

2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 120

- Attempt Questions 1 10
- All questions are of equal value

2008 Trial HSC Examination Mathematics

BLANK PAGE

Total Marks – 120 Attempt Questions 1 – 10 All questions are of equal value

Begin each question in a SEPARATE writing booklet. Extra booklets are available.

Quest	tion 1 (12 marks) Use a SEPARATE writing booklet.	Marks
a)	Evaluate $\left(\frac{1}{e^{2\cdot 5}} - 1\right)^2$ correct to 3 significant figures.	2
b)	Solve $ 2x-1 \le 3$	2
c)	If $\frac{4}{2-\sqrt{3}} = a + b\sqrt{3}$ find the values of <i>a</i> and <i>b</i> .	2
d)	Find the tenth term of the arithmetic series $4\frac{1}{2} + 3 + 1\frac{1}{2} + \dots$	2
e)	Factorise $2x^2 + 7x - 4$	2
f)	Find the perpendicular distance from the point (1, 3) to the line $6x-8y+5=0$	2

Question 2 (12 marks) Use a SEPARATE writing booklet.

- a) Differentiate with respect to *x*
 - (i) $x \sin x$ 2

(ii)
$$(1+e^x)^5$$
 2

b) (i) Find
$$\int \sec^2 3x \, dx$$
 2

(ii) Evaluate
$$\int_0^3 \frac{6x}{1+x^2} dx$$
 3

c)	Find the equation of the tangent to the curve $y = \cos 3x$ at the point whose	3
	x-coordinate is $\frac{\pi}{6}$.	

End of Question 2

Marks

Question 3 (12 marks) Use a SEPARATE writing booklet.

a)

The points A and C have coordinates (1, 6) and (5, 0) respectively. The line BD has an equation of 2x-3y+3=0 and meets the y axis in D.

i)	The point <i>M</i> is the midpoint of <i>AC</i> . Show that <i>M</i> has coordinates $(3, 3)$.	1
ii)	Show that <i>M</i> lies on <i>BD</i> .	1
iii)	Find the gradient of the line AC .	1
iv)	Show that BD is perpendicular to AC.	2
v)	Find the distance AC.	1
vi)	Explain why the quadrilateral <i>ABCD</i> is a kite regardless of the position of <i>B</i> .	1

Question 3 continues on next page.

Marks

Question 3 continued

b) Michael is training for a local marathon. He has trained by completing practice runs over the marathon course. So far he has completed three practice runs with times shown below.

Week 1	Week 2	Week 3
3 hours	2 hours 51 minutes	2 hours 42 minutes 27 seconds

1 Show that these times form a geometric series with a common ratio i) r = 0.95. 1 ii) If this series continues, what would be his expected time in Week 5, to the nearest second? 1 iii) How many hours, minutes and seconds (to the nearest second) will he have run, in total, in his practice runs in these 5 weeks? 2 iv) If the previous winning time for the marathon was 2 hours and 6 minutes, how many weeks must he keep practicing to be able to run the marathon in less that the previous winning time?

Question 4 (12 marks) Use a SEPARATE writing booklet.

Show that: a) 2

$$\sqrt{\frac{\csc^2 x - \cot^2 x - \cos^2 x}{\cos^2 x}} = \tan x$$

For the function $y = x^3 - 3x^2 - 9x + 1$, find the values of x for which the curve b) is decreasing.

c)

AOB is a sector of a circle, centre O and radius 3 cm. The length of arc AB is 2π cm. AB is a chord.

- Calculate the angle θ subtended at the centre of the circle by the (i) 1 arc AB.
- Calculate the exact area of the shaded segment. (ii)

Question 4 continues on next page.

Marks

3

2

2

Question 4 continued

d) Peta and Quentin are pilots of two light planes which leave Resthaven station at the same time. Peta flies on a bearing of 330° at a speed of 180 km/h and Quentin flies on a bearing of 080° at a speed of 240 km/h. Copy the diagram below onto your answer page and mark the information on the diagram.

