SYDNEY BOYS HIGH SCHOOL
MOOREPARK, SURRY HILLS

2002

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time -5 minutes.
- Working time -3 hours
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.

Total Marks - 120 marks

- All questions are of equal value.

Examiners: P. Bigelow, P. Parker

NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate Examination Paper for this subject.
(a) \quad Solve $\frac{3}{x}=\frac{4}{5}$
(b) If $a=2 \cdot 673$ and $b=1 \cdot 049$, evaluate $\frac{a^{2}+b^{2}}{a b}$ correct to 2 decimal places.
(c) Factorise $c d-c-d y+y$
(d) The line $k x-y=29$ passes through the point $(4,-1)$, find the value of k.
(e) Graph the solution to $|x+3| \leq 1$ on a number line.
(f) Find integers a and b such that

$$
\frac{1}{\sqrt{3}+2}=a \sqrt{3}+b
$$

START A NEW BOOKLET

Question 2: (12 Marks)

A, B, C and D are the points $(4,-1),(8,1),(7,3)$ and $(-1,9)$ respectively.
(a) Show that the equation of $A C$ is $4 x-3 y-19=0$
(b) \quad Show $B C \| A D$
(c) Show $\angle A C D=90^{\circ}$
(d) Show the length of $A C$ is 5 units 2
(e) Find the perpendicular distance of B from $A C$
(f) Find the area of the trapezium $A B C D$.

START A NEW BOOKLET

Question 3: (12 Marks)

(a) Differentiate
(i) $(2 x-1)^{7}$

1
(ii) $\log _{e}(4+5 x)$
(iii) $x^{2} \sin x$
(b) Find $\int \sec ^{2} 3 x d x$

(c) Evaluate $\int_{1}^{e^{2}} \frac{3}{x} d x$
(d)

The diagram above shows the region bounded by the curve $y=e^{2 x}$, the line $x=1.5$ and the coordinate axes.
Find the EXACT area of this region.

START A NEW BOOKLET

Question 4: (12 Marks)

(a) A parabola has equation $x^{2}-2 x+25=8 y$.
(i) By completing the square, express this in the general form

$$
(x-p)^{2}=4 a(y-q)
$$

(ii) State the coordinates of the vertex.
(iii) State the coordinates of the focus.
(iv) State the equation of the directrix.
(b) Find the equation of the line through the intersection of the lines $x-y=0$ and $x+2 y-6=0$ and which is parallel to the line $3 x-2 y+7=0$.

Leave your answer in general form.
(c)

In the diagram above, $X Y Z$ is a right-angled triangle, $\angle Z X Y=45^{\circ}$ and $X Y=4$ units. A circular arc, centre X and radius $Y X$ cuts the side $X Z$ at W.
Find the EXACT area of the shaded region $W Z Y$.

Question 5: (12 Marks)
(a) Find the equation of the normal to $y=x^{2}-3 x+5$ at the point $(3,5)$.

Leave your answer in general form.
(b)

$A B C D$ is a parallelogram and $F B \perp A B$
(i) Prove $\triangle C B E \| \triangle A F B \quad 3$
(ii) If $C E=3 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A F=15 \mathrm{~cm}$, find $A B$.
(c)

The area bounded by the curve $y=x^{2}-1$ and the x-axis is rotated about the x-axis.
Find the volume of the solid of rotation. Leave your answer in EXACT form.
(d) A continuous curve $y=f(x)$ has the following properties for the closed interval $x_{1} \leq x \leq x_{2}$:

$$
f(x)>0, \quad f^{\prime}(x)<0, \quad f^{\prime \prime}(x)>0
$$

Sketch a curve satisfying these conditions.

