

2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time -5 minutes
- Working Time -3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt Questions 1 - 10
- All questions are of equal value

BLANK PAGE

Total Marks - 120
Attempt Questions 1 - 10
All questions are of equal value
Begin each question in a SEPARATE writing booklet. Extra booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

Marks

a) Evaluate $\left(\frac{1}{e^{2 \cdot 5}}-1\right)^{2}$ correct to 3 significant figures. $\mathbf{2}$
b) Solve $|2 x-1| \leq 3$
c) If $\frac{4}{2-\sqrt{3}}=a+b \sqrt{3}$ find the values of a and b.
d) Find the tenth term of the arithmetic series 2 $41 / 2+3+1 \frac{1}{2}+\ldots$
e) Factorise $2 x^{2}+7 x-4$
f) Find the perpendicular distance from the point $(1,3)$ to the line $6 x-8 y+5=0$

End of Question 1

Question 2 (12 marks) Use a SEPARATE writing booklet.
Marks
a) Differentiate with respect to x
(i) $x \sin x \quad 2$
(ii) $\left(1+e^{x}\right)^{5}$
b) (i) Find $\int \sec ^{2} 3 x d x$
(ii) Evaluate $\int_{0}^{3} \frac{6 x}{1+x^{2}} d x$
c) Find the equation of the tangent to the curve $y=\cos 3 x$ at the point whose x-coordinate is $\frac{\pi}{6}$.

End of Question 2

Question 3 (12 marks) Use a SEPARATE writing booklet.
a)

The points A and C have coordinates $(1,6)$ and $(5,0)$ respectively.
The line $B D$ has an equation of $2 x-3 y+3=0$ and meets the y axis in D.
i) The point M is the midpoint of $A C$. Show that M has coordinates $(3,3)$.
ii) Show that M lies on $B D$.
iii) Find the gradient of the line $A C$.
iv) Show that BD is perpendicular to $A C$.
v) Find the distance $A C$.
vi) Explain why the quadrilateral $A B C D$ is a kite regardless of the 1 position of B.

Question 3 continues on next page.

Question 3 continued

b) Michael is training for a local marathon. He has trained by completing practice runs over the marathon course. So far he has completed three practice runs with times shown below.

Week 1	Week 2	Week 3
3 hours	2 hours 51 minutes	2 hours 42 minutes 27 seconds

i) Show that these times form a geometric series with a common ratio $r=0.95$.
ii) If this series continues, what would be his expected time in Week 5, to the nearest second?
iii) How many hours, minutes and seconds (to the nearest second) will he have run, in total, in his practice runs in these 5 weeks?
iv) If the previous winning time for the marathon was 2 hours and
6 minutes, how many weeks must he keep practicing to be able to run the marathon in less that the previous winning time?

End of Question 3

Question 4 (12 marks) Use a SEPARATE writing booklet.
a) Show that:

$$
\sqrt{\frac{\operatorname{cosec}^{2} x-\cot ^{2} x-\cos ^{2} x}{\cos ^{2} x}}=\tan x
$$

b) For the function $y=x^{3}-3 x^{2}-9 x+1$, find the values of x for which the curve is decreasing.
c)

$A O B$ is a sector of a circle, centre O and radius 3 cm .
The length of arc $A B$ is $2 \pi \mathrm{~cm} . A B$ is a chord.
(i) Calculate the angle θ subtended at the centre of the circle by the arc $A B$.
(ii) Calculate the exact area of the shaded segment.

Question 4 continued

d) Peta and Quentin are pilots of two light planes which leave Resthaven station at the same time. Peta flies on a bearing of 330° at a speed of $180 \mathrm{~km} / \mathrm{h}$ and Quentin flies on a bearing of 080° at a speed of $240 \mathrm{~km} / \mathrm{h}$. Copy the diagram below onto your answer page and mark the information on the diagram.

i) Show that Peta and Quentin are 692 km (to the nearest km) apart after 2 hours?
ii) What is the bearing of Quentin from Peta after 2 hours. (Answer to the nearest degree.)