- i) Show that Peta and Quentin are 692 km (to the nearest km) apart after 2 hours? 2
- ii) What is the bearing of Quentin from Peta after 2 hours. (Answer to the nearest degree.)

Question 5 (12 marks) Use a SEPARATE writing booklet.

Marks

2

c) Solve the pair of simultaneous equations

$$3x - y = 10$$

 $x = y + 2$

Question 6 (12 marks) Use a SEPARATE writing booklet.

Marks

a) For the function
$$y = x^6 - 6x^4$$

i)	Find the <i>x</i> coordinates of the points where the curve crosses the axes.	2
ii)	Find the coordinates of the stationary points and determine their nature.	4
iii)	Find the coordinates of any points of inflexion.	2
iv)	Sketch the graph of $y = x^6 - 6x^4$ indicating clearly the intercepts, stationary points and points of inflexion.	2

b) For a certain function y = f(x), the sketch of y = f'(x) is shown.

Give the x coordinates of the stationary points on y = f(x) and indicate if 2 they are maxima or minima.

х

3

Question 7 (12 marks) Use a SEPARATE writing booklet.

Marks

 $\leftarrow 0$ $\frac{\pi}{12}$

The diagram shows the graph of $y = 2\cos 3x$. Find the area enclosed by the curve $y = 2\cos 3x$, the line $x = \frac{\pi}{12}$ and the x and y axes.

Question 7 continues on next page.

Question 7 continued

- i) Show that the curves $y = x^2 3x$ and $y = 5x x^2$ intersect at the points (0, 0) and (4, 4). 2
- ii) Find the area enclosed between the two curves. 3

d) Find
$$\frac{d}{dx}\log_e(\cos x)$$
. 1

Question 8 (12 marks) Use a SEPARATE writing booklet.

a) A city has a population which is growing at a rate that is proportional to the current population. The population at time *t* years is given by

$$P = Ae^{kt}$$

i) Show that
$$P = Ae^{kt}$$
 satisfies the equation $\frac{dP}{dt} = kP$. 1

- ii) If the population at the start of 2006 when t = 1 was 147 200 and at the start of 2007 when t = 2 was 154 800, find the values of A and k.
- iii) Find the population at the start of 2009. 1
- iv) Find during which year the population will first exceed 200 000.
- b) In the diagram below, P is the midpoint of the side AB of the $\triangle ABC$. PQ is drawn parallel to BC.

- i) Prove that $\triangle ABC \parallel \mid \triangle APQ$. 2
- ii) Explain why Q is the midpoint of AC.
- c) Find an approximation for $\int_{1}^{3} g(x) dx$ by using Simpson's Rule with the values in the table below. 2

x	1	1.5	2	2.5	3
g(x)	12	8	0	3	5

d) Evaluate
$$\sum_{n=2}^{5} (n^2 - 1)$$

End of Question 8

2

Question 9 (12 marks) Use a SEPARATE writing booklet.

a) The diagram shows the region bounded by the curve $y = 2x^2 - 2$ the line y = 6 and the x and y axes.

Find the volume of the solid of revolution formed when the region is rotated about the *y* axis.

b) Sketch the function $y = \ln(x+1)$, showing its essential features.

c) Given that
$$\frac{d}{dx}(e^{x^5}) = 5x^4e^{x^5}$$
, find $\int 2x^4e^{x^5} dx$.

d) A car dealership has a car for sale for a cash price of \$20 000. It can also be bought on terms over three years. The first six months are interest free and after that interest is charged at the rate of 1% per month on that months balance. Repayments are to be made in equal monthly instalments beginning at the end of the first month.

A customer buys the car on these terms and agrees to monthly repayments of M. Let A_n be the amount owing at the end of the *n*th month.

i)	Find an expression for A_6 .	1
ii)	Show that $A_8 = (20\ 000 - 6M)1 \cdot 01^2 - M(1 + \Box \Box 1 \cdot 01)$	1
iii)	Find an expression for A_{36} .	2
iv)	Find the value of <i>M</i> .	2

End of Question 9

3

1

2

Question 10 (12 marks) Use a SEPARATE writing booklet.

