially it is 1 m to the right of the origin, with velocity $3 \mathrm{~m} / \mathrm{s}$. What is the position of the particle after 6 seconds?

WXYZ is a rectangle. Prove $\mathrm{XZ}=\mathrm{WY}$.
f) Solve $x^{2}>3 x$.
g) For what values of x is $y=x^{3}-3 x+5$ an increasing function?

Question 13 (18 marks) Start a New Writing Booklet.
a)

The line $2 x+3 y=12$ cuts the x-axis at B and the y-axis at A .
(i) Calculate the length of AB as a simplified surd.
(ii) If AC is perpendicular to AB , find the value of p if C is the point $(4, p)$ and $\mathrm{D}(1,2)$.
(iii) Calculate the perpendicular distance from D to $A B$.
(iv) Hence, or otherwise, find the area of $\triangle A B D$.
(v) Draw this diagram in your answer booklet and shade the region $2 x+3 y<12$.
b) If $0 \leq \theta \leq 2 \pi$ solve $\sin 2 \theta=-\frac{\sqrt{3}}{2}$.
c) If α and β are the roots of $3 x^{2}-4 x-1=0$ find the values of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
d) Use Simpson's Rule with 5 function values to approximate $\int_{1}^{9} \log _{e} x d x$,
giving your answer to 2 significant figures.
e) A particle moving in a straight line at time t (in seconds) has displacement x (in cm) given by $x=6 t-t^{3}$. When is the particle at rest and what is the acceleration at that time?

Question 14 (18 marks) Start a New Writing Booklet.
a) The fourth term of a geometric sequence is 96 and the seventh term is 12 .

Find the
(i) first term and common ratio.
(ii) first term smaller than 0.0001 .
b) Find the equation of the tangents to the curve $y=4 \cos x$ at the point where $x=\frac{\pi}{6}$
c) Annie was born on the $1^{\text {st }}$ January 2000. Her parents invest $\$ 1000$ on this day and on every birthday thereafter. The interest is paid at 6% compounded annually. After completing her HSC she decides to use the account to fund a gap year. She withdraws all the funds on 31/12/17 (getting paid her interest for 2017).
(i) What is the value of the investment on the $31 / 12 / 01$
(after the interest for 2001 is paid)?
(ii) How much does Annie collect on $31 / 12 / 17$?
d) Solve $2 \log _{2} x-\log _{2}(2 x+6)=1$.
e) Find:
(i) $\quad \int 2 \sin \left(\frac{\pi}{4}+x\right) d x$
(ii) $\int \frac{x}{x^{2}+3} d x$

Question 15 (18 marks) Start a New Writing Booklet.
a) Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
b) For what value of n is $\frac{6^{3 n} \times 9^{n+1}}{8^{n}}=1$.
c) The parabola $y=a x^{2}+b x+c$ passes through the points $(0,5),(1,3)$ and $(-1,5)$.

Find the value of a, b and c.

Arc AB is subtended by an angle of 72° at the centre of a circle radius 8 cm .
(i) Calculate the length AB .
(ii) Calculate the area of sector AOB
e)

A bowl is formed by rotating the curve $y=\frac{x^{4}}{4}$ between $\mathrm{x}=0$ and $\mathrm{x}=2$ about the y axis. Find the volume of the bowl.
f) A cylindrical container closed at both ends is made from thin sheet metal.

The container is to have a radius of $r \mathrm{~cm}$ and height of $h \mathrm{~cm}$, such that its volume is $1000 \pi \mathrm{~cm}^{3}$.
[So $V=\pi r^{2} h$ and $S A=2 \pi r^{2}+2 \pi r h$]
(i) Show that the area of sheet metal required to make the container is

$$
\left(2 \pi r^{2}+\frac{2000 \pi}{r}\right) \mathrm{cm}^{2}
$$

(ii) Hence find the minimum area of sheet metal required to make the container.

End of Examination

Factorisation

$a^{2}-b^{2}=(a+b)(a-b)$
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Angle sum of a polygon

$S=(n-2) \times 180^{\circ}$

Equation of a circle
$(x-h)^{2}+(y-k)^{2}=r^{2}$

Trigonometric ratios and identities

$$
\begin{array}{l|l}
\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }} & \operatorname{cosec} \theta=\frac{1}{\sin \theta} \\
\cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }} & \sec \theta=\frac{1}{\cos \theta} \\
\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\cot \theta=\frac{\cos \theta}{\sin \theta} \\
\sin ^{2} \theta+\cos ^{2} \theta=1
\end{array}
$$

Exact ratios

Sine rule
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Area of a triangle