End of Question 4

Question 5 (12 marks) Use a SEPARATE writing booklet.
Marks
a) In the diagram below $A E=E D=A D=D C, \angle A D C=90^{\circ}$ and $A E \| B C$.
$\angle B A C=51^{\circ}$

i) Find the size of $\angle E A B$. Give reasons for your answer.
ii) Find the size of $\angle A B C$. Give reasons for your answer.
b) A particle moves in a straight line so that its displacement, in metres, is given by $x=\frac{4 t^{2}+t+8}{4 t+1}$ where t is measured in seconds.
i) Find the initial displacement of the particle.
ii) Find an expression for the velocity of the particle.
iii) Show that the particle is stationary when $t=\frac{-1+4 \sqrt{2}}{4}$ seconds (or 1.2 seconds to one decimal place).
iv) Find the total distance travelled in the first two seconds. (Answer to 1 decimal place.)
c) Solve the pair of simultaneous equations

$$
\begin{aligned}
& 3 x-y=10 \\
& x=y+2
\end{aligned}
$$

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
a) For the function $y=x^{6}-6 x^{4}$
i) Find the x coordinates of the points where the curve crosses the axes.
ii) Find the coordinates of the stationary points and determine their nature.
iii) Find the coordinates of any points of inflexion.
iv) Sketch the graph of $y=x^{6}-6 x^{4}$ indicating clearly the intercepts, stationary points and points of inflexion.
b) For a certain function $y=f(x)$, the sketch of $y=f^{\prime}(x)$ is shown.

Give the x coordinates of the stationary points on $y=f(x)$ and indicate if they are maxima or minima.

End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.
a) Let $\log _{a} 2=x$ and $\log _{a} 5=y$. Find an expression, in terms of x and y, for
i) $\quad \log _{a} 0 \cdot 4$
ii) $\quad \log _{a} 20$
b)

The diagram shows the graph of $y=2 \cos 3 x$.
Find the area enclosed by the curve $y=2 \cos 3 x$, the line $x=\frac{\pi}{12}$ and the x and y axes.

Question 7 continued

c)

i) Show that the curves $y=x^{2}-3 x$ and $y=5 x-x^{2}$ intersect at the points $(0,0)$ and $(4,4)$.
ii) Find the area enclosed between the two curves.
d) Find $\frac{d}{d x} \log _{e}(\cos x)$.

Question 8 (12 marks) Use a SEPARATE writing booklet.
a) A city has a population which is growing at a rate that is proportional to the current population. The population at time t years is given by
$P=A e^{k t}$
i) Show that $P=A e^{k t}$ satisfies the equation $\frac{d P}{d t}=k P$.
ii) If the population at the start of 2006 when $t=1$ was 147200 and at the start of 2007 when $t=2$ was 154800 , find the values of A and k.
iii) Find the population at the start of 2009.
iv) Find during which year the population will first exceed 200000.
b) In the diagram below, P is the midpoint of the side $A B$ of the $\triangle A B C$. $P Q$ is drawn parallel to $B C$.

i) Prove that $\triangle A B C\|\| A P Q$.
ii) Explain why Q is the midpoint of $A C$.
c) Find an approximation for $\int_{1}^{3} g(x) d x$ by using Simpson's Rule with the values in the table below.

x	1	1.5	2	2.5	3
$g(x)$	12	8	0	3	5

d) Evaluate $\sum_{n=2}^{5}\left(n^{2}-1\right)$

End of Question 8

Question 9 (12 marks) Use a SEPARATE writing booklet.
a) The diagram shows the region bounded by the curve $y=2 x^{2}-2$ the line $y=6$ and the x and y axes.

Find the volume of the solid of revolution formed when the region is rotated about the y axis.
b) Sketch the function $y=\ln (x+1)$, showing its essential features.
c) Given that $\frac{d}{d x}\left(e^{x^{5}}\right)=5 x^{4} e^{x^{5}}$, find $\int 2 x^{4} e^{x^{5}} d x$.
d) A car dealership has a car for sale for a cash price of $\$ 20000$. It can also be bought on terms over three years. The first six months are interest free and after that interest is charged at the rate of 1% per month on that months balance. Repayments are to be made in equal monthly instalments beginning at the end of the first month.

A customer buys the car on these terms and agrees to monthly repayments of $\$ M$. Let $\$ A_{n}$ be the amount owing at the end of the nth month.
i) Find an expression for A_{6}.
ii) Show that $A_{8}=(20000-6 M) 1 \cdot 01^{2}-M(1+\square \square 1 \cdot 01)$
iii) Find an expression for A_{36}.
iv) Find the value of M.

Question 10 (12 marks) Use a SEPARATE writing booklet.
a) A plant nursery has a watering system which repeatedly fills a storage tank then empties its contents to water different sections of the nursery. The volume of water (in cubic metres) in the tank at a time t is given by the equation
$V=2-\sqrt{3} \cos t-\sin t$ where t is measured in minutes.
i) Give an equation for $\frac{d V}{d t}$, the rate of change of the volume at a time t.
ii) Is the tank initially filling or emptying?
iii) At what time does the tank first become completely full and what is its capacity when full?