1

a) A plant nursery has a watering system which repeatedly fills a storage tank then empties its contents to water different sections of the nursery. The volume of water (in cubic metres) in the tank at a time t is given by the equation

 $V = 2 - \sqrt{3} \cos t - \sin t$ where t is measured in minutes.

i) Give an equation for
$$\frac{dV}{dt}$$
, the rate of change of the volume at a time t. 1

- ii) Is the tank initially filling or emptying?
- iii) At what time does the tank first become completely full and what is 3 its capacity when full?

Question 10 continues on next page.

Marks

2

3

Question 10 continued

b) A truncated cone is to be used as a part of a hopper for a grain harvester. It has a total height of h metres. The top radius is to be t times greater than the bottom radius which is 2 metres.

i) If x is the height of the removed section of the original cone, show using similar triangles that $x = \frac{h}{t-1}$

ii)	Show that the volume of the truncated cone is given by	2
	$V = \left(\frac{4\pi h}{3}\right) \left(t^2 + t + 1\right)$	

iii) If the upper radius plus the lower radius plus the height of the truncated cone must total 12 metres, calculate the maximum volume of the hopper.

End of Examination

STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$ NOTE: $\ln x = \log_e x, x > 0$

2008 TRIAL HSC EXAMINATION

Mathematics

SOLUTIONS

Questi	Question 1 Trial HSC Examination- Mathematics			
Part	Solution	Marks		
(a)	$\left(\frac{1}{e^{2.5}}-1\right)^2 = 0.84256 = 0.843$ (3 sig fig)	2		
(b)	$ 2x-1 \le 3$	2		
	$-3 \le 2x - 1 \le 3$ $-2 \le 2x \le 4$			
(c)	$-1 \le x \le 2$ $\frac{4}{2-\sqrt{3}} = a + b\sqrt{3}$	2		
	$\frac{4}{2-\sqrt{3}} = \frac{4}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$			
	$=\frac{8+4\sqrt{3}}{4-3}$			
	$a + b\sqrt{3} = 8 + 4\sqrt{3}$			
(d)	$\frac{a = 8 \text{ and } b = 4}{4\frac{1}{2} + 3 + \frac{1}{2} + \dots}$	2		
	Series is arithmetic with $a = 4\frac{1}{2}$ and $d = -1\frac{1}{2}$			
	$T_n = a + (n-1)d$			
	$T_{10} = 4 \cdot 5 + 9 \times -1 \cdot 5$			
	$T_{10} = -9$			
(e)	(x+4)(2x-1)	2		
(f)	$d = \left \frac{6(1) - 8(3) + 5}{\sqrt{6^2 + (-8)^2}} \right $	2		
	$=\left \frac{-13}{\sqrt{100}}\right $			
	=1.3 units			

Question 2		Trial HSC Examination- Mathematics		
Part	Solution	n	Marks	
(a) i)	$x \cos x$	$x\cos x + \sin x$		
ii)	5(1+	$(e^x)^4 \times e^x$	2	
	$=5e^{x}(1)$	$(+e^x)^4$		
(b) i)	$\frac{1}{3}$ tan 32	x + c	2	

Questi	Question 2 Trial HSC Examination- Mathematics		
Part	Solution	Marks	
ii)	$\left[3\ln\left(1+x^2\right)\right]_0^3$	3	
	$=3[\ln 10 - \ln 1]$		
	$=3\ln 10$		
(c)	$y' = -3\sin 3x$	3	
	when $x = \frac{\pi}{6}$, $y' = -3\sin\frac{\pi}{2}$		
	=-3		
	\therefore gradient of tangent is -3		
	when $x = \frac{\pi}{6}$, $y = 0$.		
	Equation of tangent is $3x + y - \frac{\pi}{2} = 0$		

