

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2002

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 3 hours
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.

Total Marks - 120 marks

• All questions are of equal value.

Examiners: P. Bigelow, P. Parker

<u>NOTE</u>: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate Examination Paper for this subject.

Question 1: (12 Marks)

(a) Solve
$$\frac{3}{x} = \frac{4}{5}$$

(b) If
$$a = 2.673$$
 and $b = 1.049$, evaluate $\frac{a^2 + b^2}{ab}$ correct to 2 decimal places.

(c) Factorise
$$cd - c - dy + y$$

(d) The line
$$kx - y = 29$$
 passes through the point (4,-1), find the value 2 of k.

(e) Graph the solution to
$$|x+3| \le 1$$
 on a number line. 2

$$\frac{1}{\sqrt{3}+2} = a\sqrt{3} + b$$

- 2 -

Marks

2

2

Question 2: (12 Marks)

A, B, C and D are the points (4,-1), (8,1), (7,3) and (-1,9) respectively.

(e) Find the perpendicular distance of B from AC

(f) Find the area of the trapezium *ABCD*.

Marks

2

Question 3: (12 Marks)

- (a) Differentiate
 - (i) $(2x-1)^7$
 - (ii) $\log_{e}(4+5x)$ 2

Marks

1

1

3

3

(iii) $x^2 \sin x$ 2

(b) Find
$$\int \sec^2 3x \, dx$$

(c) Evaluate
$$\int_{1}^{e^2} \frac{3}{x} dx$$

(d)

The diagram above shows the region bounded by the curve $y = e^{2x}$, the line x = 1.5 and the coordinate axes. Find the EXACT area of this region.

- 4 -

Question 4: (12 Marks)

4

3

(a)		A parabola has equation $x^2 - 2x + 25 = 8y$.				
	(i)	By completing the square, express this in the general form $(x-p)^2 = 4a(y-q)$	2			
	(ii)	State the coordinates of the vertex.	1			
	(iii)	State the coordinates of the focus.	1			
	(iv)	State the equation of the directrix.	1			

(b) Find the equation of the line through the intersection of the lines x - y = 0 and x + 2y - 6 = 0 and which is parallel to the line 3x - 2y + 7 = 0.

Leave your answer in general form.

(c)

In the diagram above, XYZ is a right-angled triangle, $\angle ZXY = 45^{\circ}$ and XY = 4 units. A circular arc, centre X and radius YX cuts the side XZ at W.

Find the EXACT area of the shaded region WZY.

Question 5: (12 Marks)

- Find the equation of the normal to $y = x^2 3x + 5$ at the point (3,5). (a) 2 Leave your answer in general form.
- (b)

ABCD is a parallelogram and $FB \perp AB$

Prove $\triangle CBE \parallel \mid \Delta AFB$ (i)

(ii) If
$$CE = 3$$
 cm, $BC = 7$ cm and $AF = 15$ cm, find AB .

(c)

(d)

The area bounded by the curve $y = x^2 - 1$ and the x-axis is rotated about the x-axis.

Find the volume of the solid of rotation. Leave your answer in EXACT form.

A continuous curve y = f(x) has the following properties for the closed interval $x_1 \le x \le x_2$:

f(x) > 0, f'(x) < 0, f''(x) > 0

Sketch a curve satisfying these conditions.

- 6 -

Marks

3

3

2

Marks

3

2

2

2

3

Question 6: (12 Marks)

(b)

(a) The curve $y = x^3 + mx + n$ has a stationary point at P(1,5). Find the values of the constants m and n.

The graph above represents $y = a \cos mx$.

Write down the values of a and m.

(c) Express as a single logarithm in simplest form

 $\ln 2 + 2\ln 18 - \frac{3}{2}\ln 36$

(d) Simplify
$$\sqrt{\frac{1-\cos^2\theta}{1+\tan^2\theta}}$$

(e)

The table shows the value of a function f(x) for five values of x.