Question 10 continues on next page.

Question 10 continued

b) A truncated cone is to be used as a part of a hopper for a grain harvester. It has a total height of h metres. The top radius is to be t times greater than the bottom radius which is 2 metres.

i) If x is the height of the removed section of the original cone, show using similar triangles that $x=\frac{h}{t-1}$
ii) Show that the volume of the truncated cone is given by
iii) If the upper radius plus the lower radius plus the height of the truncated cone must total 12 metres, calculate the maximum volume of the hopper.

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\quad \ln x=\log _{e} x, \quad x>0$

Mathematics

SOLUTIONS

Question 1	Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$\left(\frac{1}{e^{2.5}}-1\right)^{2}=0.84256=0.843(3 \text { sig fig })$	2
(b)	$\begin{gathered} \|2 x-1\| \leq 3 \\ -3 \leq 2 x-1 \leq 3 \\ -2 \leq 2 x \leq 4 \\ -1 \leq x \leq 2 \end{gathered}$	2
(c)	$\begin{aligned} \frac{4}{2-\sqrt{3}} & =a+b \sqrt{3} \\ \frac{4}{2-\sqrt{3}} & =\frac{4}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \\ & =\frac{8+4 \sqrt{3}}{4-3} \\ a+b \sqrt{3} & =8+4 \sqrt{3} \\ a & =8 \text { and } b=4 \end{aligned}$	2
(d)	$41 / 2+3+1^{1 / 2}+\ldots$ Series is arithmetic with $a=4 \frac{1}{2}$ and $d=-1 \frac{1}{2}$ $\begin{aligned} & T_{n}=a+(n-1) d \\ & T_{10}=4 \cdot 5+9 \times-1 \cdot 5 \\ & T_{10}=-9 \end{aligned}$	2
(e)	$(x+4)(2 x-1)$	2
(f)	$\begin{aligned} d & =\left\|\frac{6(1)-8(3)+5}{\sqrt{6^{2}+(-8)^{2}}}\right\| \\ & =\left\|\frac{-13}{\sqrt{100}}\right\| \\ & =1.3 \text { units } \end{aligned}$	2

| Question 2 Trial HSC Examination- Mathematics | | |
| :--- | :--- | :--- | :--- |
| Part | Solution | Marks |
| (a) i) | $x \cos x+\sin x$ | 2 |
| ii) | $5\left(1+e^{x}\right)^{4} \times e^{x}$
 $=5 e^{x}\left(1+e^{x}\right)^{4}$ | 2 |
| (b) i) | $\frac{1}{3} \tan 3 x+c$ | 2 |

Question 2	Trial HSC Examination- Mathematics	
Part	Solution	Marks
ii)	$\begin{aligned} & {\left[3 \ln \left(1+x^{2}\right)\right]_{0}^{3} } \\ = & 3[\ln 10-\ln 1] \\ = & 3 \ln 10 \end{aligned}$	3
(c)	$y^{\prime}=-3 \sin 3 x$ when $x=\frac{\pi}{6}, y^{\prime}=-3 \sin \frac{\pi}{2}$ $=-3$ \therefore gradient of tangent is -3 when $x=\frac{\pi}{6}, y=0$. Equation of tangent is $3 x+y-\frac{\pi}{2}=0$	3

Question 3	Trial HSC Examination- Mathematics	Marks
Part	Solution	1
(a)i)	Midpoint of $(1,6)$ and $(5,0)$. $M P=\left(\frac{1+5}{2}, \frac{6+0}{2}\right)=\left(\frac{6}{2}, \frac{6}{2}\right)=(3,3)$	1
ii)	Show that $(3,3)$ lies on $2 x-3 y+3=0$ $L H S=2(3)-3(3)+3$ $=6-9+3$ $=0=R H S$ So M lies on BD.	Gradient AC $=m_{1}=\frac{6-0}{1-5}=\frac{6}{-4}=-\frac{3}{2}$
iii)	Find gradient m_{2} of BD $2 x-3 y+3=0$ $2 x-3 y+3=0$ $3 y=2 x+3$ $y=\frac{2}{3} x+1$ iv) $\therefore m_{2}=\frac{2}{3}$ $m_{1} \cdot m_{2}=-\frac{3}{2} \cdot \frac{2}{3}=-1$ \therefore BD is perpendicular to AC	1