Quest	Question 3 Trial HSC Examination- Mathematics		
Part	Solution	Marks	
(a)i)	Midpoint of (1, 6) and (5, 0).	1	
	$MP = \left(\frac{1+5}{2}, \frac{6+0}{2}\right) = \left(\frac{6}{2}, \frac{6}{2}\right) = (3,3)$		
ii)	Show that (3,3) lies on $2x - 3y + 3 = 0$	1	
	LHS = 2(3) - 3(3) + 3		
	=6-9+3		
	= 0 = RHS		
	So M lies on BD.		
iii)	Gradient AC = $m_1 = \frac{6-0}{1-5} = \frac{6}{-4} = -\frac{3}{2}$	1	
iv)	Find gradient m_2 of BD $2x - 3y + 3 = 0$	2	
	2x - 3y + 3 = 0		
	3y = 2x + 3		
	$y = \frac{2}{3}x + 1$		
	$\therefore m_2 = \frac{2}{3}$		
	$m_1 \cdot m_2 = -\frac{3}{2} \cdot \frac{2}{3} = -1$		
	\therefore BD is perpendicular to AC		

Quest	ion 3 Trial HSC Examination- Mathematics	
Part	Solution	Marks
v)	$AC = \sqrt{(5-1)^2 + (0-6)^2}$	1
	$=\sqrt{16+36}$	
	$=\sqrt{10+30}$ $=\sqrt{52}$	
($= 2\sqrt{13}$ units The lines AC and PD would form the diagonals of the quadrilatoral APCD	1
(vi	The lines AC and BD would form the diagonals of the quadrilateral ABCD. BD is the perpendicular bisector of AC from ii and iv above.	1
	The diagonals of a kite meet at right angles and one diagonal bisects the other,	
(b)i)	so ABCD meets the criteria for a kite.	1
(0)1)	$\frac{2 \text{ hours 51 minutes}}{3 \text{ hours}} = \frac{2.85}{3} = 0.95$	1
	$\frac{2 \text{ hours } 42 \text{ minutes } 27 \text{ seconds}}{2 \text{ hours } 51 \text{ minutes}} = \frac{2.7075}{2.85} = 0.95$	
	\therefore forms a geometric series with $r = 0.95$	
ii)	a = 3, n = 5 and $r = 0.95$	1
	$u_5 = ar^{n-1}$	
	$=3 \times 0.95^4$	
	= 2.4435	
	= 2 hours 26 min 37 s	
iii)	$s_n = \frac{a\left(1 - r^n\right)}{\left(1 - r\right)}$	1
	$2(1 - 0.05^5)$	
	$=\frac{3(1-0.95^5)}{(1-0.95)}$	
	(1-0.93) =13.573	
	= 13.375 = 13 hours 34 min 23 s (to nearest s))	
iv)		2
17)	$u_n = ar^{n-1}$ 2 hours 6 min = 3×0.95 ⁿ⁻¹	2
	2 nours 6 min = $3 \times 0.95^{n-1}$ $3 \times 0.95^{n-1} = 2.1$	
	$3 \times 0.95^{n-1} = 2.1$ $0.95^{n-1} = 2.1 \div 3 = 0.7$	
	$\ln(0.95^{n-1}) = \ln(0.7)$	
	$(n-1)\ln(0.95) = \ln(0.7)$	
	$n - 1 = \frac{\ln(0.7)}{\ln(0.95)}$	
	n - 1 = 6.953	
	<i>n</i> = 7.953	
	Would need to continue for 8 weeks to better the time.	

Quest	ion 4 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$\sqrt{\frac{\csc^2 x - \cot^2 x - \cos^2 x}{\cos^2 x}} = \sqrt{\frac{1 - \cos^2 x}{\cos^2 x}}$ $= \sqrt{\frac{\sin^2 x}{\cos^2 x}}$ $= \frac{\sin x}{\cos x}$ $= \tan x$	2
(b)	$y' = 3x^2 - 6x - 9$ $x^2 - 2x - 3 < 0$ (x+1)(x-3) < 0 ∴ function is decreasing for $-1 < x < 3$	3
(c)i)	$l = r\theta$ $2\pi = 3\theta$ $\theta = \frac{2\pi}{3}$ $A = \frac{1}{2}r^{2}(\theta - \sin\theta)$	1
(c)ii)	$A = \frac{1}{2}r^{2}(\theta - \sin\theta)$ $A = \frac{1}{2} \times 3^{2} \left(\frac{2\pi}{3} - \sin\frac{2\pi}{3}\right)$ $A = \frac{9}{2} \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$ $A = \frac{9}{2} \left(\frac{4\pi - 3\sqrt{3}}{6}\right) = \frac{3}{4} \left(4\pi - 3\sqrt{3}\right) \text{ units}^{2}$	2
(d)i)	$PQ^{2} = 360^{2} + 480^{2} - 2 \times 360 \times 480 \cos 110^{\circ}$ $PQ^{2} = 478202$ $PQ = 692 \text{ km (nearest km)}$	2