x	-1	1	3	5	7
$f(\mathbf{x})$	5	9	2	-1	-6

Use Simpson's rule with these five values to estimate $\int_{-1}^{1} f(x) dx$

Question 7: (12 Marks)					
(a)		The value V of a particular make of car can be calculated using the equation			
		$V = 50000e^{-0.25t}$, where t years is the age of the car			
	(i)	State the value of the car when it is new	1		
	(1)	State the value of the car when it is new			
	(11)	What is the value of the car after 3 years? (to the nearest \$100).			
	(iii)	How long will it take for the car to be worth \$15 000? (Answer to the nearest tenth of a year)	2		
(b)		A total of \$15 600 is to be shared among three people A, B and C. If A is to get the smallest share of \$1600, find the value of the remaining shares when			
	(i)	the values of the three shares form an arithmetic series	2		
	(ii)	the values of the three shares form a geometric series	2		
(c)		Two cards are chosen at random, without replacement from the seven cards below.			
	(i)	both cards are 2?	1		
	(\mathbf{I})	Utili Calus al C 2 !	-		

(ii) the sum of the two numbers on the cards chosen, is greater than 8?

Question 8: (12 Marks)

(a) Two artillery guns are situated 3 kilometres apart at positions X and Y 3 respectively. They are both aiming at a target T.

The angles XYT and YXT are respectively 72° and 78°.

Find the distance between the target and the gun nearer to it

(b) Given that $x = -\frac{1}{2}$ is one root of the following quadratic equation

$$mx^2 - 20x + m = 0,$$

find the exact value of the other root.

(c) Consider the function $y = x^3 + 3x^2 - 9x$

(i) Find the coordinates of the stationary points.2(ii) Find the domain in which the curve is concave upwards.1(iii) Sketch the curve for
$$-5 \le x \le 3$$
.3

Marks

Question 9: (12 Marks)

(a) Solve |x+1| = 2x + 7

(b) Comment on the following reasoning ie JUSTIFY whether the following statement is TRUE or FALSE

"When two coins are tossed, they can either fall as two heads or two tails or as a tail and a head. As there are three possibilities the probability of 2 heads is $\frac{1}{3}$."

(c) The acceleration a metres per second per second of a moving object is given at time t seconds $(t \ge 0)$ by

$$a = 2\pi^2 \cos \pi t$$

At time t = 0, the object is at the point x = 0, and travelling with velocity $v = \pi$ metres per second.

(i) Find the velocity v and the displacement x as a function of t, for $t \ge 0$ 3

- (ii) Find, for t in the range $0 \le t \le 4$, the values of t for which the object is stationary. 2
- (iii) Show that, for t in the range $2 \le t \le 4$, the largest value of x is

$$2+\sqrt{3}+\frac{19\pi}{6}.$$

3

2

Question 10: (12 Marks)

(a)
$$C(n) = 1000(0 \cdot 8)^n + 10000[1 + 0 \cdot 8 + (0 \cdot 8)^2 + ... + (0 \cdot 8)^{n-1}]$$
 3

Find the limiting sum of C as the number of terms increases indefinitely

(b) A scientist has found that the amount, Q(t), of a substance present in a mineral at time $t \ge 0$ satisfies

$$4\frac{d^2Q}{dt} + 4\frac{dQ}{dt} + Q = 0$$

- (i) Verify that $Q(t) = A(1+t)e^{-0.5t}$ satisfies this equation for any constant A > 0
- (ii) If Q(0) = 10 mg, find the maximum value of Q(t) and the time at which this occurs.
- (iii) Describe what happens to Q(t) as $t \to \infty$