Question 3	Trial HSC Examination- Mathematics	
Part	Solution	Marks
v)	$\begin{aligned} & A C=\sqrt{(5-1)^{2}+(0-6)^{2}} \\ & =\sqrt{16+36} \\ & =\sqrt{52} \\ & =2 \sqrt{13} \text { units } \end{aligned}$	1
(vi	The lines AC and BD would form the diagonals of the quadrilateral ABCD . BD is the perpendicular bisector of AC from ii and iv above. The diagonals of a kite meet at right angles and one diagonal bisects the other, so ABCD meets the criteria for a kite.	1
(b)i)	$\begin{aligned} & \frac{2 \text { hours } 51 \text { minutes }}{3 \text { hours }}=\frac{2.85}{3}=0.95 \\ & \frac{2 \text { hours } 42 \text { minutes } 27 \text { seconds }}{2 \text { hours } 51 \text { minutes }}=\frac{2.7075}{2.85}=0.95 \\ & \therefore \text { forms a geometric series with } r=0.95 \end{aligned}$	1
ii)	$\begin{aligned} & a=3, n=5 \text { and } r=0.95 \\ & u_{5}=a r^{n-1} \\ & =3 \times 0.95^{4} \\ & =2.4435 \ldots \\ & =2 \text { hours } 26 \mathrm{~min} 37 \mathrm{~s} \end{aligned}$	1
iii)	$\begin{aligned} & s_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\ & =\frac{3\left(1-0.95^{5}\right)}{(1-0.95)} \\ & =13.573 \ldots \\ & =13 \text { hours } 34 \mathrm{~min} 23 \mathrm{~s}(\text { to nearest } \mathrm{s})) \end{aligned}$	1
iv)	$\begin{aligned} & u_{n}=a r^{n-1} \\ & 2 \text { hours } 6 \mathrm{~min}=3 \times 0.95^{n-1} \\ & 3 \times 0.95^{n-1}=2.1 \\ & 0.95^{n-1}=2.1 \div 3=0.7 \\ & \ln \left(0.95^{n-1}\right)=\ln (0.7) \\ & (n-1) \ln (0.95)=\ln (0.7) \\ & n-1=\frac{\ln (0.7)}{\ln (0.95)} \\ & n-1=6.953 \\ & n=7.953 \ldots \end{aligned}$ Would need to continue for 8 weeks to better the time.	2

$\|l\| l$ Question 4 Part Trial HSC Examination- Mathematics Solution		
		Marks
(a)	$\begin{aligned} \sqrt{\frac{\operatorname{cosec}^{2} x-\cot ^{2} x-\cos ^{2} x}{\cos ^{2} x}} & =\sqrt{\frac{1-\cos ^{2} x}{\cos ^{2} x}} \\ & =\sqrt{\frac{\sin ^{2} x}{\cos ^{2} x}} \\ & =\frac{\sin x}{\cos x} \\ & =\tan x \end{aligned}$	2
(b)	$\begin{aligned} & y^{\prime}=3 x^{2}-6 x-9 \\ & x^{2}-2 x-3<0 \\ &(x+1)(x-3)<0 \end{aligned}$ \therefore function is decreasing for $-1<x<3$	3
(c)i)	$\begin{aligned} l & =r \theta \\ 2 \pi & =3 \theta \\ \theta & =\frac{2 \pi}{3} \end{aligned}$	1
(c)ii)	$\begin{aligned} & A=\frac{1}{2} r^{2}(\theta-\sin \theta) \\ & A=\frac{1}{2} \times 3^{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right) \\ & A=\frac{9}{2}\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \\ & A=\frac{9}{2}\left(\frac{4 \pi-3 \sqrt{3}}{6}\right)=\frac{3}{4}(4 \pi-3 \sqrt{3}) \text { units }^{2} \end{aligned}$	2
(d)i)	$\begin{aligned} & P Q^{2}=360^{2}+480^{2}-2 \times 360 \times 480 \cos 110^{\circ} \\ & P Q^{2}=478202 \\ & P Q=692 \mathrm{~km}(\text { nearest km }) \end{aligned}$	2

Question 4		Trial HSC Examination- Mathematics	Marks
Part	Solution	2	
(d)ii)	First find $\angle Q P R$ $\frac{\sin \angle Q P R}{480}=\frac{\sin 110^{\circ}}{692}$ $\sin \angle Q P R=\frac{480 \times \sin 110^{\circ}}{692}$ $\sin \angle Q P R=0.652$ $\angle Q P R=41^{\circ}$ $\angle N P R=150^{\circ}$ Bearing $(\angle N P Q)=150^{\circ}-41^{\circ}$ $=109^{\circ}$ using cos rule using the 3 sides..	Calso be found	