Quest	Question 4 Trial HSC Examination- Mathematics				
Part	Solution				Marks
(d)ii)	First find	-			2
	480	$\frac{PR}{PR} = \frac{\sin 110^\circ}{692}$ $PR = \frac{480 \times \sin 110^\circ}{692}$	Can also be found using cos rule using the 3 sides		
	$\angle QPR = \angle NPR =$		°	J	

Quest	stion 5 Trial HSC Examination- Mathematics		
Part	Solution	Marks	
(a)i)	$\angle EAD = 60^{\circ}$ (unuilateral $\triangle EAD$)	3	
	$\angle DAC = 45^{\circ}$ (sousceles right-angled $\triangle DAC$)		
	$\therefore \angle EAB = \angle EAD + \angle DAC + \angle CAB$		
	$=60^{\circ}$ \pm \pm 2° \pm 2°		
	=156°		
ii)	$\angle ABC = 180^{\circ} - 1.50^{\circ}$ (conterior \angle on lines, AE and BC)	1	
	= 24°		
(b)i)	$= 24^{\circ}$ $x = \frac{4t^2 + t + 8}{4t + 1}$	2	
	$x = \frac{4(0)^2 + (0) + 8}{4(0) + 1}$ when t = 0		
	= 8		
	∴initial dispalcement is 8 m		
(b)ii)	$x = \frac{4t^2 + t + 8}{4t + 1}$		
	$\frac{(4t+1)(8t+1)-(4t^2+t+8)(4)}{(4t+1)^2}$		
	$(4t+1)^2$	1	
	$=\frac{32t^2+12t+1-16t^2-4t-32}{(4t+1)^2}$		
	$-\frac{(4t+1)^2}{(4t+1)^2}$		
	$=\frac{16t^2+8t-31}{(4t+1)^2}$		
	$-(4t+1)^2$		

Questio	on 5 Trial HSC Examination- Mathematics	
Part	Solution	Marks
		2
(b)iii)	$16t^2 + 8t - 31$	
	$\frac{16t^2 + 8t - 31}{\left(4t + 1\right)^2} = 0$	
	$16t^2 + 8t - 31 = 0$	
	$t = \frac{-8 \pm \sqrt{8^2 - 4(16)(-31)}}{2(16)}$	
	$-8 \pm \sqrt{2048}$	
	$=\frac{-8\pm\sqrt{2048}}{32}$	
	$=\frac{-8\pm32\sqrt{2}}{32}$	
	$=\frac{-1\pm4\sqrt{2}}{4}$	
	So it is stationary when t = $\frac{-1 \pm 4\sqrt{2}}{4}$	
	Only us positive value so $t = \frac{-1 + 4\sqrt{2}}{4} \approx 1 \cdot 2s$ (to one dec pl)	
(b)iv)	$t = \frac{-1 + 4\sqrt{2}}{4} \approx 1.2$ s $v = 0, x \approx 2.58$ (to 2 dec pl)	2
	When $t = 0$ $x = 8$	
	When $t = 2$ $x = 2.89$ (to 2 dec pl)	
	Particle starts 8 units to the right of the origin, moving toward the origin, it	
	stops after 1.2 sec at 2.58 m to right of origin, then begins to move away from the origin, being 2.89 units to the right of the origin after 2 sec.	
	: total distance travelled is $(8-2.58)+(2.89-2.58)$	
	=5.73 m or 5.7 m (to 1 dec place)	
(c)	3x - y = 10 (1)	2
	$x = y + 2 \tag{2}$	
	3(y+2)-y=10 (3) sub (2) in (1)	
	3y + 6 - y = 10	
	2y = 4	
	y = 2	
	x = (2) + 2 sub y in (2)	
	x = 4	
	solution (4, 2)	