Area $=\frac{1}{2} a b \sin C$

Distance between two points

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Perpendicular distance of a point from a line
$d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$

Slope (gradient) of a line
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Point-gradient form of the equation of a line
$y-y_{1}=m\left(x-x_{1}\right)$
$\boldsymbol{n t h}$ term of an arithmetic series
$T_{n}=a+(n-1) d$

Sum to \boldsymbol{n} terms of an arithmetic series
$S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad$ or $S_{n}=\frac{n}{2}(a+l)$
\boldsymbol{n} th term of a geometric series
$T_{n}=a r^{n-1}$

Sum to \boldsymbol{n} terms of a geometric series
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ or $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

Limiting sum of a geometric series
$S=\frac{a}{1-r}$

Compound interest
$A_{n}=P\left(1+\frac{r}{100}\right)^{n}$

Mathematics (continued)

Differentiation from first principles
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Derivatives

If $y=x^{n}$, then $\frac{d y}{d x}=n x^{n-1}$
If $y=u v$, then $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
If $y=\frac{u}{v}$, then $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
If $y=F(u)$, then $\frac{d y}{d x}=F^{\prime}(u) \frac{d u}{d x}$
If $y=e^{f(x)}$, then $\frac{d y}{d x}=f^{\prime}(x) e^{f(x)}$
If $y=\log _{e} f(x)=\ln f(x)$, then $\frac{d y}{d x}=\frac{f^{\prime}(x)}{f(x)}$
If $y=\sin f(x)$, then $\frac{d y}{d x}=f^{\prime}(x) \cos f(x)$
If $y=\cos f(x)$, then $\frac{d y}{d x}=-f^{\prime}(x) \sin f(x)$
If $y=\tan f(x)$, then $\frac{d y}{d x}=f^{\prime}(x) \sec ^{2} f(x)$

Solution of a quadratic equation

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Sum and product of roots of a quadratic equation
$\alpha+\beta=-\frac{b}{a} \quad \alpha \beta=\frac{c}{a}$

Equation of a parabola

$(x-h)^{2}= \pm 4 a(y-k)$

Integrals
$\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C$
$\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+C$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$
$\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+C$
$\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+C$
$\int \sec ^{2}(a x+b) d x=\frac{1}{a} \tan (a x+b)+C$

Trapezoidal rule (one application)
$\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}[f(a)+f(b)]$

Simpson's rule (one application)

$\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]$

Logarithms - change of base

$\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$

Angle measure

$180^{\circ}=\pi$ radians

Length of an arc

$l=r \theta$

Area of a sector

Area $=\frac{1}{2} r^{2} \theta$
\qquad
\qquad

Section I

Year 12 Trial HSC Examination 2017
 Mathematics

Multiple-choice Answer Sheet - Questions 1-10

Allow about 15 minutes for this section.

Select the alternative $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D that best answers the question. Fill in the response oval completely.
Sample $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A \bigcirc
B
C
\bigcirc
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B

C

D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

\qquad
\qquad

Section I

Year 12 Trial HSC Examination 2017
 Mathematics

Multiple-choice Answer Sheet - Questions 1 - 10

Allow about 15 minutes for this section.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B

$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

1.	A \bigcirc	B	C	D
2.	A \bigcirc	B	C	D
3.	$A \bigcirc$	B	C	D
4.	$A \bigcirc$	B	C	D
5.	A	B	C	D
6.	$A \bigcirc$	B	C	D
7.	A \bigcirc	B	C	D
8.	A	B	C	D
9.	$A \bigcirc$	B	C	D
10.	A \bigcirc	B	C	D

i) $y=x\left(x^{2}-1\right)$

$$
\begin{aligned}
0 & =x(x-1)(x+1) \\
& \therefore x=0,1,-1
\end{aligned} \quad \therefore \text { 3pts }
$$

2)

$$
\begin{array}{r}
a>0 \quad b^{2}-4 a c<0 \\
7^{2}-4(1)(c)<0 \\
49-4 c<0 \\
c>12 \frac{2}{4}
\end{array}
$$

3) $y=\sqrt{4-x^{2}}$

RANGE
4)

$$
\begin{aligned}
x^{2} & =4 a(y-k) \\
4 a & =8 \quad \therefore a=2
\end{aligned}
$$