START A NEW BOOKLET

Question 6: (12 Marks)

(a) The curve $y=x^{3}+m x+n$ has a stationary point at $P(1,5)$. Find the values of the constants m and n.
(b)

The graph above represents $y=a \cos m x$.
Write down the values of a and m.
(c) Express as a single logarithm in simplest form

$$
\ln 2+2 \ln 18-\frac{3}{2} \ln 36
$$

(d) \quad Simplify $\sqrt{\frac{1-\cos ^{2} \theta}{1+\tan ^{2} \theta}}$
(e) The table shows the value of a function $f(x)$ for five values of x.

x	-1	1	3	5	7
$f(x)$	5	9	2	-1	-6

Use Simpson's rule with these five values to estimate $\int_{-1}^{7} f(x) d x$

START A NEW BOOKLET

Question 7: (12 Marks)
(a) The value $\$ V$ of a particular make of car can be calculated using the equation

$$
V=50000 e^{-0.25 t} \text {, where } t \text { years is the age of the car }
$$

(i) State the value of the car when it is new
(ii) What is the value of the car after 3 years? (to the nearest \$100).
(iii) How long will it take for the car to be worth $\$ 15000$? (Answer to the nearest tenth of a year)
(b) A total of $\$ 15600$ is to be shared among three people A, B and C. If A is to get the smallest share of $\$ 1600$, find the value of the remaining shares when
(i) the values of the three shares form an arithmetic series
(ii) the values of the three shares form a geometric series
(c) Two cards are chosen at random, without replacement from the seven cards below.

| 2 | 6 |
| :--- | :--- | | 4 |
| :--- | | 6 |
| :--- |

What is the probability that
(i) both cards are 2 ?
(ii) the sum of the two numbers on the cards chosen, is greater than 8 ?

START A NEW BOOKLET

Question 8: (12 Marks)

$\begin{array}{ll}\text { (a) } \quad \begin{array}{l}\text { Two artillery guns are situated } 3 \text { kilometres apart at positions } X \text { and } Y \\ \text { respectively. They are both aiming at a target } T .\end{array} & 3\end{array}$
The angles $X Y T$ and $Y X T$ are respectively 72° and 78°.
Find the distance between the target and the gun nearer to it
(b) Given that $x=-\frac{1}{2}$ is one root of the following quadratic equation

$$
m x^{2}-20 x+m=0
$$

find the exact value of the other root.
(c) Consider the function $y=x^{3}+3 x^{2}-9 x$
(i) Find the coordinates of the stationary points.
(ii) Find the domain in which the curve is concave upwards. $\mathbf{1}$
(iii) Sketch the curve for $-5 \leq x \leq 3$. 3

START A NEW BOOKLET

Question 9: (12 Marks)
Marks
(a) \quad Solve $|x+1|=2 x+7$ following statement is TRUE or FALSE
"When two coins are tossed, they can either fall as two heads or two tails or as a tail and a head.
As there are three possibilities the probability of 2 heads is $\frac{1}{3}$."
(c) The acceleration a metres per second per second of a moving object is given at time t seconds $(t \geq 0)$ by

$$
a=2 \pi^{2} \cos \pi t
$$

At time $t=0$, the object is at the point $x=0$, and travelling with velocity $v=\pi$ metres per second.
(i) Find the velocity v and the displacement x as a function of t, for $t \geq 0$
(ii) Find, for t in the range $0 \leq t \leq 4$, the values of t for which the object is stationary.
(iii) Show that, for t in the range $2 \leq t \leq 4$, the largest value of x is

$$
2+\sqrt{3}+\frac{19 \pi}{6}
$$

START A NEW BOOKLET

Question 10: (12 Marks)
Marks
(a)

$$
C(n)=1000(0 \cdot 8)^{n}+10000\left[1+0 \cdot 8+(0 \cdot 8)^{2}+\ldots+(0 \cdot 8)^{n-1}\right]
$$

Find the limiting sum of C as the number of terms increases indefinitely
(b) A scientist has found that the amount, $Q(t)$, of a substance present in a mineral at time $t \geq 0$ satisfies

$$
4 \frac{d^{2} Q}{d t}+4 \frac{d Q}{d t}+Q=0
$$

(i) Verify that $Q(t)=A(1+t) e^{-0.5 t}$ satisfies this equation for any constant $A>0$
(ii) If $Q(0)=10 \mathrm{mg}$, find the maximum value of $Q(t)$ and the time at which this occurs.
(iii) Describe what happens to $Q(t)$ as $t \rightarrow \infty$

Mathematics Trial, Assessment Task \#4, 2002

(1) 3. (a) i. $7 \times 2(2 x-1)^{8}=14(2 x-1)^{8}$.