Questio	on 6 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)(i)	$y = x^6 - 6x^4$	2
	Crosses axis where	
	$x^6 - 6x^4 = 0$	
	$x^4(x^2-6)=0$	
	$x^4 \left(x - \sqrt{6} \right) \left(x + \sqrt{6} \right) = 0$	
	Crosses axis where $x = 0$ and $x = \pm \sqrt{6}$	
(a)(ii)	$y = x^6 - 6x^4$	4
	$y' = 6x^5 - 24x^3$	
	$=6x^3\left(x^2-4\right)$	
	$=6x^{3}(x-2)(x+2)$	
	$y'' = 30x^4 - 72x^2$	
	Stationary points where	
	x = 0, y = 0, y'' = 0	
	x = 2, y = -32, y'' = 192	
	x = -2, y = -32, y'' = 192	
	Stationary points $(-2, -32), (0, 0)(2, -32)$	
	$y'' = 30x^4 - 72x^2$	
	At $x = 0$ $y'' = 0$ so test either side	
	At $x = 1$ $y'' = -42$ \therefore concave down.	
	At $x = -1$ $y'' = -42$ \therefore concave down	
	\therefore maximum at (0, 0)	
	At $x = 2$ $y'' = 192$: minimum at (2, -32).	
	At $x = -2$ $y'' = 192$: minimum at $(-2, -32)$.	

Questic	on 6 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)(iii)	$y'' = 30x^{4} - 72x^{2}$ $= 6x^{2} (5x^{2} - 12)$ $= 6x^{2} (\sqrt{5}x - 2\sqrt{3}) (\sqrt{5}x + 2\sqrt{3})$ $x = 0 \qquad y = 0$ $x = \frac{2\sqrt{3}}{\sqrt{5}} = \frac{2\sqrt{15}}{5} \qquad y = -20.736$ $x = -\frac{2\sqrt{3}}{\sqrt{5}} = -\frac{2\sqrt{15}}{5} \qquad y = -20.736$ Check for changes of concavity From above, no change at (0, 0) but there is a change at $\left(\pm \frac{2\sqrt{15}}{5}, -20.736\right)$ Inflexions at $\left(\pm \frac{2\sqrt{15}}{5}, -20.736\right)$	2
	y 10 Max (0, 0) $(-2, -3) \sqrt{5}$ (-2, -32) Minimum (-2, -32) $(-2\sqrt{15} - 20.7)$ $(-2\sqrt{15} - 20$	2

Questio	on 6	Trial HSC Examination- Mathematics	
Part	Solution		Marks
(b)	x = -4 here $f''(x)$ and at $x =$ here $f''(x)$	where $f'(x) = 0$ i.e. at f''(x) is negative where f'(x) is decreasing the positive \therefore min turning point at $x = -4$	2

Ques	tion 7	Trial HSC Examination- Mathematics	
Part	Solution		Marks
(a)i)		$= \log_{a} \frac{2}{5}$ $= \log_{a} 2 - \log_{a} 5$ $= x - y$	1
ii)	=	$= \log_a (2^2 \times 5)$ = $2 \log_a 2 + \log_a 5$ = $2x + y$	2

Question 7	Trial HSC Examination- Mathematics	
Part Solut	ion	Marks
Part Solut b) $y=2$		Marks 3
	$=\frac{\sqrt{2}}{3}$ square units.	

(c)i)	Substitute $y = x^2 - 3x$ into $y = 5x - x^2$	2	
	$5x - x^2 = x^2 - 3x$		
	$2x^2 - 8x = 0$		
	2x(x-4) = 0		
	x = 0, y = 0		
	x = 4, y = 4		
	Intersect at $(0, 0)$ and $(4, 4)$.		

