\qquad
\qquad

St George Girls High School

Trial Higher School Certificate Examination

2019

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- Diagrams are not necessarily to scale
- In Questions 11-17, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for careless or poorly presented solutions

Total Marks - 100

Section I Pages 2 - 5

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II
Pages 6-13

90 marks

- Attempt Questions 11-17
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I		/10
Section II	$/ 13$	
Question 11	$/ 13$	
Question 12	$/ 13$	
Question 13	$/ 13$	
Question 14	$/ 13$	
Question 15	$/ 13$	
Question 16	$/ 12$	
Question 17		
Total		$\mathbf{1 0 0}$

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1-10.

1. What is the solution to the equation $3(2 y-1)=27$?
(A) $y=4$
(B) $y=4 \frac{1}{3}$
(C) $y=5$
(D) $y=5 \frac{4}{5}$
2. What is the derivative of $\frac{x}{\sin x}$?
(A) $\frac{\sin x+x \cos x}{\sin ^{2} x}$
(B) $\frac{\sin x-x \cos x}{\sin ^{2} x}$
(C) $\frac{x \cos x-\sin x}{\sin ^{2} x}$
(D) $\frac{-x \cos x-\sin x}{\sin ^{2} x}$
3. What are the coordinates of the turning point to the curve $y=e^{x}-e x$?
(A) $(0,1)$
(B) $(1,0)$
(C) $(1, e)$
(D) $(e, 1)$
4. The point P moves such that it remains equidistant from two fixed points. Which of the following equations might describe the locus of P ?
(A) $3 x+2 y-5=0$
(B) $(x-1)^{2}+(y+3)^{2}=9$
(C) $y=\frac{3}{x}$
(D) $x^{2}=12 y$

Section I (cont'd)

5. The graph below shows the functions $f(x)=-3 x^{2}+4$ and $g(x)=|2 x-3|$.

For what values of x is $|2 x-3| \geq-3 x^{2}+4$?
(A) $-\frac{1}{3} \leq x \leq 1$
(B) $x \leq-\frac{1}{3}$ and $x \geq 1$
(C) $-\frac{2 \sqrt{3}}{3} \leq x \leq 1$
(D) $x \leq-\frac{2 \sqrt{3}}{3}$ and $x \geq 1 \frac{1}{2}$
6. The solutions to $e^{6 x}-5 e^{3 x}+6=0$ are:
(A) $x=2, x=3$
(B) $x=\log _{e} 2, x=\log _{e} 3$
(C) $x=e^{2 x}, x=e^{3 x}$
(D) $x=\frac{1}{3} \log _{e} 3, x=\frac{1}{3} \log _{e} 2$

Section I (cont'd)

7. If α and β are the roots of $3 x^{2}-4 x+9=0$, then $\alpha^{2}+\beta^{2}=$
(A) 5
(B) $1 \frac{7}{9}$
(C) $10 \frac{7}{9}$
(D) $-4 \frac{2}{9}$
8. The graph of $y=f^{\prime}(x)$ is shown below.

The curve $y=f(x)$ has a minimum value of 6 . What is the equation of the curve?
(A) $y=x^{2}-4 x+2$
(B) $y=x^{2}-4 x+10$
(C) $y=x^{2}+4 x+2$
(D) $y=x^{2}+4 x+10$
9. The value of $\int_{0}^{\pi} \sin x d x=2$.

What is the value of $\int_{0}^{2 n \pi} \sin x d x$, where n is a positive integer?
(A) $4 n$
(B) 4π
(C) $2 n$
(D) 0

Section I (cont'd)

10. The function $y=f(x)$ is continuous for all x.

Given that $\int_{0}^{1} f(x) d x=6$ and $\int_{0}^{3} f(x) d x=5$, what is the value of $\int_{1}^{3}(1+f(x)) d x$?
(A) -1
(B) 0
(C) 1
(D) 2

Section II

90 marks
Attempt Questions 11-17
Allow about 2 hours and 45 minutes for this section.
Start each question in a new writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (13 marks) Start a New Writing Booklet.
a) Evaluate $\sqrt{500} \times 2.6^{2}$, correct to 2 decimal places.
b) Solve $-1-3 x<11$.
c) Find the points of intersection of $y=4-x^{2}+2 x$ and $x+y=0$.
d) Find the integers a and b such that $(2 \sqrt{3}-1)^{2}=a \sqrt{3}+b$.
e) In an arithmetic series the first term is 12 and the sum of the first 20 terms is 620 .
i) Find the $20^{\text {th }}$ term.
ii) Find the common difference.
f) $\triangle A B E$ is similar to $\triangle A D C \cdot A E=6, A B=4$, and $E D=2$. Find the length of $B C$.