THIS IS THE END OF THE PAPER

Marks

v		• 0			
		Ċ	4x = 15 $2i = \frac{15}{4}, 3\frac{3}{4}$	2	$m = \frac{1}{3}$ $y_{+1} = \frac{1}{3}(x-4)$
-		đ	» ,2.94	2	3y+3 = 4x - 16 4x-3y-19 = 0 as regid 2
r	\$		(c - y)(d - i)	2	(b) $BC(7,3)(8,1) AD(4,-1)(-1,54)$ $M_1 = -\frac{2}{7} = -2 \qquad m_2 = \frac{19}{7} = -2$ $M_1 = m_2 \qquad BC \parallel AD \qquad 2$
		Ø.	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2	(c) $DC(1,q)$ (7,3) $M = -\frac{1}{2}g = -\frac{3}{4}$
	·	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$grad Ac = 4_3 \rightarrow from(a)$ $m_1m_2 = -1 D \subset \bot AC$ $\therefore LACD = 90^{\circ} \qquad 2$
		ې د مېرمېنې کې د مېرمېنې د د د د د د د د د د د د د د د د د د	-4 -2	2	(d) AC $(4, -1)$ $(7, 3)$ d = $\sqrt{(7-4)^2 + (31)^2}$
	\$		$\frac{1}{\sqrt{3}+2} \times \frac{\sqrt{3}-2}{\sqrt{3}-2}$		(c) $d = \left[\frac{az_1 + by_1 + c}{az_2 + b^2}\right]$
		n por sport nya n	$=\frac{13-2}{-1}$		d = 4x8 - 3x - 19
		- -	$-\sqrt{3}+2 = a\sqrt{3}+b$	5	= 10 - 211 - 2
		9 * 1. / * 400 * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19 / * 19		2	$(\beta) \qquad \qquad$
		anchi 'no waar kata a			$d = \sqrt{8^{2}+6^{2}} = 100$ $Atea = \Delta DC4 + \Delta ACB$
		- ANY - SO AND			A - 2x 10×5 + 2×5×2
	ι.				
v	,	ran azzer - 364 A 40 naege		ļ	
,	v	And all and a second	* *	1	
		go,afig troo gan g, ≠ .			
	7	,	s s s		

ت ه •

9

2¹

.

° v ;

	TRIAL 21 MSC 2002	است این به ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰ ۱۹ ۱۹ می مدیر
Mathematics Trial. Assessment Task #4, 2002		· · · · · · · · · · · · · · · · · · ·
$[1] 3. (a) i. 7 \times 2(2x - 1)^8 = 14(2x - 1)^6$	AUESTION 5	─┝╌┽╺┝╌ <u></u> ┱╸╪╌╤┉╿╺┡╌┊┈┾┄┝┈╴╶╴╦┈ <i>┿</i> ╼┝╾╃╌┾╺┥╴
$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		╾┝╌╁╌╁╴╤╍┢┅╼╴╒╼╪╍┝╍╅╼┠╌╴╴╿╴╧╌┶┅┟╼┠╼╂╶╂╶╸
$\begin{array}{c} - & - \\ - & 4 + 5x \end{array}$		
$\begin{bmatrix} 1 \\ 1 \end{bmatrix} (b) \int sec^2 3x dx = \frac{1}{2} tan^3 x + c.$	$-\frac{g_1}{g_1}-\frac{g_2}{g_1}-\frac{g_2}{g_1}-\frac{g_2}{g_1}+\frac{g_2}{g_1}-\frac{g_2}{g_1}+\frac{g_2}{g_1}-\frac{g_2}{g_1}+\frac{g_1}{g_1}-\frac{g_1}{g_1}-\frac{g_1}{g_1}-\frac{g_2}{g_1}+\frac{g_1}{g_1}-g$	