Ques	Question 8 Trial HSC Examination- Mathematics		
Part	Solution	Marks	
(a)i)	$P = Ae^{kt}$	1	
	$\frac{dP}{dt} = Ae^{kt}.k$		
	$\frac{dt}{dt} = Ae^{\kappa}.\kappa$		
	$=kAe^{kt}$		
	=kP		
ii)	$t = 1 \text{ was } 147\ 200$	2	
	$P = Ae^{kt}$		
	$147200 = Ae^{k}$ (i)		
	$t = 2 \text{ was } 154\ 800$ 154800 = Ae^{2k} (ii)		
	$\frac{154800}{147200} = \frac{Ae^{2k}}{Ae^{k}} $ (ii) ÷(i)		
	$1.0516 = e^k$		
	$k = \ln(1.0516)$		
	$k \approx 0.05$		
	$147200 = Ae^{0.05(1)}$		
	$A = \frac{147200}{e^{0.05}} = 139973$		
iii)	When $t = 4$	1	
	$P = Ae^{kt}$		
	$P = 139973e^{0.05(4)}$		
	=171197		
iv)	$P = Ae^{kt}$	1	
	$200000 = 139973e^{0.05t}$		
	$\frac{200000}{139973} = e^{0.05t}$		
	$1.429 = e^{0.05t}$		
	$\ln(1.429) = \ln(e^{0.05t})$		
	$0.05t = \ln(1.429)$		
	$t = \frac{\ln(1.429)}{0.05}$		
	= 7.1		
	t = 7 is start of 2012 Reputation will reach 200 000 in 2012		
	Population will reach 200 000 in 2012		

Question 8 Trial HSC Examination- Mathematics		
Part	Solution	Marks
(b)i)	Q Q C B	2
	In $\triangle APQ$ and $\triangle ABC$	
	$\angle A$ is common	
	$\angle AQP = \angle ACB$ (Corresponding $\angle s$ on lines)	
	$\angle APQ = \angle ABC$ (Corresponding \angle on lines)	
	$\therefore \Delta APQ \parallel \Delta ABC$ (Corresponding angles equal)	
ii)	$\frac{AP}{AB} = \frac{1}{2}$ (P is midpoint of AB) $\frac{AP}{AB} = \frac{AQ}{AC}$ (sides of similar triangle in same ratio) $\frac{AQ}{AC} = \frac{1}{2}$ (from above)	2
	\therefore Q is midpoint of AC.	
(c)	$\int_{1}^{3} g(x) dx \approx \frac{1}{6} \{ 12 + 4(8) + 2(0) + 4(3) + 5 \}$ $\approx \frac{61}{6}$ $\approx 10\frac{1}{6}$	2
(d)	$\sum_{n=2}^{5} (n^2 - 1) = (2^2 - 1) + (3^2 - 1) + (4^2 - 1) + (5^2 - 1)$ = 3 + 8 + 15 + 24	1
	= 50	

Quest	Question 9 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$y = 2x^{2} - 2$ $V = \pi \int_{0}^{6} x^{2} dy$ $= \pi \int_{0}^{6} \frac{y + 2}{2} dy$ $= \pi \left[\frac{y^{2}}{4} + y \right]_{0}^{6}$ $= \pi \left[\left(\frac{36}{4} + 6 \right) - (0) \right]$	3
(b)	$=15\pi u^{3}$	2
(c)	$\frac{2}{5}\int 5x^4 e^{x^5} dx = \frac{2}{5}e^{x^5} + c$	1
(c)i)	$A_6 = 20000 - 6M$	1
ii)	$A_{7} = (2000 - 6M)1.01 - M$ $A_{8} = [(2000 - 6M)1.01 - M]1.01 - M$ $= (20000 - 6M)1.01^{2} - 1.01M - M$ $= (20000 - 6M)1.01^{2} - M(1 + 1.01)$	1
iii)	$A_{9} = (20000 - 6M)1.01^{3} - M(1 + 1.01 + 1.01^{2})$ $A_{n} = (20000 - 6M)1.01^{n-6} - M(1 + 1.01 + 1.01^{2} + \dots 1.01^{n-7})$ $A_{36} = (20000 - 6M)1.01^{30} - M(1 + 1.01 + 1.01^{2} + \dots 1.01^{29})$	2