14

$$
(0,1) \quad S(0,3)
$$

5) $y=\tan x \quad y=\tan 6 x$

D: $-\frac{\pi}{2}<x<\frac{\pi}{2} \quad-\frac{\pi}{2}<6 x<\frac{\pi}{2}$
$R:$ all real $y \quad-\frac{\pi}{12}<x<\frac{\pi}{12}$

$$
\therefore \quad \frac{\pi}{6}
$$

A
6) $\int_{-4}^{3}|x+2| d x$

$$
\begin{aligned}
& 2+12 \frac{7}{2} \\
& =\frac{29}{2}
\end{aligned}
$$

7)

$$
\begin{aligned}
y^{\prime} & =x e^{2 x} \\
y^{\prime} & =1 e^{2 x}+2 x e^{2 x} \\
& =e^{2 x}(1+2 x)
\end{aligned}
$$

$$
\begin{gathered}
\text { 8) }|2 x+4|=-x+4 \\
2 x+4=-x+4 \quad \text { QR } \\
3 x=0 \\
x=0 \\
\text { LHS }=4 \quad \text { RHS }=4
\end{gathered}
$$

$$
\begin{gathered}
2 x+4=-(-x+4) \\
2 x+4=x-4 \\
x=-8 \\
\text { LHS }=12 \quad \text { RHS }=12
\end{gathered}
$$

$$
\therefore 2 \text { sol }
$$

a)

$$
\begin{aligned}
f(x) & =\frac{3 x^{4}-x}{x^{2}} \\
& =3 x^{2}-x^{-1} \\
f^{\prime \prime}(x) & =6 x+x^{-2} \\
f^{\prime}(1) & =6+1 \\
& =7
\end{aligned}
$$

10) $\sum_{r=1}^{5}(-1)^{r} 2^{r}$

$$
\begin{align*}
& =-1(2)^{1}+(-1)^{2}(2)^{2}+(-1)^{3}(2)^{3}+(-1)^{4}(2)^{4}+(-1)^{5}(2)^{5} \\
& =-2+4-8+16-32 \\
& =20-42 \\
& =-22
\end{align*}
$$

e)

$$
\begin{aligned}
& x^{2}+4 x+y^{2}-6 y-12=0 \\
& x^{2}+4 x+4+y^{2}-6 y+9=12+4+9 \\
& (x+2)^{2}+(y-3)^{2}=25
\end{aligned}
$$

$$
\therefore \text { Radus }=5
$$

f) $\frac{x+3}{\frac{1}{x}+\frac{1}{3}} \times \frac{3 x}{3 x}=\frac{3 x(x+3)}{3+x}$

$$
=3 x
$$

Mostly well
done

$$
1
$$

Many did unusual things when trying do take reapocals
g) 1) $y=\log _{e} \sqrt{3 x^{2}-2}$

Let $m=\left(3 x^{2}-2\right)^{1 / 2}$

$$
\begin{aligned}
\frac{d m}{d x} & =\frac{1}{2}\left(3 x^{2}-2\right)^{-1 / 2} \cdot 6 x \\
& =3 x\left(3 x^{2}-2\right)^{-1 / 2} \\
y & =\log _{e} m \\
d y & =\frac{1}{m} \\
\frac{d y}{d m} & =\frac{d y}{d m} \times \frac{d m}{d x} \\
& =\frac{1}{m} \times 3 x\left(3 x^{2}-2\right)^{-1 / 2} \\
& =\frac{3 x}{3 x^{2}-2}
\end{aligned}
$$

MATHEMATICS- QUESTION

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$=\frac{\cos \theta}{\sin \theta}$		
$=\cot \theta$		
$=R M S$.	1	
$=R$		

i) i) $y=2 x^{3}-12 x^{2}+18 x+3$

$$
\begin{aligned}
y^{\prime} & =6 x^{2}-24 x+18 \\
& =6\left(x^{2}-4 x+3\right)
\end{aligned}
$$

$$
=6\left(x^{2}-4 x+3\right)
$$

must have 6.

$$
=6(x-3)(x-1)
$$

$$
y^{i}=0 \quad \text { when } x=1 \text { or } 3
$$

$$
y^{\prime \prime}=12 x-24
$$

when $x=1 \quad y^{\prime \prime}=-12$

$$
\begin{aligned}
& 20 \bigcap \\
& \therefore \max +p(1,5)
\end{aligned}
$$

when $x=3 \quad y^{\prime \prime}=12$

$$
\therefore m \cdots+p(3,-3)
$$

ii) Max value at end points of dome:- or at local maxima

$$
\left.\begin{array}{rl}
x=5 & y
\end{array}\right) 2(5)^{3}-12(5)^{2}+18(5)-3|子| \begin{array}{ll}
x=-5 & \\
& y \\
& =2(-5)^{3}-12(-5)^{2}+18(-5)-3 \\
& <0
\end{array}
$$

