

2009 EXAMINATION

TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics

General Instructions

- Reading Time - 5 minutes.
- Working Time - 3 hours.
- Write using a blue or black pen.
- Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question in a new booklet.

Total marks (120)

- Attempt Questions 1-10.
- All questions are of equal value.

BLANK PAGE

(a) Evaluate $\frac{5.25}{\sqrt{9.74-3.35}}$ correct to 2 decimal places.
(b) Solve $|2 x-3| \geq 5$
(c) Find the exact value of $\tan \frac{5 \pi}{6}$
(d) Solve $5 x^{2}-2 x-3=0$
(e) Express $\frac{5 \sqrt{3}}{\sqrt{7}-2}$ with a rational denominator.
(f) Paint at the local hardware store is sold at a profit of 30% on the cost price. If a drum of paint is sold for $\$ 67 \cdot 50$, find the cost price to the nearest cent.
(a) Differentiate with respect to x.
(i) $2 \cos (3 x)$
(ii) $\frac{\sin x}{e^{2 x}}$
(b) Find:
(i) $\int\left(6 e^{6 x}+\frac{6}{x}\right) d x$
(ii) $\int_{0}^{\pi} \sec ^{2} \frac{x}{4} d x$
(c) If α and β are the roots of the equation $3 x^{2}-4 x-7=0$

Find:
(i) $2 \alpha+2 \beta$.
(ii) $\frac{2}{\alpha}+\frac{2}{\beta}$.
(iii) $2 \alpha^{2}+2 \beta^{2}$.
(a) The diagram below shows $\triangle A B C$.

The lines $A B$ and $C B$ have equations $x-6 y+30=0$ and $6 x-y-30=0$ respectively.
(i) Find the coordinates of the point B.
(ii) Find the gradient of the line $A C$.
(iii) Show that the line $A C$ has equation $x+y-5=0$.
(iv) Find the exact distance of $A C$.
(v) Find the perpendicular distance from the point B to the line $A C$ and hence find the area of the triangle $A B C$.
(vi) State the inequalities that together define the area bounded by the triangle $A B C$.
(b) Solve $\sqrt{3} \tan x=-1$ in the domain $0 \leq x \leq 2 \pi$.

Question 4 ($\mathbf{1 2}$ Marks) Use a Separate Writing Booklet Marks
(a) (i) Sketch $y=4 \cos 2 x$ in the domain $0 \leq x \leq 2 \pi$.
(ii) Hence using the graph or otherwise find the number of solutions to the equation $4 \cos 2 x=-2$ in the domain $0 \leq x \leq 2 \pi$. Justify how you derived your answer.
(b) In the diagram below $\angle E D F=\angle G H F=90^{\circ}$.

Not to scale
(i) Show, giving reasons that $\triangle E D F$ is similar to $\triangle G H F$.
(ii) Given that $E D=9 \mathrm{~cm}, G H=6 \mathrm{~cm}$ and $D H=7 \mathrm{~cm}$, find the distance $H F$.
(c) Consider the function $f(x)=\ln (x+5)$
(i) State the domain and range of the function.
(ii) Find the exact value of x when $f(x)=5$.

Question 5 (12 Marks) Use a Separate Writing Booklet Marks

(a) Consider the curve that has equation $y=2 x^{3}-9 x^{2}+12 x+3$
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Find any points of inflexion.
(iii) Graph the function showing all the main features.
(b) Use Simpson's rule to evaluate $\int_{1}^{2.5} f(x) d x$, to 1 decimal place using the 7 function values in the table below.

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
$f(x)$	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(c) Given that in the circle below $\angle X O Y=60^{\circ}$ and the radius of the circle is 14 cm . Find the exact area of the minor segment shaded.

Not to scale

Question 6 (12 Marks) Use a Separate Writing Booklet
 Marks

(a) The parabola $y=x^{2}$ and the line $y=x+2$ intersect at points A and B, as shown.