	(2001x) 4'= 2x-3	╌╴┼ ╶╄╼┲═<u>╎</u>╶┟┫═╬╍╿╴╵╵╧┈┙╴ ӳ┝╌┼╶╃╺╄╼╂╴┼╶┤
$\frac{ 3 }{2} (c) \int_{1} \frac{1}{x} dx = 3 nx _{1}^{2},$		
$= 3\{2-0\},$ = 6.		╺╋┽╴╎╴╁╱╇╌╄╸╽╺┼╴╿╌┼╶┼╱╿╸┊╸╞╍┞╺┨┼┼╀╌╢╶┤
$[a] (a) (a) = \int_{a}^{b} da a b$	y = 2×3-3	$-1 + \frac{1}{2} +$
$[3] (d) \text{Area} = \int_0^\infty e^{-\alpha x} dx,$	╺╼┽╶╁╾┼╶┼╌╧╌╁┈┟┈┤╶┼┈╄━┟╸┝╶┤╶┼╴╇	
$=\left \frac{e^{2z}}{2}\right _{z}^{r}$		╺ ┊╍╿┊╎╎┊╸ ┨╶┽╌╱╴╌╴╸╶╶┼┊┼╎╞┯╍┿╍┤
$= \frac{1}{2} \{ e^3 - 1 \}.$		┼┼╇┥╸┆╴╂┼┼╏╌┞╱╃╶┼╴┆╶╷╴┰╸┾╾╤╴┼╶┼╞╍╇╍┦
[2] 4. (a) i. $x^2 - 2x + 1 = 8y - 25 + 1$,	$m_2 = -1$	
$\therefore (x-1)^2 = 4 \times 2(y-3).$		╶┾╌┲╌┼╌┽╌╪╍╋╏╔┿╌┝╌┽╶╌╴╴┊┈╧╌┯╌┨╶┦╌┥╼┿╌┤
[1] ii. (1,3).	3	╴┝╴┵┈┠╌┢┈╞┈┇╌╌╌┆╌┠╸╺╴┶╌╴╴╌ ╴╍╍┿╶┇╶╶┊╶╶ ┊╸
$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{if } u = 1$		
$\begin{array}{c} \hline \\ \hline $	$-u - u_1 = m(x - x_1)$	1) In A CBE and A AFB
$x + 2y - 6 + \lambda(x - y) = 0,$ (2.)) = (2.)) = (2.)		(analis)
$(2 - \lambda)y = -(1 + \lambda)x + 0.$ The slope of line $3x - 2y + 7 = 0$ is $\frac{3}{2}$.	$y - 5 = -\frac{1}{3}(x - 3)$	4 CEB = 4 ABF (alt. 15, AB)
$i.e. \frac{3}{2} = \frac{\lambda+1}{\lambda-2},$	3y - 15 = -x + 3	4 BCE = < BAF (ODP. <s. hain<="" td=""></s.>
$3k-\frac{6}{6}=2\lambda+2,$		
$\lambda = \alpha.$ $\therefore \text{ New line is } x + 2y - 6 + 8x - 8y = 0.$	115y=18 -0	COBE = CAFB (xoun of 4)
<i>i.e.</i> $9x - 6y - 6 = 0$, 3x - 2y - 2 = 0		ACBE III AAFB (equiangula)
Second method: first find the intersection.	· · · ·	
-y = 2y - 6,	~	
y = 2, and $x = 2.$		i) In ACBE and DAFB
\therefore Intersection is (2, 2). The close of line 2π , 2π , $1 \neq 0$ is $\frac{3}{2}$.		(2morths) and the same of
$\therefore \text{ New line is: } y-2 = \frac{3}{2}(x-2),$		CE = AE (CII. SIDES OF CE AB (III AS))
2y - 4 = 3x - 6, i.e. $3x - 2y - 2 = 0$		
$3 (c) \qquad \text{Area} \Delta XYZ = \frac{1}{2} \times A \times A$		$\frac{7}{4} = \frac{15}{4}$
$= \operatorname{Sunit}^{2}.$		• x
Area of Sector $XYW = \frac{1}{2} \times 4^2 \times \frac{\pi}{4}$,		7x = 45
$= 2\pi \text{ unit}^*.$: Shaded area = $8 - 2\pi \text{ unit}^2.$		x = (5 ³
		~ - 01
		3
		$\therefore AB = 67 \text{ cm}$