Question 5	n 5 Trial HSC Examination- Mathematics		
Part	Solution	Marks	
(a)i)	$\begin{aligned} & \left.\angle E A D=60^{\circ} \quad \text { (wuyilateral } \triangle E A D\right) \\ & \left.\angle D A C=45^{\circ} \quad \text { (wusceles right-angled } \triangle D A C\right) \\ & \therefore \angle E A B=\angle E A D+\angle D A C+\angle C A B \\ & =60^{\circ}, ד \ddots^{\circ}, \therefore{ }^{\circ} \\ & =156^{\circ} \end{aligned}$	3	
ii)	$\begin{aligned} \angle A B C & \left.=180^{\circ}-1 \nu v^{\circ} \quad \text { (wumerior } \angle \text { on } \\| \text { lines, } \mathrm{AE} \text { and } \mathrm{BC}\right) \\ & =24^{\circ} \end{aligned}$	1	
(b)i)	$\begin{aligned} & x=\frac{4 t^{2}+t+8}{4 t+1} \\ & x=\frac{4(0)^{2}+(0)+8}{4(0)+1} \text { when } \mathrm{t}=0 \\ &=8 \\ & \therefore \text { initial dispalcement is } 8 \mathrm{~m} \end{aligned}$	2	
(b)ii)	$\begin{aligned} x & =\frac{4 t^{2}+t+8}{4 t+1} \\ \therefore & \frac{(4 t+1)(8 t+1)-\left(4 t^{2}+t+8\right)(4)}{(4 t+1)^{2}} \\ & =\frac{32 t^{2}+12 t+1-16 t^{2}-4 t-32}{(4 t+1)^{2}} \\ & =\frac{16 t^{2}+8 t-31}{(4 t+1)^{2}} \end{aligned}$	1	

Question 5	n 5 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(b)iii)	$\begin{aligned} \frac{16 t^{2}+8 t-31}{(4 t+1)^{2}} & =0 \\ 16 t^{2}+8 t-31 & =0 \\ t & =\frac{-8 \pm \sqrt{8^{2}-4(16)(-31)}}{2(16)} \\ & =\frac{-8 \pm \sqrt{2048}}{32} \\ & =\frac{-8 \pm 32 \sqrt{2}}{32} \\ & =\frac{-1 \pm 4 \sqrt{2}}{4} \end{aligned}$ So it is stationary when $\mathrm{t}=\frac{-1 \pm 4 \sqrt{2}}{4}$ Only us positive value so $\mathrm{t}=\frac{-1+4 \sqrt{2}}{4} \approx 1 \cdot 2 \mathrm{~s}($ to one $\operatorname{dec} \mathrm{pl})$	2
(b)iv)	$t=\frac{-1+4 \sqrt{2}}{4} \approx 1.2 \mathrm{~s} v=0, x \approx 2.58(\text { to } 2 \mathrm{dec} \mathrm{pl})$ When $t=0 \quad x=8$ When $t=2 \quad x=2.89$ (to 2 dec pl) Particle starts 8 units to the right of the origin, moving toward the origin, it stops after 1.2 sec at 2.58 m to right of origin, then begins to move away from the origin, being 2.89 units to the right of the origin after 2 sec . \therefore total distance travelled is $(8-2 \cdot 58)+(2 \cdot 89-2 \cdot 58)$ $=5.73 \mathrm{~m}$ or 5.7 m (to 1 dec place)	2
(c)	$\begin{align*} & 3 x-y=10 \tag{1}\\ & x=y+2 \tag{2}\\ & 3(y+2)-y=10 \\ & 3 y+6-y=10 \\ & 2 y=4 \\ & y=2 \\ & x=(2)+2 \quad \text { sub } y \text { in }(2) \\ & x=4 \\ & \text { solution }(4,2) \end{align*}$	2

