

2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time 5 minutes.
- Working Time 3 hours.
- Write using a blue or black pen.
- Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question in a new booklet.

Total marks (120)

- Attempt Questions 1-10.
- All questions are of equal value.

BLANK PAGE

Questi	ion 1	(12 Marks)	Use a Separate Writing Booklet	Marks
(a)	Evalua	the $\frac{5.25}{\sqrt{9.74 - 3.35}}$	correct to 2 decimal places.	2

(b) Solve
$$|2x-3| \ge 5$$
 2

(c) Find the exact value of
$$\tan \frac{5\pi}{6}$$
 2

(d) Solve
$$5x^2 - 2x - 3 = 0$$
 2

(e) Express
$$\frac{5\sqrt{3}}{\sqrt{7}-2}$$
 with a rational denominator.

2

2

(f) Paint at the local hardware store is sold at a profit of 30% on the cost price. If a drum of paint is sold for \$67.50, find the cost price to the nearest cent.

Question 2(12 Marks)Use a Separate Writing BookletMarks

(a) Differentiate with respect to *x*.

(i)
$$2\cos(3x)$$
 2

(ii)
$$\frac{\sin x}{e^{2x}}$$
 2

(b) Find:

(i)
$$\int \left(6e^{6x} + \frac{6}{x}\right) dx$$
 2

(ii)
$$\int_0^{\pi} \sec^2 \frac{x}{4} \, dx$$
 2

(c) If α and β are the roots of the equation $3x^2 - 4x - 7 = 0$ Find:

(i) $2\alpha + 2\beta$. 1

(ii)
$$\frac{2}{\alpha} + \frac{2}{\beta}$$
. 1

(iii)
$$2\alpha^2 + 2\beta^2$$
.

(b)

Question 3 (12 Marks)

Use a Separate Writing Booklet

Marks

(a) The diagram below shows $\triangle ABC$.

The lines *AB* and *CB* have equations x - 6y + 30 = 0 and 6x - y - 30 = 0 respectively.

	(i)	Find the coordinates of the point <i>B</i> .	2
	(ii)	Find the gradient of the line AC.	1
	(iii)	Show that the line AC has equation $x + y - 5 = 0$.	1
	(iv)	Find the exact distance of AC .	2
	(v)	Find the perpendicular distance from the point B to the line AC and hence find the area of the triangle ABC .	3
	(vi)	State the inequalities that together define the area bounded by the triangle <i>ABC</i> .	1
S	olve	$\sqrt{3} \tan x = -1$ in the domain $0 \le x \le 2\pi$.	2

Questie	on 4	(12 Marks)	Use a Separate Writing Booklet	Marks
(a)	(i)	Sketch $y = 4\cos 2x$	in the domain $0 \le x \le 2\pi$.	2
(be or otherwise find the number of solutions $2x = -2$ in the domain $0 \le x \le 2\pi$. we your answer.	2

(b) In the diagram below $\angle EDF = \angle GHF = 90^{\circ}$.

- (i) Show, giving reasons that ΔEDF is similar to ΔGHF . 2
- (ii) Given that ED = 9 cm, GH = 6 cm and DH = 7 cm, 2 find the distance *HF*.

(c) Consider the function $f(x) = \ln(x+5)$

- (i) State the domain and range of the function. 2
- (ii) Find the exact value of x when f(x) = 5. 2

2

Quest	tion 5	(12 Marks)	Use a Separate Writing Booklet	Marks
(a)	Con			
	(i)	Find the coordin their nature.	nates of the stationary points and determine	4
	(ii)	Find any point	ts of inflexion.	2
	(iii)	Graph the funct	ction showing all the main features.	2

(b) Use Simpson's rule to evaluate $\int_{1}^{2.5} f(x) dx$, to 1 decimal place 2 using the 7 function values in the table below.

x	1.00	1.25	1.50	1•75	2.00	2.25	2.50
f(x)	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(c) Given that in the circle below $\angle XOY = 60^{\circ}$ and the radius of the circle is 14 cm. Find the exact area of the minor segment shaded.

Question 6 (12 Marks) Use a Separate Writing Booklet

The parabola $y = x^2$ and the line y = x + 2 intersect at points A and B, as shown. (a)

(i)	Show that the points of intersection of $y = x^2$ and $y = x + 2$ are $A(-1, 1)$ and $B(2, 4)$.	2
(ii)	Write a definite integral that will give the shaded area bounded by the parabola and the line?	1
(iii)	Calculate this area.	2

(b) The area bounded by the curve
$$y = 3e^{\frac{3}{2}x}$$
 between the lines $x = 1$ and $x = 3$ is rotated about the *x*-axis. Find the volume of the solid of revolution formed, in exact form.