(i) Show that the points of intersection of $y=x^{2}$ and $y=x+2$ are $A(-1,1)$ and $B(2,4)$.
(ii) Write a definite integral that will give the shaded area bounded by the parabola and the line?
(iii) Calculate this area.
(b) The area bounded by the curve $y=3 e^{\frac{3}{2} x}$ between the lines $x=1$ and $x=3$ is rotated about the x-axis. Find the volume of the solid of revolution formed, in exact form.
(c) Find the equation of the normal to $y=\cos 2 x$ at the point where $x=\frac{\pi}{6}$.
(a) Diego borrows $\$ 20000$ in order to buy a new car. The interest rate is 6% per annum reducible and the loan is to be repaid in equal monthly repayments, M, over 4 years, with the interest calculated monthly. Let $\$ A_{n}$ be the amount owing after the nth repayment.
(i) Write down expressions for $\$ A_{1}$ and $\$ A_{2}$, the amounts owing after the first and the second repayments respectively.
(ii) Find the amount of each monthly repayment.
(b) A particle moves in a straight line so that its displacement (in m) from a fixed point O at time t seconds is given by $x=2 \sin 2 t, 0 \leq t \leq 2 \pi$.

Find:
(i) The initial velocity
(ii) The acceleration after $\frac{\pi}{12}$ seconds.
(iii) When the particle is at rest in the given domain.
(iv) The displacement of the particle when it is at rest.
(c) Evaluate $\sum_{n=2}^{15} 2^{n}$.

Question 8 (12 Marks) Use a Separate Writing Booklet Marks

(a) The population P of a certain town grows at a rate proportional to the current population, and satisfies the equation $P=A e^{k t}$, where A and k are constants, and t is measured in years.
If the population grows from 20000 to 25000 in two years :
(i) Find the values of A and k. 3
(ii) Find the population of the town, to the nearest hundred, after a further 8 years.
(iii) Calculate the rate of change of the population at this time.
(b) If $\log _{a} 2+2 \log _{a} x-\log _{a} 6=\log _{a} 3$ find the value of x.
(c) Solve the following equation for x, leaving your answer in exact form:

$$
e^{2 x}-3 \cdot\left(e^{x}\right)-10=0
$$

(a) In the construction of a 5 km highway a truck delivers materials from a base. After each load is deposited, the truck returns to the base to collect the next load. The first load is deposited 100 m from the base, the second 240 m from the base, the third 380 m from the base. Each subsequent load is deposited 140 m from the previous one.
(i) How far is the $20^{\text {th }}$ load deposited from the base?
(ii) How many loads are deposited along the total length of the 5 km highway?
(The last load is deposited at the end of the highway)
(iii) How many kilometres has the truck travelled in order to make all the deposits and then return to the base?
(b) The rate at which Carbon Dioxide will be produced when conducting an experiment is given by $\frac{d V}{d t}=\frac{1}{100}\left(30 t-t^{2}\right)$ where $V \mathrm{~cm}^{3}$ is the volume of gas produced after t minutes.
(i) At what rate is the gas being produced 15 minutes after the experiment begins.
(ii) How much Carbon Dioxide has been produced during this time?
(c) A bowl is formed by rotating the part of the curve $y=4 x^{4}$ between $x=0$ and $x=3$ about the y-axis. Find the volume of the bowl.

NOT TO
SCALE
(a) An open cylindrical can is made from a sheet of metal with an area of $300 \mathrm{~cm}^{2}$. Given that the surface area of an open cylinder is $S A=\pi r^{2}+2 \pi r h$ and the volume is $V=\pi r^{2} h$:
(i) Show that the volume of the can is given by $V=150 r-\frac{1}{2} \pi r^{3}$. Justify your answer.
(b) The graph of the curve $y=f(x)$ is drawn below.

(i) Name the points of inflexion.
(ii) When is the graph decreasing?
(iii) Sketch the gradient function.
(c) (i) Show that $\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta}=\tan \theta$
(ii) Hence, solve $\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta} \cdot \tan \theta=3$ for $-\pi \leq \theta \leq \pi$

END OF EXAMINATION

BLANK PAGE

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