Question 6	6 6 Trial HSC Examination- Mathem	
Part	Solution	Marks
(a)(i)	$y=x^{6}-6 x^{4}$ Crosses axis where $\begin{aligned} & x^{6}-6 x^{4}=0 \\ & x^{4}\left(x^{2}-6\right)=0 \\ & x^{4}(x-\sqrt{6})(x+\sqrt{6})=0 \end{aligned}$ Crosses axis where $x=0$ and $x= \pm \sqrt{6}$	2
(a)(ii)	$\begin{aligned} y & =x^{6}-6 x^{4} \\ y^{\prime} & =6 x^{5}-24 x^{3} \\ & =6 x^{3}\left(x^{2}-4\right) \\ & =6 x^{3}(x-2)(x+2) \\ y^{\prime \prime} & =30 x^{4}-72 x^{2} \end{aligned}$ Stationary points where $\begin{aligned} & x=0, y=0, y^{\prime \prime}=0 \\ & x=2, y=-32, y^{\prime \prime}=192 \\ & x=-2, y=-32, y^{\prime \prime}=192 \end{aligned}$ Stationary points $(-2,-32),(0,0)(2,-32)$ $y^{\prime \prime}=30 x^{4}-72 x^{2}$ At $x=0 y^{\prime \prime}=0$ so test either side At $x=1 y^{\prime \prime}=-42 \therefore$ concave down. At $x=-1 y^{\prime \prime}=-42 \therefore$ concave down $\therefore \text { maximum at }(0,0)$ At $x=2 y^{\prime \prime}=192 \therefore$ minimum at $(2,-32)$. At $x=-2 y^{\prime \prime}=192 \therefore$ minimum at $(-2,-32)$	4

Question 6	Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)(iii)	$\begin{aligned} & y^{\prime \prime}=30 x^{4}-72 x^{2} \\ & =6 x^{2}\left(5 x^{2}-12\right) \\ & =6 x^{2}(\sqrt{5} x-2 \sqrt{3})(\sqrt{5} x+2 \sqrt{3}) \\ & x=0 \quad y=0 \\ & x=\frac{2 \sqrt{3}}{\sqrt{5}}=\frac{2 \sqrt{15}}{5} \quad y=-20.736 \\ & x=-\frac{2 \sqrt{3}}{\sqrt{5}}=-\frac{2 \sqrt{15}}{5} \quad y=-20.736 \end{aligned}$ Check for changes of concavity From above, no change at $(0,0)$ but there is a change at $\left(\pm \frac{2 \sqrt{15}}{5},-20.736\right)$ Inflexions at $\left(\pm \frac{2 \sqrt{15}}{5},-20.736\right)$	2
		2

| Question 6 | Trial HSC Examination- Mathematics | Marks |
| :--- | :--- | :--- | :--- | :--- |
| Part | Solution | |

Question 7		Trial HSC Examination- Mathematics	
Part	Solution	Marks	
(a)i)	$\log _{a} 0 \cdot 4$ $=\log _{a} \frac{2}{5}$ $=\log _{a} 2-\log _{a} 5$ $=x-y$	1	
ii)	$\log _{a} 20$ $=\log _{a}\left(2^{2} \times 5\right)$ $=2 \log _{a} 2+\log _{a} 5$ $=2 x+y$		

(c)i) Substitute $y=x^{2}-3 x$ into $y=5 x-x^{2}$

$$
5 x-x^{2}=x^{2}-3 x
$$

$$
2 x^{2}-8 x=0
$$

$$
2 x(x-4)=0
$$

$$
x=0, \quad y=0
$$

$$
x=4, \quad y=4
$$

Intersect at $(0,0)$ and $(4,4)$.

ii)	$\begin{aligned} & \text { Area }=\int_{0}^{4} 5 x-x^{2} d x-\int_{0}^{4} x^{2}-3 x d x \\ & =\int_{0}^{4} 8 x-2 x^{2} d x \\ & =\left[4 x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{4} \\ & =\left(64-\frac{128}{3}\right)-0 \\ & =\frac{64}{3}=21 \frac{1}{3} u^{2} \end{aligned}$	3
d)	$\begin{aligned} & \frac{d}{d x} \log _{e}(\cos x) \\ = & \frac{-\sin x}{\cos x} \\ = & -\tan x \end{aligned}$	

Question 8	ion 8 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)i)	$\begin{aligned} P & =A e^{k t} \\ \frac{d P}{d t} & =A e^{k t} \cdot k \\ & =k A e^{k t} \\ & =k P \end{aligned}$	1
ii)	$\begin{align*} & t=1 \text { was } 147200 \\ & \quad P=A e^{k t} \\ & 147200=A e^{k} \tag{i}\\ & t=2 \text { was } 154800 \\ & 154800=A e^{2 k} \tag{ii}\\ & \frac{154800}{147200}=\frac{A e^{2 k}}{A e^{k}} \\ & 1.0516=e^{k} \\ & k=\ln (1.0516) \\ & k \approx 0.05 \\ & 147200=A e^{0.05(1)} \\ & A=\frac{147200}{e^{0.05}}=139973 \end{align*}$	2
iii)	$\begin{aligned} & \text { When } t=4 \\ & \begin{aligned} P & =A e^{k t} \\ P & =139973 e^{0.05(4)} \\ & =171197 \end{aligned} \end{aligned}$	1
iv)	$\begin{aligned} & P=A e^{h t} \\ & 200000=139973 e^{0.05 t} \\ & \frac{200000}{139973}=e^{0.05 t} \\ & 1.429=e^{0.05 t} \\ & \ln (1.429)=\ln \left(e^{0.05 t}\right) \\ & 0.05 t=\ln (1.429) \\ & t=\frac{\ln (1.429)}{0.05} \\ &=7.1 \\ & t=7 \text { is start of } 2012 \\ & \text { Population will reach } 200000 \text { in } 2012 \end{aligned}$	1

