

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

AUGUST 2005

Trial Higher School Certificate Examination

YEAR 12

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 3 Hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Total Marks - 120 Marks

- Attempt Questions 1 10
- All questions are of equal value.

Examiner: E. Choy

<u>NOTE</u>: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate examination paper for this subject.

Total marks – 120 Attempt Questions 1 - 10 All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

	Section A	Marks
Question 1	(12 marks)	
(a)	If $x = 3.517$ and $y = 1.763$, find the value of	2
	$\frac{x^2 + y^2}{xy}$	
	correct to 3 significant figures	
(b)	Factorise $125a^3 - 1$	2
(c)	Express	2
	$\frac{5}{\sqrt{7}-2}$ with a rational denominator.	
(d)	Graph the solution set of $ 2x+1 < 3$ on a number line.	2
(e)		2
	$E \xrightarrow{F} G$ $H \xrightarrow{1389}I$ $J \xrightarrow{K} L$	
	$EG \parallel HI \parallel JL$ $\angle HIF = 138^{\circ} \text{ and } \angle FKL = 123^{\circ}$	
	Find the size of $\angle IFK$ giving reasons.	
(f)	Find a primitive function of $8x - x^{-2}$	2

Question 2 (12 marks)

(a)	(a) $A(-7,0)$, $B(-9,3)$ and $C(0,9)$ are three points on the number plane.		
	(i)	Show that AB and BC are perpendicular.	1
	(ii)	Show that the line <i>AB</i> has equation $3x + 2y + 21 = 0$.	1
	(iii)	Show that the length of <i>AB</i> is $\sqrt{13}$ units.	1
	(iv)	Find the (exact) area of $\triangle ABC$	1
	(v)	Find the (exact) perpendicular distance from O to BC .	2
	(vi)	Write down three inequalities that define the region inside $\triangle ABC$.	3
(b)	(i)	Sketch a graph of $y = 2x-6 $.	1
	(ii)	Show graphically that the equation $ 2x-6 = x$ has two solutions and find them.	1
	(iii)	With the aid of your graphs, solve $ 2x-6 < x$	1

End of Section A

Section B (Use a SEPARATE writing booklet)

Question 3 (12 marks) M			Marks
(a)		Differentiate:	
	(i)	$\left(7-3x^2\right)^4$	1
	(ii)	$6 \ln x$	1
	(iii)	x^2e^{-x}	2
(b)		Find	
(0)	(i)	$\int e^{3x} dx$	1
		$\int 5\cos\left(\frac{x}{2}\right) dx$	1
(c)		Evaluate $\int_{1}^{e} \frac{dx}{2x}$	1
(d)		If $\frac{dy}{dx} = 6x - 9$ and $y = 0$ when $x = 1$, express y in terms of x.	2
(e)	(i)	A NOT TO SCALE A A	1
	(i)	In the diagram above prove that $\angle BDA = \angle BAC$.	
	(ii)	<i>P</i> , <i>Q</i> are the midpoints of sides <i>AB</i> and <i>AC</i> respectively of the triangle <i>ABC</i> . <i>PQ</i> is produced to <i>R</i> so that $PQ = QR$.	2
		Prove that $CR = \frac{1}{2}AB$	

Question 4 (12 marks)

(a)

(a)		Find the values of $p = 100000000000000000000000000000000000$	
	(i)	$\frac{5}{\alpha} + \frac{5}{\beta}$	1
	(ii)	$(\alpha - \beta)^2$	1
(b)		Find the values of k for which the equation	2
		$x^{2} - (k-2)x + (k+1) = 0$ has real roots.	
(c)		Find the equation of the normal to $y = 2x^2 - 3x + 1$ at the point $(-1, 6)$.	2
(d)	(i)	By considering a suitable infinite geometric series, express $0 \cdot \dot{4}$ as a fraction in simplest form.	1
	(ii)	Express $\sqrt{0.\dot{4}}$ in simplest precise decimal form	1
(e)		Find the coordinates of the centre and radius of the circle with equation $x^{2} + y^{2} - 8x + y + \frac{1}{4} = 0$	2
(f)		Solve $\log_2 x - \log_2 (x - 2) = \frac{2}{3} \log_2 27$	2

Let α and β be the roots of the equation $2x^2 - 5x + 1 = 0$.