2 ii. $\frac{5}{4+5 x}$
2 iii. $2 x s i n x+x^{2} \operatorname{cossx}$.
1 (b) $\int \sec ^{2} 3 x d x=\frac{1}{3} \tan 3 x+c$
[3] (c) $\begin{aligned} & \left.\int_{4}^{a^{2}} \frac{3}{x} d x-3 \right\rvert\, \ln x[]_{1}^{7^{2}} \\ &=3\{2-0 \mid\end{aligned}$

$$
\begin{aligned}
& =3\{2-0\} \\
& =6 .
\end{aligned}
$$

(d) Atea $=\int_{0}^{1} e^{2 z} d x$,

$$
\begin{aligned}
& =\left[\frac{e^{2 \pi}}{2}\right]_{e^{\frac{1}{2}}}, \\
& =\frac{1}{2}\left\{e^{3}-1\right\} .
\end{aligned}
$$

(2) 4. (a) i. $x^{2}-2 x+\frac{1}{2}=8 y-25+1$, $\therefore(x-1)^{2}=4 \times 2(y-3)$.
回
ii. $(1,3)$.
[1] iii. $(1,5)$.
11
iv. $y=1$.
(b) First method: using λ
$x+2 y-6+\lambda(x-y)=0$,
$(2-\lambda) y=-(1+\lambda) t+6$
The slope of line $3 x-2 y+7=0$ in $\frac{3}{2}$.
$\begin{aligned} \text { i.e. } \frac{3}{2} & =\frac{\lambda+1}{\lambda-2}, \\ 3 t-6 & =2 \lambda+2 .\end{aligned}$
$\begin{aligned} 3 n-6 & =2 \lambda \\ \lambda & =8 .\end{aligned}$
New line is $x+2 y-6+8 x-8 y=0$.
i.e. $6 x-6 y-6=0$,

$$
\begin{aligned}
& 2 x-2=0 \\
& 3 x-2
\end{aligned}
$$

Second methad: first find the intersection $\begin{aligned}-y & =2 y-6 \\ y & =2\end{aligned}$ $\begin{aligned} y & =2 \\ y & =2\end{aligned}$
and $: 3=2$
Intersection in (2,2).
\therefore Intersection in $(2,2)$.
The slope of line $3 x-2 y+7=0$ is
\therefore New line is: $y-2=\frac{3}{3}(x-2)$,
ies. $3 x-2 y-2=0$.
3 (c) Area $\triangle X Y Z=\frac{1}{2} \times 4 \times 4$,
Area of B orw $=8$ unit 2.
$\begin{aligned} \text { of Sechr } X Y W & =\frac{1}{3} \times 4^{2} \times \\ & =2 \pi \text { urit }^{2} .\end{aligned}$
\therefore Shaded atea $=8-2 \pi$ unit ${ }^{2}$

(ii) In $\triangle C B E$ and $\triangle A G B$
(7morrs)
$\left.\frac{C B}{C E}=\frac{A F}{A B} \quad \begin{array}{c}\text { (corf. sides of } \\ H 5\end{array}\right)$
$\frac{7}{8}=\frac{15}{x}$
$7 x=45$
$x=6 \frac{3}{7}$
$A B=6 \frac{3}{7} \mathrm{~cm}$

d) $y=f(x)$

$x_{1} \leq x \leq x_{2}$
2 mefles $f(x)>0, f^{\prime}(x)<0, f^{n}(x)>0$

$f(x)$ abore x-axis
$f^{\prime}(x)$ neganve gradient
$f^{\prime \prime}(x)$ concure up

b]
(2mais)

$$
\begin{array}{rl}
y=0 \cos m x & \text { wrere omplitude }(0)=3 \\
\therefore y=3 \cos , 2 x & T=\frac{2 \pi}{m} \\
& \pi=\frac{2 \pi}{m} \\
\therefore m=2
\end{array}
$$

c) $\ln 2+2 \min 18-\frac{3}{2}$ in 36
(2marks) $=\sin 2+\ln 324-\ln 216$
$=\ln \left(\frac{2 \times 324}{216}\right)$

e) Benaics $^{\text {a }} \int_{-1}^{7} f(x) d x \doteq \frac{n}{3}\left[\left(y_{0}+y_{B}\right)+4\left(y_{1}+y_{B}\right)+2\left(y_{1}\right)\right]$