Question 9 Trial HSC Examination- Mathematics		
Part	Solution	Marks
iv)	Since repaid after 36 months $A_{36} = 0$	2
	$(20000-6M)1.01^{30} - M(1+1.01+1.01^2 + \dots 1.01^{29}) = 0$	
	$M(1+1.01+1.01^{2}+1.01^{29}) = (20000-6M)1.01^{30}$	
	Need to evaluate $1+1.01+1.01^2 + \dots 1.01^{29}$	
	Geometric series with $a = 1$, $r = 1.01$, $n = 30$	
	$\mathbf{S}_{30} = \frac{a(r^n - 1)}{r - 1}$	
	$=\frac{1(1.01^{30}-1)}{1.01-1}$	
	=34.785	
	$34.785M = (20000 - 6M)1.01^{30}$	
	$\frac{34.785M}{1.01^{30}} = 20000 - 6M$	
	$6M + \frac{34.785M}{1.01^{30}} = 20000$	
	$M\left(6 + \frac{34.785}{1.01^{30}}\right) = 20000$	
	31.8M = 20000	
	$M = \frac{20000}{31.8}$	
	= \$629 (nearest dollar)	

Question 10 Trial HSC Examination- Mathematics		
Part	Solution	Marks
a) i)	$V = 2 - \sqrt{3}\cos t - \sin t$	1
	$\frac{dV}{dt} = \sqrt{3}\sin t - \cos t$	
ii)	When $t = 0$	1
	$\frac{dV}{dt} = \sqrt{3}\sin \theta - \cos \theta$	
	=-1	
	\therefore the tank is emptying at this time.	
iii)	Full (or empty) when $\frac{dV}{dt} = 0$	3
	$\frac{dV}{dt} = 0$	
	$\sqrt{3}\sin t - \cos t = 0$	
	$\sqrt{3}\sin t = \cos t$	
	$\frac{\sin t}{\cos t} = \frac{1}{\sqrt{3}}$	
	$\tan t = \frac{1}{\sqrt{3}}$	
	$=\frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6}, \dots$	
	As tank is initially emptying,	
	second value corresponds to when full.	
	Tank is first full when $t = \frac{7\pi}{6}$	
	$V = 2 - \sqrt{3}\cos t - \sin t$	
	$=2-\sqrt{3}\cos\frac{7\pi}{6}-\sin\frac{7\pi}{6}$	
	= 4	

(b)i)	$\angle D$ is common	2
	$\angle C = \angle B = 90^{\circ}$	
	$\angle E = \angle A$ (corresponding angles on lines)	
	$\Delta ABD \parallel \Delta ECD$ (equiangular)	
	$\frac{x+h}{x} = \frac{2t}{2} = t$	
	x + h = tx	
	tx - x = h	
	x(t-1) = h	
	$x = \frac{h}{t-1}$	
	$x = \frac{1}{t-1}$	
(b)ii)	$V = \frac{1}{3}\pi (2t)^{2} . (h+x) - \frac{1}{3}\pi (2)^{2} . x$	2
	$= \frac{1}{3}\pi (2t)^{2} \cdot \left(h + \frac{h}{t-1}\right) - \frac{1}{3}\pi (2)^{2} \cdot \left(\frac{h}{t-1}\right)$	
	$= \frac{1}{3} \pi (2t)^2 \cdot \left(\frac{ht}{t-1}\right) - \frac{1}{3} \pi (2)^2 \cdot \left(\frac{h}{t-1}\right)$	
	$= \frac{1}{3} \pi (2)^2 \cdot \left(\frac{h}{t-1}\right) (t^3 - 1)$	
	$=\frac{4}{3}\pi \cdot \left(\frac{h}{t-1}\right)(t-1)(t^{2}+t+1)$	
	$=\left(\frac{4\pi h}{3}\right)\left(t^2+t+1\right)$	