\therefore Max value is 37

Many students did not seem to how max/min need to te checked at and of domain

MATHEMATICS- QUESTION 12

MATHEMATICS- QUESTION

MATHEMATICS- QUESTION

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& x=\frac{t^{3}}{6}-t^{2}+3 t+c \quad t=0, x=1 \\
& 1=\frac{0^{3}}{6}-0^{2}+3(0)+c \\
& c=1 \\
& \therefore x=\frac{t^{3}}{6}-t^{2}+3 t+1
\end{aligned}
$$

When $t=6$

$$
\begin{aligned}
& =6=\frac{6^{3}}{6}-6^{2}-3(6)+1 \\
& x=19
\end{aligned}
$$

\therefore Position of the particle is 19 m to the right of the origin.
e)

In $\Delta z w y$ and $\Delta z x y$
$W z=x y$ (opposite sides rectangle equal) $2 y$ is common

MATHEMATICS - QUESTION

In $\triangle W Y Z$
(By Pythagoras) 1

$$
w y^{2}=w z^{2}+2 y^{2}
$$

- Now $w x=2 y$ lopporite sides

$$
\begin{aligned}
\therefore w y^{2} & =w z^{2}+w x^{2} \\
w y^{2} & =x z^{2} \\
\therefore w y & =x z
\end{aligned}
$$

f)

$$
\begin{aligned}
& x^{2}-3 x>0 \\
& x(x-3)>0 \\
& \text { considering -(1) } \\
& \text { both solutions. }
\end{aligned}
$$

$$
\begin{equation*}
\therefore x>3 \text { or } x<0 \tag{1/2}
\end{equation*}
$$

g)

$$
\begin{aligned}
& y^{\prime}=3 x^{2}-3 \quad \text { increasing } y^{\prime}>0 \\
& 3\left(x^{2}-1\right)>0 \\
& 3(x-1)(x+1)>0
\end{aligned}
$$

only $1 / 2$ If equality sign used.

SUGGESTED SOLUTIONS
a) 1) $2 x+3 y=12$
$\begin{array}{lll}y=0 & x=6 & B(6,0) \\ x=0 & y=4 & A(4,0)\end{array}$

$$
A B^{2}=6^{2}+4^{2}
$$

$$
=52
$$

$$
A B=\sqrt{52}
$$

$$
=2 \sqrt{13}
$$

11)

$$
\begin{aligned}
M_{A B} & =\frac{0-4}{6-0} \\
& =-2 / 3 \\
M_{D C} & =3 / 2
\end{aligned}
$$

$$
\frac{3}{2}=\frac{p-2}{4-1}
$$

$$
q=2 p-4
$$

$$
13=2 p
$$

$$
p=6 \frac{1}{2}
$$

OR $\quad y-2=\frac{3}{2}(x-1)$
$\begin{aligned} 2 y-4 & =3 x-3 \\ 0 & =3 x-2\end{aligned}$

$$
\begin{aligned}
1 \quad 0 & =3 x-2 y+1 \\
c(4, p) & =12-2 p+1 \\
0 & =13
\end{aligned}
$$

$$
p=6 \frac{1}{2} \quad \frac{1}{2}
$$

MATHEMATICS EXTENSION I - QUESTION

(a) (i)

$$
\begin{aligned}
& T_{7}=a r^{6}=12 \\
& \frac{T_{7}}{T_{4}}=\frac{a r^{6}}{a r^{3}}=\frac{96}{12} \\
& r^{3}=\frac{1}{8} \\
& \therefore r=\frac{1}{2}=\text { (1) } \\
& a\left(\frac{1}{8}\right)=96 \\
& a=96 \times 8
\end{aligned}
$$

$$
\therefore r=\frac{1}{2}^{\circ} \text { - (i) for correct common ratio }
$$

$$
\therefore a=768-\text { (1) fr correct first term }
$$

(ii)

$$
\begin{gathered}
\operatorname{ar}^{n-1}<0.0001 \\
768\left(\frac{1}{2}\right)^{n-1}<0.0001 \\
\left(\frac{1}{2}\right)^{n-1}<\frac{0.0001}{768} \\
n-1\left(\ln \frac{1}{2}\right)<\ln \left(\frac{0.0001}{768}\right) \\
n-1>\ln \left(\frac{0.0001}{768}\right) \\
n>\ln \left(\frac{0.0001}{768}\right) \\
n>23.87267488 \\
n=24
\end{gathered}
$$

$\therefore T_{24}$ is the first term

$$
\angle 0.0001
$$

($1 \frac{1}{2}$)marks if the inequality sign was not reversed, but everythinglese correct.