(c) Find the equation of the normal to
$$y = \cos 2x$$
 at the point where $x = \frac{\pi}{6}$.

Ques	tion 7	(12 Marks)	Use a Separate Writing Booklet	Marks
(a)	The interest rate is 6% p equal monthly repayme		in order to buy a new car. er annum reducible and the loan is to be repaid in its, M , over 4 years, with the interest calculated monthly. wing after the <i>n</i> th repayment.	
	(i)	1	essions for A_1 and A_2 , the amounts owing after second repayments respectively.	2
	(ii) Find the amount		of each monthly repayment.	2
(b)	A par	ticle moves in a str	aight line so that its displacement (in m) from a	

A particle moves in a straight line so that its displacement (in m) from a fixed point O at time *t* seconds is given by $x = 2\sin 2t$, $0 \le t \le 2\pi$.

Find:

(i)	The initial velocity	1
(ii)	The acceleration after $\frac{\pi}{12}$ seconds.	1
(iii)	When the particle is at rest in the given domain.	2
(iv)	The displacement of the particle when it is at rest.	2

(c) Evaluate
$$\sum_{n=2}^{15} 2^n$$
.

Quest	tion 8	(12 Marks)	Use a Separate Writing Booklet	Marks
(a)	a) The population <i>P</i> of a certain town grows at a rate proportional to the current population, and satisfies the equation $P = Ae^{kt}$, where <i>A</i> and <i>k</i> are constants, and <i>t</i> is measured in years. If the population grows from 20 000 to 25 000 in two years :			
	(i)	Find the values	s of A and k .	3
	(ii)	Find the population further 8 years	ation of the town, to the nearest hundred, after a s.	2
	(iii)	Calculate the ra	ate of change of the population at this time.	2
(b)	If log	$g_a 2 + 2\log_a x -$	$\log_a 6 = \log_a 3$ find the value of <i>x</i> .	2
(c)	Solve	the following eq	uation for x, leaving your answer in exact form:	3

 $e^{2x} - 3 \cdot (e^x) - 10 = 0$

Question 9		(12 Marks)	Use a Separate Writing Booklet	Marks
(a)	After The f the th	each load is depos irst load is deposite	5 km highway a truck delivers materials from a base. ited, the truck returns to the base to collect the next load. ed 100 m from the base, the second 240 m from the base, base. Each subsequent load is deposited 140 m from the	
	(i)	How far is the 20	th load deposited from the base?	1
	(ii)		are deposited along the total length of the	2
		5 km highway? (The last load is	deposited at the end of the highway)	
	(iii)	-	netres has the truck travelled in order to make all the n return to the base?	2
(b)	an ex		In Dioxide will be produced when conducting by $\frac{dV}{dt} = \frac{1}{100} (30t - t^2)$ where $V \text{ cm}^3$ is the after t minutes.	
	(i)	At what rate is the experiment begin	ne gas being produced 15 minutes after the ns.	2
	(ii)	How much Carbo time?	on Dioxide has been produced during this	2
(c)	A boy	wl is formed by rot	ating the part of the curve $y = 4x^4$ between $x = 0$	3

(c) A bowl is formed by rotating the part of the curve $y = 4x^4$ between x = 0and x = 3 about the y-axis. Find the volume of the bowl.

Question 10 (12 Marks)Use a Separate Writing BookletMarks

(a) An open cylindrical can is made from a sheet of metal with an area of 300cm². Given that the surface area of an open cylinder is $SA = \pi r^2 + 2\pi rh$ and the volume is $V = \pi r^2 h$:

(i) Show that the volume of the can is given by
$$V = 150r - \frac{1}{2}\pi r^3$$
. 2

(ii) Find the radius of the cylinder that gives the maximum volume. Justify your answer.

3

(b) The graph of the curve y = f(x) is drawn below.

(i)	Name the points of inflexion.	1
(ii)	When is the graph decreasing?	1
(iii)	Sketch the gradient function.	1

(c) (i) Show that
$$\frac{(1 + \tan^2 \theta) \cot \theta}{\cos ec^2 \theta} = \tan \theta$$
 2

(ii) Hence, solve
$$\frac{(1 + \tan^2 \theta) \cot \theta}{\cos ec^2 \theta} \cdot \tan \theta = 3$$
 for $-\pi \le \theta \le \pi$ 2

END OF EXAMINATION

BLANK PAGE

STANDARD INTEGRALS

 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0