Question 12 (13 marks) Start a New Writing Booklet.
a) Differentiate with respect to x :
i) $\left(4 x^{3}-x\right)^{7}$
ii) $\quad e^{x} \sin x$
iii) $\quad \ln (\sqrt{x})$
b) Consider the parabola $4 y=x^{2}-2 x+5$.
i) Find the coordinates of the vertex. 2
ii) Find the coordinates of the focus.
c) The parabola $y=-2 x^{2}+32$ cuts the x-axis at B, as shown below.

i) Show that the coordinates of B are $(4,0)$.
ii) The area enclosed by the curve, the x-axis, the y-axis, and $x=4$ is rotated about the x-axis. Find the volume of the solid formed.

Question 13 (13 marks) Start a New Writing Booklet.
a) Consider the function $f(x)=2+9 x-\frac{x^{3}}{3}$
i) Find the coordinates of the turning points and determine their nature.
ii) Find the coordinates of the point of inflexion.
iii) Sketch the curve, showing the stationary points and the point of inflexion.

Note: You are not required to find the x-intercepts.
b) Consider the function $y=\sqrt{5^{x}+2}$.
i) Copy and complete the table for the function, correct to 3 decimal places.

x	0	0.5	1	1.5	2
y			2.646		

ii) Use the trapezoidal rule with 5 function values to find an approximation for the value of $\int_{0}^{2} \sqrt{5^{x}+2} d x$.
c) The diagram shows a sector $O A B$ with measurements as shown.

i) Find the length r of the radius. 2
ii) Find the size of angle θ.

Question 14 (13 marks) Start a New Writing Booklet.
a) Consider the geometric series $(e-1)+\left(\frac{e-1}{e}\right)+\left(\frac{e-1}{e^{2}}\right)+\cdots$
i) Explain why this geometric series has a limiting sum.
ii) Find the exact value of the limiting sum.
b) Find $\int(\sin 3 x+2) d x$.
c) Evaluate $\int_{2}^{3} \frac{x^{3}}{x^{4}-2} d x$.
d) David starts walking from a camping place P on a bearing of 120° for 5 km to a place Q. He then walks on a bearing of 200° for 2 km to a place R.

i) What is the size of $\angle P Q R$?
ii) What is the distance between the camping place P and the place R ?

Answer correct to 2 decimal places.
e) Solve $2 \sin ^{3} x-3 \sin ^{2} x-2 \sin x=0$, for $0 \leq x \leq 2 \pi$.

Question 15 (13 marks) Start a New Writing Booklet.
a) i) Find $\frac{d}{d x}(x \ln x-x)$.
ii) Hence evaluate $\int_{2}^{4} \ln x d x$.
b) The velocity of a particle moving in a straight line has velocity, in metres per second, given by

$$
v=-\frac{7}{t+1}
$$

Initially the particle's displacement is 8 metres to the right of the origin.
i) Calculate the displacement of the particle at $t=3$ seconds, to 2 decimal places.
ii) Show that the acceleration of the particle is always positive.
iii) Is the particle ever at rest? Give reasons for your answer.
c) The line $y=5-x$ intersects the curve $y=\frac{4}{x}$ at the points $A(1,4)$ and $B(4,1)$. The region bounded by the curve and the line between the points A and B is shaded in the diagram below.

i) Use integration to find the exact area of the shaded region.
ii) Use one application of Simpson's Rule to estimate the shaded area.

Question 16 (13 marks) Start a New Writing Booklet.
a) A particle moving along the x-axis has velocity as shown in the graph below.