MATHEMATICS- QUESTION

\therefore Equation of tangent:

$$
\begin{array}{rl|}
y-2 \sqrt{3} & =-2\left(x-\frac{\pi}{6}\right) \\
y-2 \sqrt{3} & =-2 x+\frac{\pi}{3} \\
& \\
y & =-2 x+\frac{\pi}{3}+2 \sqrt{3}-\text { (1) or correct } \\
& \text { equation }
\end{array}
$$

(c) (i) let A_{n} be the value of the investment after n years.
So A_{1} is at $31 / 12 / 2000$
A_{2} is at $31 / 12 / 2001$

$$
\begin{align*}
A_{1} & =1000(1.06) \\
& =\$ 1060 \tag{1}
\end{align*}
$$

$$
\begin{aligned}
A_{2} & =A_{1}+A_{1}(1.06) \\
& =1000(1.06)+1000(1.06)^{2} \\
& =1000(1.06)(1+1.06) \\
& =\$ 2183.60
\end{aligned}
$$

\therefore Value on $31 / 12 / 2001$ is $\$ 2183.60$

MATHEMATICS- QUESTION

($2 \frac{1}{2}$ marks fr A_{17} with wrrect working).
(d) $2 \log _{2} x-\log _{2}(2 x+6)=1$

$$
\begin{gather*}
\log _{2}\left(\frac{x^{2}}{2 x+6}\right)=\log _{2} 2 \\
\therefore \frac{x^{2}}{2 x+6}=2 \\
x^{2}=4 x+12 \\
x^{2}-4 x-12=0 \\
(x+2)(x-6)=0 \\
x=-2 \quad \text { OR } \quad x=6
\end{gather*}
$$

- (1) Ar applying correct log laws.
[21 marks
fr $x=-2$
and $x=6$ with no other conclusion]
Test $x=-2$: $2 \log (-2)$ is not defined
$\therefore x=-2$ is not a solution
Test $x=6: 2 \log _{2} 6-\log _{2} 18=\log _{2} \frac{6^{2}}{18}=\log _{2} 2$ $=1$
$\therefore x=6$ is the only solution.

MATHEMATICS- QUESTION

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { (e) (i) } \int 2 \sin \left(\frac{\pi}{4}+x\right) d x \\
&= 2 x-\cos \left(\frac{\pi}{4}+x\right)+C \\
&=-2 \cos \left(\frac{\pi}{4}+x\right)+C-(1)
\end{aligned}
$$

- (1) for correct answer.
(ii)

$$
\begin{aligned}
& \frac{1}{2} \int \frac{2 x}{x^{2}+3} \text { dx - (1) Br showing } \frac{1}{2} \times 2 \\
= & \frac{1}{2} \ln \left(x^{2}+3\right)+C-\text { (1) fr correct answer }
\end{aligned}
$$

(1) mark fo $\ln \left(x^{2}+3\right)+c$
(1) mark for $2 \ln \left(x^{2}+3\right)+C$

MATHEMATICS - QUESTION 15 (18 marks)

MATHEMATICS - QUESTION 15
(a)

$$
\begin{aligned}
& \text { Pg 3 } \text { SUGGESTED SOLUTIONS } \\
& \text { angles in radian measure. } \\
& 360^{\circ}=2 \pi^{\circ} \\
& 10=\frac{2 \pi^{\circ}}{360} \\
& 72^{\circ}=\frac{2 \pi}{360^{\circ}} 72^{\circ} \\
&=\frac{149 \pi}{360} \\
&=\frac{2 \pi}{15}
\end{aligned}
$$

angles in radian measure.
(1) $l=1=1 \theta$

$$
=\frac{8 \times 215}{5}
$$

$$
=\frac{16 \mathrm{\sigma}}{5} \mathrm{~cm} .
$$

(ii)

$$
\begin{aligned}
A_{\text {sector }} & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 8^{2} \times \frac{2 \pi}{5} \\
& =\frac{64 \pi}{5} \mathrm{~cm}^{2}
\end{aligned}
$$

Method 2 (as in junior school)

$$
\begin{aligned}
\mathcal{L}_{\text {arc }} & =\frac{\theta}{360} \times 2 \pi r \\
& =\frac{72}{360} \times 2 \times \pi \times 8 \\
& =\frac{16 \pi}{5} \mathrm{~cm}
\end{aligned}
$$

$\begin{aligned} & \text { Area } \\ & \text { sects }\end{aligned}=\frac{\theta}{360} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{72}{360} \times \pi \times 8^{2} \\
& =\frac{64 \mathrm{\pi}}{5} \mathrm{~cm}^{2}
\end{aligned}
$$

MATHEMATICS - QUESTION 15 (18 ma/ks)
e)

MATHEMATICS - QUESTION 15