$$
\begin{aligned}
& \text { where } \\
& \begin{aligned}
n & =\frac{b-a}{n} & \cdots y=5 \\
& =\frac{7--1}{4} & y_{1}=9 \\
& =2 & y_{2}=-1 \\
& & y_{+}=-1
\end{aligned} \\
& \int_{-1}^{7} f(x) d x \div \frac{2}{3}[(5-6)+4(9-1)+2(2)] \\
& \overline{=} \frac{2}{3}(-1+32+4) \\
& =\frac{70}{3} \\
& \doteqdot \quad 23 \frac{1}{3}
\end{aligned}
$$

$$
t=\frac{\ln 0.3}{-0.25}
$$

$=4.815$
\therefore time to taken for the car to be wath $\$ 15000$
is 4. Byears (nearest tenth of a year).
(2) bax

5
$\therefore \quad A=\$ 1600 \quad B=\$ 4000 \quad c=\$ 10000$
(a)

$$
\frac{y}{\sin 72^{\circ}}=\frac{3000}{\sin 30}
$$

$$
\begin{gathered}
3\left(x^{2}+2 x-3\right)=0 \\
x^{2}+2 x-3=0 \\
(x+3)(x-1)=0 \\
x=-3, x=1 \\
y=27 \quad y=-5
\end{gathered}
$$

$$
\begin{equation*}
y=\frac{3000 \times \sin 72}{\sin 30^{\circ}} \tag{3}
\end{equation*}
$$

(b)

$$
\text { b) } \begin{align*}
& m x-20 x+m\left.\begin{array}{rl}
x=-\frac{1}{2} \quad \frac{m}{4}+10+m & =0 \\
m+40+4 m & =0 \\
5 m & =-40 \\
m & =-8
\end{array} . \begin{array}{rl}
\end{array}\right) \tag{1}\\
& m
\end{align*}
$$

stat points are

$$
(-3,27) \text { and }(1,-5
$$

$$
\begin{equation*}
\div 5106 \mathrm{~m}=5.706 \mathrm{~km} \tag{2}
\end{equation*}
$$

(ii). Curve is concave upulards when $y^{\prime \prime}>C$

$$
6(x+1)>0
$$

$$
x+1>0
$$

$$
x>-1
$$

(iii) $(-3,27) y^{\prime \prime}<0$ max $(1,-5) \quad y>0 \min$
So we have $-8 x^{2}-20 x-8=0 \quad(-1,11)$ nitlets.
and $-\frac{1}{2}+\alpha=\frac{20}{-8}$
at $\begin{array}{rl}x & =-5, y=-5 \\ x=3 & y \\ y & =27 .\end{array}$

$$
\begin{aligned}
\alpha & =-\frac{20}{8}+\frac{1}{2}
\end{aligned}
$$

$$
=-20^{\circ}
$$

Other root is -2 .
(c)

$$
\begin{aligned}
y & =x^{3}+3 x^{2}-9 x \\
& =x\left(x^{2}+3 x-9\right) \\
y^{\prime} & =3 x^{2}+6 x-9 \\
& =3\left(x^{2}+2 x-3\right) \\
y^{\prime \prime} & =6 x+6=6(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) }|x+1|=2 x+7 \\
& x+1=2 x+7 \quad \begin{array}{l}
x+1
\end{array}=-2 x-7 \\
& -6=x \quad 3 x=-8 \\
& \text { LHS } \neq \text { RHS } \quad x=-\frac{8}{3} \\
& \text { LHS }=1 \frac{2}{3} \\
& \text { RHS }=1 \frac{2}{3} .
\end{aligned}
$$

$$
x=-\frac{8}{3}=-2 \frac{2}{3}(-2.6)
$$

(b) not trul.
pei Iabe.

4 possibilities
not 3 . (2)
$\cos 1 \quad \cos 2$
(c) (i) $a=2 \pi^{2} \cos \pi t$
date
$t=0$
$x=0$
$v=\pi$

$$
V=\int 2 \pi^{2} \cos \pi t d t
$$

$$
=\frac{2 \pi^{2}}{\pi} \int \pi \cos \pi t d t
$$

$$
V=2 \pi \sin \pi t+C_{1}
$$

$$
\begin{aligned}
& \text { data } \quad \pi=c_{1} \\
& v=2 \pi \sin \pi t+\pi \\
& x=\int(2 \pi \sin \pi t+\pi) d t . \\
& x=-2 \cos \pi t+\pi t+c_{2} .50
\end{aligned}
$$