The particle is initially 2 m to the left of the origin, and it moves for 6 seconds.
i) In which direction does the particle initially move?
ii) Determine the instantaneous acceleration at $t=3.5 \mathrm{~s}$.
iii) When is the particle at the origin?
iv) When is the particle farthest from the origin, and what is its displacement then?
b) Kelsey borrowed $\$ 600000$ for the purchase of a home. The interest rate on the loan is 3.6% per annum, compounded monthly, and the loan term is 30 years. Let $\$ A_{n}$ be the amount owing at the end of n months and $\$ M$ be the monthly repayment amount.
i) Show that $A_{2}=600000(1.003)^{2}-M(1.003+1)$.
ii) Show that $A_{n}=600000(1.003)^{n}-M \frac{1.003^{n}-1}{0.003}$.
iii) The monthly repayments are set at $\$ 2728$ in order for Kelsey to repay the loan by the end of 30 years. Calculate Kelsey's total saving on the home loan if she decides to pay $\$ 2800$ per month so that the loan is paid out sooner. Assume that the interest rate remains the same.

Question 17 (12 marks) Start a New Writing Booklet.
a) The points $A(1,6), B(3,2)$, and $P(x, y)$ are marked on the axes below.

i) Find the gradient of $P A$ in terms of x and y.
ii) The point P moves such that the gradient on $P B$ is twice the gradient of $P A$.

Find the values of a, b, and c when the locus is expressed in the form

$$
y=a+\frac{b}{x-c}
$$

iii) Describe the locus geometrically.

Question 17 (Continued).

b) A design for a new mirror is shown below. The semi-circular section at the top will be made of decorative pressed tin. The bottom section is rectangular and will be made from mirrored glass.

The frame of the window, including the horizontal piece that separates the two sections, will be made from thin metal which is 24 metres in length.

The width of the mirror is w metres. The height of the rectangular section is h metres.

w metres

The company's profit on pressed tin is $\$ 10$ per square metre. They make $\$ 60$ profit per square metre on their mirrored glass.

Let the total profit per mirror be represented by $\$ P$.
i) Show that $h=12-w\left(1+\frac{\pi}{4}\right)$ metres.
ii) Show that $P=720 w-10 w^{2}\left(6+\frac{11 \pi}{8}\right)$ dollars.
iii) Find the values of w and h that will maximise the profit made per mirror.

END OF EXAMINATION

(1)

$$
\begin{array}{r}
3(2 y-1)=27 \\
2 y-1=9 \\
2 y=10 \\
y=5
\end{array}
$$

$$
\therefore C
$$

$$
\begin{aligned}
& \text { (2) Let } u=x \quad v=\sin x \\
& u^{\prime}=1 \quad v^{\prime}=\cos x \\
& \frac{d}{d x} \frac{x}{\sin x}
\end{aligned}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} .
$$

$$
\therefore B
$$

(3)

$$
\begin{aligned}
& y=e^{x}-e x \\
& y^{\prime}=e^{x}-e
\end{aligned}
$$

stationary points when $y^{\prime}=0$

$$
\begin{aligned}
e^{x}-e & =0 \\
e^{x} & =e \\
\therefore x & =1
\end{aligned}
$$

when $x=1, \begin{aligned} y & =e^{\prime}-e(1) \\ & =0\end{aligned}$

$$
\therefore(1,0)
$$

$$
\therefore B
$$

(4) The locus of a point moving
such that it is equidistant from two fixed points must be a straight line.

$$
\therefore A
$$

(5) $|2 x-3| \geqslant-3 x^{2}+4$

Solutions where $y=|2 x-3|$
is above or equal to $y=-3 x^{2}+4$
From the graphs,

$$
x \leqslant-\frac{1}{3}, \quad x \geqslant 1 \quad \therefore B
$$

(6) $e^{6 x}-5 e^{3 x}+6=0$
let $u=e^{3 x}$

$$
\begin{aligned}
& \therefore u^{2}-5 u+6=0 \\
& \quad(u-3)(u-2)=0 \\
& \quad u=3, \quad u=2 \\
& \therefore e^{3 x}=3, e^{3 x}=2 \\
& 3 x=\ln 3, \quad 3 x=\ln 2 \\
& x=\frac{\ln 3}{3} \quad x=\frac{\ln 2}{3} \therefore D
\end{aligned}
$$

(7)

$$
\begin{array}{rlr}
3 \pi^{2}-4 x+9=0 & a & =3 \\
\alpha+\beta & =\frac{-b}{9} & b=-4 \\
& =\frac{4}{3} & c=9 \\
\alpha \beta & =\frac{c}{9} & \\
& =3 & \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\left(\frac{4}{3}\right)^{2}-2(3) \\
& =\frac{16}{9}-6 & \therefore \\
& =-4 \frac{2}{9} &
\end{array}
$$