Question 8 Trial HSC Examination- Mathematics			
Part	Solution	Marks	
(b)i)	In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$ $\angle \mathrm{A}$ is common $\angle \mathrm{AQP}=\angle \mathrm{ACB} \quad$ (Corresponding $\angle s$ on $\|\mid$ lines) $\angle \mathrm{APQ}=\angle \mathrm{ABC} \quad$ (Corresponding \angle on $\\|$ lines) $\therefore \Delta \mathrm{APQ}\|\|\mid \Delta \mathrm{ABC}$ (Corresponding angles equal)	2	
ii)	$\frac{A P}{A B}=\frac{1}{2} \quad(\mathrm{P}$ is midpoint of AB$)$ $\frac{A P}{A B}=\frac{A Q}{A C}$ (sides of similar triangle in same ratio) $\frac{A Q}{A C}=\frac{1}{2} \quad$ (from above) $\therefore \mathrm{Q}$ is midpoint of AC .	2	
(c)	$\begin{aligned} \int_{1}^{3} g(x) d x & \approx \frac{1}{6}\{12+4(8)+2(0)+4(3)+5\} \\ & \approx \frac{61}{6} \\ & \approx 10 \frac{1}{6} \end{aligned}$	2	
(d)	$\begin{aligned} \sum_{n=2}^{5}\left(n^{2}-1\right) & =\left(2^{2}-1\right)+\left(3^{2}-1\right)+\left(4^{2}-1\right)+\left(5^{2}-1\right) \\ & =3+8+15+24 \\ & =50 \end{aligned}$	1	

Question 9 \quad Trial HSC Examination- Mathematics		
Part	Solution	Marks
(a)	$\begin{aligned} y & =2 x^{2}-2 \\ V & =\pi \int_{0}^{6} x^{2} d y \\ & =\pi \int_{0}^{6} \frac{y+2}{2} d y \\ & =\pi\left[\frac{y^{2}}{4}+y\right]_{0}^{6} \\ & =\pi\left[\left(\frac{36}{4}+6\right)-(0)\right] \\ & =15 \pi \mathrm{u}^{3} \end{aligned}$	3
(b)		2
(c)	$\frac{2}{5} \int 5 x^{4} e^{x^{5}} d x=\frac{2}{5} e^{x^{5}}+c$	1
(c)i)	$A_{6}=20000-6 \mathrm{M}$	1
ii)	$\begin{aligned} A_{7} & =(20000-6 M) 1.01-M \\ A_{8} & =[(20000-6 M) 1.01-M] 1.01-M \\ & =(20000-6 M) 1.01^{2}-1.01 M-M \\ & =(20000-6 M) 1.01^{2}-M(1+1.01) \end{aligned}$	1
iii)	$\begin{aligned} & A_{9}=(20000-6 M) 1.01^{3}-M\left(1+1.01+1.01^{2}\right) \\ & A_{n}=(20000-6 M) 1.01^{n-6}-M\left(1+1.01+1.01^{2}+\ldots . . .1 .01^{n-7}\right) \\ & A_{36}=(20000-6 M) 1.01^{30}-M\left(1+1.01+1.01^{2}+\ldots . . .1 .01^{29}\right) \end{aligned}$	2