V= 50000 e 0 29 1 V = 50000 e-0:25 +0 -± 50000 value of new aar is \$50000 V=? V= 50000 E 0.25×3 = 23618.33 value of cor after 3 years is \$23,600. (nearest \$100) 15000 = 50000e^{-0.25 t} 15000 = e -0.25± $0.3 = e^{-0.25t}$ $\ln 0.3 = -0.25t$ $t = \frac{\ln 0.3}{-0.25}$ - 4, 815 time to taken for the car to be wath \$15000 is 4.8 years (nearest tenth of a year).

-

C (i) when V=0 $\left(\chi_{+}^{2}2\chi-3\right)=0$ (a) |x+1| = 2x+72TTSINTTE+TT = O (a) $x^{2}+2x-3=0$ 2TT SINTE = -TT (x+3)(x-1)=0SINTTE = -TT $\chi = -3$ $\chi = 1$ $\chi_{t/=}\chi_{x+7}$ $x_{+} = -2x - 7$ 3000 m. -8 = X y=27 4=-5 sin Tt = 3x = -8LHS ¥RHS $\chi = -\frac{8}{3}$ Tt= T, I 3000 stat points are sin30 SINTE '(-3,27) and (1,-5 $LHS = /\frac{2}{3}$ y = 3000 × 511 72 t=11 R15= 1 = . SIN 30° (3) (11) Lune is concar 75706 m. ÷ 5.706 km. (3) $\chi = -\frac{8}{3} = -2\frac{2}{3} (-2.6)$ upwards when y"> C (b) $mx^2 - 20x + m = 0$ 6(x+1)>0 (b) not true. $\int dt \, x = -\frac{1}{2} \, \frac{m}{4} + 10 + m = 0$ x+1>0 je: false x > -/ (1) 1 not 3. m + 40 + 4m = 0(iii) (-3,27) y"<0 MAX 5m also. (1,-5) y=0 min m Coin I Coin 2 $(11) t = \frac{19}{6} x = -205 \frac{197}{5}$ So we have $-8x^2 - 20x - 8 = 0$ (-1, 11) inflection $(c) (i) a = 2\pi^2 as \pi t$ $-\frac{i}{2}+d=$ $at \ x=-5, y=-5^{-5}, y=27$. and r (1944) (240)=0 2x=-2, 2=-2- $V = \left(2\pi \cos \pi t \, dt \right)$ ⁼ 2+√3+19 data t=0x=0L = $= \underbrace{2\pi}_{\pi\pi} \int \pi \cos \pi t \, dt \, .$ V=11 27 44 Other root is -2. $V = 2\pi i \pi i \pi t + C_1$ $y = x^3 + 3x^2 - 9x$ data (c)11= C1 (z) at $t = 19 \times 15 \text{ lar}$ = $x(x^2+3x-9)$ V= 2TT sin TT + TT $x = -2\cos\pi t + \pi t + Cr. \quad \text{so } x = -2\cos\pi t \cdot \pi t$ -1 -3 y = 3x + 6x - 9[3] $= 3(x^2+2x-3)$ y' = 6x + 6 = 6(x + 1)1 ta

 $\widetilde{\textcircled{O}} \quad C(n) = 1000(0.8)^{n} + 10,000 [1+.8+.8]^{2} + .8$ AS A-> as 1000 (0.8)" -> 0 now 10000 /1+.8+.8+.+.8 -- +.8 -- 17 $\begin{array}{c} GP & a=1 \\ f!=\cdot 8 \\ n=n \end{array} \begin{array}{c} S_n = 1\left(\cdot 8 \\ \hline -1 \\ \hline -8-1 \end{array}\right) = \frac{\cdot 8 \\ \hline -1}{-2} = \frac{1-\cdot 1}{-2} \end{array}$ so we have 10,000 × 5 (1- . 8") = 50,000 (1-.8") as n > => => 50,000 (1-.8") > 50,000 (1) $\varphi(t) = A(1+t) P^{-0.5t}$ $(Q(t)) = Ae^{-0.5t} + Ate^{-0.5t}$ Q(t) = -0.5Ae -0.5t + Atx -0.5e + Ae -0.5t = 0.5Ae^-0.5t - 0.5Ate-0.5t $\varphi'(t) = -0.25 A e^{-0.5t} = (0.5 A t \times 0.5 e^{-0.5t} + 0.5 A e^{-0.5t})$ = -0.25 A e^{-0.5t} + 0.25 A t e^{-0.5t} + 0.5 A e^{-0.5t} =-075Ap-0.5t+0.25Ate-0.5t 1 4 (0.75 Ae -0.5t + 0.25 Ate -0.5t) + 4 (0.5Ae -0.5t -0.5Ate-0.5t) + Ae-0.5t + Ate-0.5t

U(ii) Ψ(0)=10 So when t=0 A(1+t)e^-0.5t = 10 $A(1+0)e^{-0.5\times0} = 10$ A = 10 So p(t)=10(1+t)e^-0.5t $p(t) = 0.5 \times 10e^{-0.5t} - 0.5 \times 10te^{-0.5t}$ $= 5e^{-0.5t} - 5te^{-0.5t}$ $5e^{-0.5t}(1-t)$ $\det 0'(t) = 0 \implies t = 1$ Sub t=1, p'(t) = -0.75 × 10 e + 0.25 × 10 × A/e -0. = -7.5e -0.5 + 2.5e -0.5 = -5e⁻⁰¹⁵<0 at t=1, Q(t) is a MAX. When t=1, $O(t) = 10(2)e^{-0.5}$. $= \frac{20}{e^{-5}} = 12.13 \quad (4)$ (111) $P(t) = N(1+t)e^{-0.5t}e^{-5}$ $= 10e^{-0.5t} + 10te^{-0.5t}$