(8)

$$
\begin{aligned}
f^{\prime}(x) & =2 x+4 \\
\therefore f(x) & =x^{2}+4 x+C
\end{aligned}
$$

when $x=-2, f(x)=6$

$$
6=(-2)^{2}+4(-2)+c
$$

$$
=4-8+c
$$

$$
\therefore c=10
$$

$$
\therefore f(x)=x^{2}+4 x+10 \quad \therefore D
$$

(9)

For any n, areas above and below the x-axis are equal.
\therefore He value of the integral is zero. \therefore D
(10)

$$
\begin{aligned}
\int_{1}^{3}(1+f(x)) d x & =\int_{1}^{3} 1 d x+\int_{1}^{3} f(x) d x \\
& =\int_{1}^{3} 1 d x+\int_{0}^{3} f(x) d x-\int_{0}^{1} f(x) d x \\
& =2+5-6 \\
& =1 \quad \therefore C
\end{aligned}
$$

MATHEMATICS TRIAL HSC 2019 - QUESTION 11 (13 marks)

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(c) $y=4-x^{2}+2 x \cdots(1)$		
$x+y=0 \ldots$ (2) OR $y=-x$		

Lust. (1) into (2)

$$
\begin{gathered}
x+4-x^{2}+2 x=0 \\
4-x^{2}+3 x=0 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0 \\
x=4 \quad x=-1 \\
4+y=0 \quad-1+y=0 \\
\therefore y=-4
\end{gathered} \quad \therefore y=1
$$

(2) D this stage
$2 \frac{1}{2}$-o this stage
\therefore the points of intersection are $(4,-4)$ and $(-1,1)$.
(3) provides correct solution $\$$ writing points in the correct form, eg $(x, y)^{2}$.
(3) provides correct solution
(2) Obtains $x^{2}-3 x-4=0$ and solves for x, or equivalent merit.
(1) attempts to eliminate x or y, or equivalent merit. Common problems were: not finding the correct quadratic or incorrectly solving $x^{2}-3 x-4=0$.

- not showing the substitution for x to find y and making careless errors.

MATHEMATICS TRIAL HSC 2019 - QUESTION 11 (13 marks)

- not writing the points of intersection in the correct from, (x, y).

$$
\begin{aligned}
& \text { (d) }(2 \sqrt{3}-1)^{2}=a \sqrt{3}+b \\
& (2 \sqrt{3}-1)(2 \sqrt{3}-1)=a \sqrt{3}+b \\
& 12-2 \sqrt{3}-2 \sqrt{3}+1=a \sqrt{3}+b \\
& -4 \sqrt{3}+13=a \sqrt{3}+b \\
& \therefore a=-4 \quad \& \quad b=13
\end{aligned}
$$

(2) provides correct solution.
(1) Sr correct expansion leading to $-4 \sqrt{3}+13$, or equivalent merit.
(1) correct a or correct b.

Be careful with algebra and using $(a-b)^{2}=a^{2}-2 a b+b^{2}$ expansion.

$$
\begin{aligned}
&\left((2 \sqrt{3}-(1))^{2}\right.=(2 \sqrt{3})^{2}-2(2 \sqrt{3})(1)+(1)^{2} \\
&=12-4 \sqrt{3}+1 \\
&=13-4 \sqrt{3} \\
&=-4 \sqrt{3}+13 \text {-be careful } \\
& \text { with } 12+1=13! \\
& \hline
\end{aligned}
$$

- many put b as -1 !