(a) $C(n)=1000(0.8)^{n}+10,000\left[1+\cdot 8+\cdot 8_{1}^{2}+18\right.$ as $n \rightarrow \infty 1000(0.8)^{n} \rightarrow 0$
now $10000\left[1+\cdot 8^{1}+8^{2}+\cdots+8^{n-1}\right]$
GP $a=1$

$$
\left.\begin{array}{c}
a=1 \\
n=.8 \\
n=n
\end{array}\right\} \quad S_{n}=\frac{1\left(\cdot 8^{n}-1\right)}{-8-1}=\frac{-8^{n}-1}{-\cdot 2}=\frac{1-\cdot i}{2}
$$

so we have $\begin{aligned} & 10,000 \times 5\left(1-8^{n}\right) \\ = & 50000\left(1-.8^{n}\right)\end{aligned}$

$$
\begin{equation*}
=50,000\left(1-.8^{n}\right) \tag{3}
\end{equation*}
$$

$$
\text { as } n \rightarrow \infty 50,000\left(1-.8^{n}\right) \rightarrow 50,000
$$

b) (i)

$$
\begin{aligned}
& \text { (1) } Q(t)=A(1+t) R^{-0.5 t} \\
& Q(t)=A e^{-0.5 t}+A t e^{-0.5 t} \\
& \begin{aligned}
Q^{\prime}(t) & =-0.5 A e^{-0.5 t}+A t \times-0.5 e^{-0.5 t}+A e^{-0.5 t} \\
& =0.5 A e^{-0.5 t}-0.5 A t e^{-0.5 t}
\end{aligned}
\end{aligned}
$$

$\varphi^{\prime \prime}(t)=-0.25 A e^{-0.5 t}-\left(0.5 A t \times-0.5 l^{-0.5 t}+0.5 A t^{-0.5 t}\right.$

$$
=-0.25 A e^{-0.5 t}+0.25 A t e^{-0.5 t}+0.5 A e^{-0.5 t}
$$

$$
=-0.75 \mathrm{~A} e^{-0.5 t}+0.25 \mathrm{At} e^{-0.5 t}
$$

$$
\begin{aligned}
& 14\left(0.75 A e^{-0.5 t}+0.25 A t e^{-0.5 t}\right)+4\left(0.5 A e^{-0.5 t}\right. \\
& \left.-0.5 A t e^{-0.5 t}\right)+A e^{-0.5 t}+A t e^{-0.5 t}
\end{aligned}
$$

o) (ii) $\psi(0)=10$

So when $t=0$

$$
\begin{aligned}
& A(1+t) e^{-0.5 t}=10 \\
& A(1+0) e^{-0.5 \times 0}=10
\end{aligned}
$$

$$
A=10
$$

So $\varphi(t)=10(1+t) e^{-0.5 t}$

$$
\begin{aligned}
Q^{\prime}(t) & =0.5 \times 10 e^{-0.5 t}-0.5 \times 10 t e^{-0.5 t} \\
& =5 e^{-0.5 t}-5 t e^{-0.5 t} \\
& =5 e^{-0.5 t}(1-t)
\end{aligned}
$$

let $D^{\prime}(t)=0 \Rightarrow t=1$
Sub $t=1$,

$$
\begin{aligned}
\varphi^{\prime \prime}(t) & =-0.75 \times 10 e^{-0.5}+0.25 \times 10 \times 14 e^{-0 .} \\
& =-7.5 e^{-0.5}+2.5 e^{-0.5} \\
& =-5 e^{-0.5}<0
\end{aligned}
$$

at $t=1, \varphi(t)$ is a max.
When $t=1$,

$$
\begin{align*}
O(t) & =10(2) e^{-0.5} \\
& =\frac{20}{e^{.5}}=12.13 \tag{4}
\end{align*}
$$

(iii)

$$
\begin{aligned}
\varphi(t) & =\phi(1+t) e^{-0.5 t} e^{.5} \\
& =10 e^{-0.5 t}+10 t e^{-0.5 t} \\
& =\frac{10}{10.5 t}+\frac{10 t}{0.5 t} \quad a 0 t \rightarrow \infty \quad Q(t) \rightarrow 0
\end{aligned}
$$