Question 9 \quad Trial HSC Examination- Mathematics		
Part	Solution	Marks
iv)	Since repaid after 36 months $A_{36}=0$ $\begin{aligned} & (20000-6 M) 1.01^{30}-M\left(1+1.01+1.01^{2}+\ldots . . .1 .01^{29}\right)=0 \\ & M\left(1+1.01+1.01^{2}+\ldots \ldots . .1 .01^{29}\right)=(20000-6 M) 1.01^{30} \end{aligned}$ Need to evaluate $1+1.01+1.01^{2}+\ldots1 .01^{29}$ Geometric series with $a=1, r=1.01, n=30$ $\begin{aligned} \mathrm{S}_{30} & =\frac{a\left(r^{n}-1\right)}{r-1} \\ & =\frac{1\left(1.01^{30}-1\right)}{1.01-1} \\ & =34.785 \\ 34.785 M & =(20000-6 M) 1.01^{30} \\ \frac{34.785 M}{1.01^{30}} & =20000-6 M \\ 6 M+\frac{34.785 M}{1.01^{30}} & =20000 \\ M\left(6+\frac{34.785}{1.01^{30}}\right) & =20000 \\ 31.8 M & =20000 \\ M & =\frac{20000}{31.8} \\ & =\$ 629 \quad \text { (nearest dollar) } \end{aligned}$	2

(b)i)	$\angle \mathrm{D}$ is common	2		
	$\angle C=\angle B=90^{\circ}$			
	$\angle E=\angle A$ (corresponding angles on $\\|$ lines)			
	$\Delta A B D\\|\\| E C D$ (equiangular)			
	$\frac{x+h}{x}=\frac{2 t}{2}=t$			
	$x+h=t x$			
	$t x-x=h$			
	$x(t-1)=h$	2		
	$x=\frac{h}{t-1}$			
(b)ii)	$V=\frac{1}{3} \pi(2 t)^{2} \cdot(h+x)-\frac{1}{3} \pi(2)^{2} \cdot x$			
$=$	$\frac{1}{3} \pi(2 t)^{2} \cdot\left(h+\frac{h}{t-1}\right)-\frac{1}{3} \pi(2)^{2} \cdot\left(\frac{h}{t-1}\right)$			
$=$	$\frac{1}{3} \pi(2 t)^{2} \cdot\left(\frac{h t}{t-1}\right)-\frac{1}{3} \pi(2)^{2} \cdot\left(\frac{h}{t-1}\right)$			
$=$	$\frac{1}{3} \pi(2)^{2} \cdot\left(\frac{h}{t-1}\right)\left(t^{3}-1\right)$			
$=$	$\frac{4}{3} \pi \cdot\left(\frac{h}{t-1}\right)(t-1)\left(t^{2}+t+1\right)$			
$=$	$\left(\frac{4 \pi h}{3}\right)\left(t^{2}+t+1\right)$			

iii)	Sum of radii and height $=12$ $2+h+2 t=12$ $h=10-2 t$ $V=\left(\frac{4 \pi h}{3}\right)\left(t^{2}+t+1\right)$ $=\left(\frac{4 \pi}{3}\right)(10-2 t)\left(t^{2}+t+1\right)$ $=\left(\frac{4 \pi}{3}\right)\left(10 t^{2}+10 t+10-2 t^{3}-2 t^{2}-2 t\right)$ $=\left(\frac{4 \pi}{3}\right)\left(8 t^{2}+8 t-2 t^{3}+10\right)$ $V=\left(\frac{4 \pi}{3}\right)\left(8 t^{2}+8 t-2 t^{3}+10\right)$ $\frac{d V}{d t}=\left(\frac{4 \pi}{3}\right)\left(16 t+8-6 t^{2}\right)$ $\frac{d V}{d t}=0$ $\left(16 t+8-6 t^{2}\right)=0$ $6 t^{2}-16 t-8=0$ $3 t^{2}-8 t-4=0$ $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ $=\frac{8 \pm \sqrt{(-8)^{2}-4(3)(-4)}}{2(3)}$ $=\frac{8 \pm \sqrt{112}}{6}$ $=-0.43$ or 3.10 (to 2 dec pl) $t>0$ so $t=3.10 \mathrm{~m}$ $\frac{d^{2} V}{d t^{2}}=\left(\frac{4 \pi}{3}\right)(16-12 t)$ $\begin{aligned} & \frac{d^{2} V}{d t^{2}}=\left(\frac{4 \pi}{3}\right)(16-12(3.10))=\left(\frac{4 \pi}{3}\right)(-21.2) \\ & =-88.7 \end{aligned}$ When $t=3.10 \therefore \frac{d^{2} V}{d t^{2}}<0$ $\therefore \mathrm{V}$ is a maximum $\begin{aligned} & V=\left(\frac{4 \pi}{3}\right)\left(8(3.10)^{2}+8(3.10)-2(3.10)^{3}+10\right) \\ & =218.2 \mathrm{~m}^{3}(\text { to } 1 \mathrm{dec} \mathrm{pl}) \end{aligned}$	3