MATHEMATICS TRIAL HSC 2019 - QUESTION 11 (13 marks)

SUGGESTED SOLUTIONS		MARKS	MARKER'S COMMENTS
(e) T_{1}	$=a=12$. Use your Reference sheet
S_{20}	$=620$		Br correct formulas!
$(i) \quad 620$	$=\frac{20}{2}(12+l)$		Wrong formula, No marks.
620	$=10(12+l)$		Tn $=a+(n-1) d$
62	$=12+l$		$S_{n}=\frac{n}{2}(a+l)$

$\therefore l=50$ - (1) provides correct solution.
\therefore The $20^{\text {th }}$ term is 50 .
(ii)

$$
\begin{aligned}
& T_{20}=a+19 d \\
& 50=12+19 d \\
& 19 d=38 \\
& \therefore d=2
\end{aligned}
$$

- (1) of equivalent merit
\therefore the common difference is 2 .
- Poor setting out in this question, eg doing (ii) before (i) and working out $d=2$ twice. Waste of valuable exam time!!!
- Using the correct formula b begin with, eg $S_{n}=\frac{n}{2}(a+l)$ would have avoided this.
- careless errors made because students didntí show working, eg substitution into correct formulas.

MATHEMATICS TRIAL HSC 2019 - QUESTION 11 (13 marks)

MATHEMATICS TRIAL HSC 2019 - QUESTION 11 (13 marks)

- Students that seperated their triangles and re-drew them in their answer booklets were more successful in achieving the correct answer.
- Better solutions clearly showed the ratio of corresponding sides, $\frac{A C}{A E}=\frac{A D}{A B}$ before substituting the lengths given in the question.
- If you are going to introduce a variable, say" x ", You need to cither state that $x=B C$ or re-draw the diagram in your answer booklet clearly labelling x !

MATHEMATICS - QUESTION 12

ii) $\frac{d}{d x}\left(e^{x} \sin x\right)$

$$
\left.\begin{array}{ll}
u=e^{x} & v=\sin x \\
u^{\prime}=e^{x} & v^{\prime}=\cos x
\end{array}\right\} \frac{}{}
$$

$$
=v u^{\prime}+u v^{\prime}
$$

$$
\left.\begin{array}{l}
=\sin x\left(e^{x}\right)+e^{x}(\cos x) \\
E R e^{x}(\sin x+\cos x)
\end{array}\right] \text { I mark }
$$

iii) $\frac{d}{d x} \ln (\sqrt{x})$

$$
\left.\begin{array}{rl}
\frac{d}{d x} \ln [f(x)] & =\frac{f^{\prime}(x)}{f(x)} \\
f(x) & =\sqrt{x} \\
& =x^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}} \times \frac{1}{\sqrt{x}} \\
& =\frac{1}{x} \\
2 \sqrt{x}
\end{array}+\frac{1}{2 \sqrt{x}} \times \frac{1}{\sqrt{x}} \text { mark }\right\}
$$

$$
\text { OR } \frac{d}{d x} \ln x^{\frac{1}{2}}=\frac{d}{d x}\left(\frac{1}{2} \ln x\right) \leftarrow 1 \text { mark }
$$

$$
=\frac{1}{2} \times \frac{1}{x}
$$

$$
\frac{\frac{1}{2 x}}{\text { student are more successful }}
$$

when applying the method on the right. Students with weak indices and algebraic skills struggles to set out their wonk clearly and simplify.

MATHEMATICS - QUESTION 12
SUGGESTED SOLUTIONS
MARKS MARKERS COMMENTS
b) $4 y=x^{2}-2 x+5$
i) Arrange it in the form $(x-h)^{2}=4 a(y-k)$ to get vertex (h, k)

$$
\begin{aligned}
& 4 y=\left(x^{2}-2 x+1\right)+4 \\
& 4 y=(x-1)^{2}+4 \\
& 4 y-4=(x-1)^{2} \\
& \left.\begin{array}{l}
4 y-1)^{2}=4 y-4 \\
(x-1)^{2}=4(y-1)
\end{array}\right] 1 \text { mark to } \\
& \text { completing } \\
& \text { square }
\end{aligned}
$$

$$
4 y=(x-1)^{2}+4 \quad\{1 \text { mark for }
$$

\therefore vertex is $(1,1) \longleftarrow \frac{1}{2}$
ii) focus $(h, k+a)$ where a is the focal length

$$
4 a=4
$$

$$
a=1 \longleftarrow 1 \text { mark }
$$

\therefore focus $(1,2) \longleftarrow 1$ mark
i) Most knows the process but some did not complete the square correctly. some uses the axis of symmetry to find the vertex sucasstully.
ii) Students who states the focal length, and either a quick sketch of diagram or realised that the curve is concave up, has no trouble giving the coordinates of the focus.

MATHEMATICS - QUESTION 12

cuts the x-axis. Substitute $(4,0)$
into $y=-2 x^{2}+32$

$$
\begin{aligned}
\text { HIS } & =0 \\
\text { RHS } & =-2(4)^{2}+32 \\
& =-2(16)+32 \\
& =-32+32 \\
& =0 \\
& =1 H S
\end{aligned}
$$

\therefore coordinates of B are $(4,0)$

OR

$$
\begin{aligned}
& 0=-2 x^{2}+32 \quad(x-\text {-nterept }) \\
& 2 x^{2}=32 \\
& x^{2}=16 \\
& x= \pm 4
\end{aligned}
$$

Must justify why $x=4$ for wordinate of B to get the other mark $\frac{1}{2}$ mark.
on the diagram, B has positive x-values $\longleftarrow \frac{1}{2}$ mark

$$
\therefore \quad B(4,0)
$$

$$
\text { ii) } \quad V=\pi \int_{a}^{b} y^{2} d x \quad \begin{aligned}
& y=-2 x^{2}+32 \\
& =\pi \int_{0}^{4}\left(1024-128 x^{2}+4 x^{4}\right) d x \\
& y^{2}=\left(32-2 x^{2}\right)
\end{aligned} \quad \begin{aligned}
& \text { (1) } \\
& =1024-128 x^{2}+\left.4 x\right|^{4}
\end{aligned}
$$

$$
=\pi\left[1024 x-\frac{128 x^{3}}{3}+\frac{4 x^{5}}{5}\right]_{0}^{4} \text { (1) integration }
$$

$$
=\pi\left(1024 \times 4-\frac{128\left(4^{3}\right)}{3}+\frac{4}{5}\left(4^{5}\right)-0\right)
$$

$$
=\pi\left(\frac{32768}{15}\right)
$$

$$
=\frac{32768 \pi}{15} u^{3}
$$

MATHEMATICS - QUESTION 13
a) i

$$
\begin{aligned}
& f(x)=2+a x-\frac{x^{3}}{3} \\
& f^{\prime}(x)=9-x^{2}
\end{aligned}
$$

Stationary points when $f^{\prime}(x)=0$

$$
\begin{aligned}
& 9-x^{2}=0 \\
& x=3, x=-3 \\
& f^{\prime \prime}(x)=-2 x \\
& \therefore f^{\prime \prime}(3)=-6 \\
&<0 \quad \therefore \text { concave down } \\
& f^{\prime \prime}(-3)=6 \\
&>0 \therefore \text { concave up } \\
& f(3)= 2+27-9 \\
&= 20 \\
& f(-3)= 2-27+9 \\
&=-16
\end{aligned}
$$

$\therefore(3,20)$ is a maximum turing point.
$(-3,-16)$ is a minimum turning point.
ii) Possible points of inflexion when

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
-2 x & =0 \\
x & =0
\end{aligned}
$$

when $x=0, y=2 \quad \therefore(0, z)$
This question needs a concluding statement; don't make the examiner search through your working for the answers.

To find a point of inflexion, two things must be satisfied:
a) $f^{\prime \prime}(x)=0$, and b) concavity changes about the point.

MATHEMATICS - QUESTION 13 (continued)

sUGGESTED SOLUTIONS				
Test	cancan,	-		
x	-1	0	i	
$f^{\prime \prime}(x)$	2	0	-2	
	\cup	$*$	\cap	

Since concavity changes, $(0,2) \quad 1$ is a point of inflexion.

NB: A table such as below, which confuses concavity' with gradient, is wrong.

x	-1	0	1
$f^{\prime \prime}(x)$	2	0	-2
	1	-	1

iii)

1 All points correctly drawn and labelled

1 Overall shape
Your graph should be one smooth curve, with no linear sections. Note also that points of inflexion are not always horizontal.

MATHEMATICS - QUESTION 13 (continued)

| SUGGESTED SOLUTIONS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b) \dot{j} | | | | | |
| | | 0.5 | 0 | | |
| y | 1.732 | 2.058 | 2.646 | 3.630 | 5.196 |

$\frac{i i}{2}$

$$
\begin{array}{rl|}
\int_{0}^{2} \sqrt{5^{x}+2} d x & \div \frac{0.5}{2}[1.732+5.196+2(2.058+2.646+3.630)] \\
& =5.899
\end{array} 1
$$

NB: you can only earn marks for this question if you use the trapezoidal rule.
c) i

$$
\begin{array}{ll}
l=r \theta & A=\frac{1}{2} r^{2} \theta \\
8=r \theta(1) & 40=\frac{1}{2} r^{2} \theta \\
& r^{2} \theta=80 \tag{2}
\end{array}
$$

for either equation
(2)

$$
\begin{aligned}
& \because(1) \\
& \frac{r^{2} \theta}{r \theta}=\frac{80}{8} \\
& r=10 \quad \therefore r=10 \mathrm{~cm}
\end{aligned}
$$

ii sub $r=10$ into (i)

$$
\begin{aligned}
& 8=10 \theta \\
& \theta=\frac{4}{5}
\end{aligned}
$$

Note that this measurement is in radians. Answers like $\frac{4^{\circ}}{5}$, or $\frac{4 \pi}{5}$, attracted half marks.

MATHEMATICS - QUESTION 14
SUGGESTED SOLUTIONS
a) (i)

$$
\begin{aligned}
& r=\frac{T_{2}}{T_{1}} \\
& =\frac{\frac{e^{-1}}{e} \times e^{e}}{e-1 \times e} \\
& =\frac{1}{e} \approx 0.368(\text { to } 3 d \cdot p) \\
& \therefore \quad-1<r<1 \text { or }|r|<1 \\
& \therefore \text { There is a limiting sum }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{e-1}{1-1 / e} \times e \\
& =\frac{e(e-1)}{e-1} \\
& =e
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int(\sin 3 x+2) d x \\
= & -\frac{1}{3} \cos 3 x+2 x+C
\end{aligned}
$$

Many students thought the question meant $\int \sin (3 x+2)$ instead of $\int(\sin 3 x+2) d x$

MATHEMATICS - QUESTION 14

$$
\text { c) } \begin{aligned}
& \int_{2}^{3} \frac{x^{3}}{x^{4}-2} d x \\
= & \frac{1}{4} \int_{2}^{3} \frac{4 x^{3}}{x^{4}-2} d x \\
= & \frac{1}{4}\left[\ln \left(x^{4}-2\right)\right]_{2}^{3} \\
= & \frac{1}{4}\left[\ln \left(3^{4}-2\right)-\ln \left(2^{4}-2\right)\right] \\
= & \frac{1}{4}(\ln 79-\ln 14) \\
= & \frac{1}{4} \ln \frac{79}{14}
\end{aligned}
$$

d) (i)

$$
\begin{aligned}
\theta & =360-60-200 \\
& =100^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos c \\
& \beta R=\sqrt{5^{2}+2^{2}-2(5)(2) \cos 100} \\
& P_{R}=5.70
\end{aligned}
$$

MARKS MARKER'S COMMENTS

Too much time wasted with reasoning. Question did no ask for reasons

Many shedentor had their calculators in radian mode instead of degrees!

MATHEMATICS - QUESTION 14

MATHEMATICS EXTENSIONI-QUESTION IS

$$
\begin{aligned}
& \text { Question } 15 \text { (contd) } \begin{aligned}
& \text { SUGGSTED SOLUTIONs } \\
& \text { (i) (ii) } v=-7(t+1)^{-1} \\
& a=\frac{d}{d x}-7(t-1)^{-1} \\
&=-7 \times-1 \times(t+1)^{-2} \\
&=\frac{7}{(t+1)^{2}} \\
& x>0,(t+1)>0 \&(t+1)^{2}>0
\end{aligned}
\end{aligned}
$$

\therefore acceleration is always positive.
(iii) for particle to be at rest $v=0$

$$
\begin{aligned}
& v=\frac{-7}{(t+1)} \\
& \text { as } t>0,(t+1)>0 \\
& v \neq 0
\end{aligned}
$$

\therefore Particle is never at rest.
(c) (i)

$$
\begin{aligned}
A & =\int_{1}^{4}(5-x)-\frac{4}{x} d x \\
& =\left[5 x-\frac{x^{2}}{2}-4 \ln (x)\right]_{1}^{4} \\
& =(20-8-4 \ln 4)-\left(5-\frac{1}{2}-0\right) \\
& =712-4 \ln 4 \quad u_{\text {nits }}{ }^{2} \\
& \fallingdotseq 1.95 v^{2}(2 d p)
\end{aligned}
$$

(ii) $\int_{1}^{4} 5-x-\frac{4}{x} d x$.

$$
\begin{aligned}
& \therefore \frac{105}{3}\left(0+4 \times \frac{9}{10}+0\right) \\
& \doteqdot \frac{9}{5} u^{2} \\
& \div 1.8 u^{2}
\end{aligned}
$$

MATHEMATICS EXFENSION- - QUESTION 15

$$
\begin{aligned}
& \text { Question } 15 \quad \text { SUGGESTED SOLUTIONS } \\
& \text { (a)(i) } \frac{d}{d x} x \ln x-x \\
& =\ln \ln x+x \times \frac{1}{x}-1 \\
& =\ln x+1-1 \\
& =\ln x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{2}^{4} \ln x d x \\
= & {[x \ln x-x]_{2}^{4} } \\
= & (4 \ln 4-4)-(2 \ln 2-2) \\
= & 4 \ln 4-2 \ln 2-2 \\
= & 8 \ln 2-2 \ln 2-2 \\
= & 6 \ln 2-2 \\
\doteqdot & 2.16
\end{aligned}
$$

(b)

$$
\begin{aligned}
v & =-\frac{7}{t+1} \\
x & =\int \frac{-7}{t+1} d t \\
& =-7 \int \frac{1}{t+1} d t \\
& =-7 \ln (t+1)+c
\end{aligned}
$$

when $t=0, x=8$

$$
\begin{align*}
8 & =-7 \ln (1)+c \\
8 & =c \\
\therefore x & =-7 \ln (t+1)+8 \tag{1}
\end{align*}
$$

When $t=3$

$$
\begin{aligned}
x & =-7 m(3+1)+8 \\
& =-1.70406 \ldots \\
& \vdots-1.70 \quad(2 d p)
\end{aligned}
$$

Fult monks given for 1n64-2

$$
2(3 \ln 2-1)
$$

$$
3 \ln 4-2
$$

$-1 / 2$ mank for rounding crom

MATHEMATICS - QUESTION 16-pagel

- SUGGESTED SOLUTIONS
a)i) Preferred answer: Right Other acceptable answers: - towards the origin
- in a positive direction.
a) ii) Gradient at $t=3.5$ is

$$
-4 \mathrm{~ms}^{-2}
$$

a) iii) Between $t=0$ and $t=1.5 \mathrm{~s}$, the area under the curve is 2. Therefore at $t=1.5 \mathrm{~s}$ the particle has travelled 2 m right and is at the origin.
Then between $t=1.5 \mathrm{~s}$ and $t=3.5 \mathrm{~s}$, the particle travels 3.5 m right of the origin. Between $t=3.5 \mathrm{~s}$ and $t=5.5 \mathrm{~s}$, the particle travels 3.5 m to the left (calculated using the area under the curve)

- The particle is at the origin at $t=1.5 \mathrm{~s}$ and $t=5.5 \mathrm{~s}$.

1 -most students answered correally.

- Forwards or upwards were not acceptable.
- Answered poorly
- Students did not understand to find gradient.
- Many said $a=0$
- Answered poorly
- Many said $t=1$, incorrectly calculation the area.
- Many other incorred Versions.
- If a student's first answer was incorrect, but their second answer was correct after assuming the first, then they received one mark.

MATHEMATICS EXTENSION I QUESTION
16 -page 2

MATHEMATICS EXTENSION I- QUESTION 16 - page 3

MATHEMATICS -QUESTION 17 continued
SUGGESTED SOLUTIONS
viii) locus is a hyperbola
with a vertical asymptote
of $x=5$ (or shifted right 5 units
any other relevant feature such as hor: zontol asymptote of $y=10$ (or shifted 10 units up), or stretched vertically by 16.
b)

$$
\left.\begin{array}{l}
p=2 h+2 \omega+\frac{1}{2} \times 2 \pi \times \frac{\omega}{2} \\
24=2 h+2 \omega+\frac{\omega \pi}{2} \\
\left.12=h+\omega+\frac{w \pi}{4}\right\}_{1} \\
\therefore h=12-\omega-\frac{\omega \pi}{4}
\end{array}\right\}_{1}
$$

MATHEMATICS - QUESTION 17 continued