End of Section B

Section C (Use a SEPARATE writing booklet)

Question 5 (12 marks) Mark			Marks
(a)		Consider the curve $y = x^3 + x^2 - x + 1$	
	(i)	Find the coordinates of any turning points and determine their nature.	1
	(ii)	Find any points of inflexion.	1
	(iii)	Sketch the curve for $-2 \le x \le 2$.	1
	(iv)	For what values of x is the curve concave up?	1
(b)		Find all the values of x with $0^{\circ} \le x \le 360^{\circ}$ for which	2
		$4\sin^2 x - 3 = 0$	

(c) A continuous curve y = f(x) has the following properties for the closed interval $a \le x \le b$

Sketch a curve satisfying these conditions.

(d)

(i) What is the area of the shaded region?

(ii) What is the value of
$$\int_{3}^{5} f(x) dx$$
? 2

(a)

P is a point of intersection of $y = 2x^2$ and $y = 3x^2 - 8$.

(i)Find the coordinates of P.1(ii)Find the area of the shaded region.2

(b) Prove

$$\frac{\sin\theta}{1-\cos\theta} = \frac{1+\cos\theta}{\sin\theta}$$

(c) Consider the geometric series

$$\sin^2\theta + \sin^2\theta\cos^2\theta + \sin^2\theta\cos^4\theta + \cdots$$

where $0 < \theta < \frac{\pi}{2}$.

- (i) Show that the sum, S_n , of the first *n* terms is given by $S_n = 1 \cos^{2n} \theta$
- (ii)Explain why this series always has a limiting sum.1(iii)Let S be the limiting sum.2Show that $S S_n = \cos^{2n} \theta$

(iv) If
$$\theta = \frac{\pi}{3}$$
, find the least value of *n* for which $S - S_n < 10^{-6}$ 2

End of Section C

Marks

Section D (Use a SEPARATE writing booklet)

Question 7 (12 marks) Mark			Marks
(a)		Twenty tickets were sold in a raffle. There are two prizes. First prize is two mobile phones. Second prize is one mobile phone. You have bought two tickets.	
	(i)	What is the probability that you win three mobile phones?	1
	(ii)	two mobile phones?	1
	(iii)	no mobile phones?	1
	(iv)	at least one mobile phone?	1
(b)	(i)	Solve $2\sin x = \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$	2
	(ii)	Show that $\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} = \ln 2$	2
	(iii)	Sketch on the same number plane, graphs of	2
		$y = 2\sin x$ and $y = \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$,	
		showing the exact coordinates of their point of intersection.	

(iv) Calculate the total area of the two closed regions formed by these 2 graphs drawn in part (iii) above.

(a)

The shaded region makes a revolution about the y axis. Show that the volume of the resulting solid is given by

$$V = \pi \int_{1}^{4} \left(\frac{4}{y} - 1\right) dy$$

and find its *exact* volume.

(b) (i) Sketch the curve $y = \ln(x+1)$ for $-1 < x \le 3$.

(ii) The volume of the solid of revolution formed when the section of the curve $y = \ln(x+1)$ from x = 0 to x = 2 is rotated about the x axis is given by

$$V = \pi \int_0^2 \left[\ln \left(x + 1 \right) \right]^2 dx$$

Use Simpson's Rule with five function values to approximate this integral. (Leave your answer correct to three decimal places)

(c) The point (1,1) is a stationary point on the curve y = f(x). 2 Find the equation of the curve given that f''(x) = 2x-3.

(d) Suppose that
$$y = e^{kx}$$

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

(ii) Find the value of k such that
$$y = 2\frac{dy}{dx} - \frac{d^2y}{dx^2}$$
.

End of Section D

Marks

2

1

Section E (Use a SEPARATE writing booklet)

Question 9 (12 marks)

(ii) Show that $A_8 = (50\ 000 - 6M) \times 1 \cdot 005^2 - M(1 \cdot 005 + 1)$

(iii) Hence show that

$$A_{120} = (50\ 000 - 6M) \times 1.005^{114} - 200M(1.005^{114} - 1)$$

(iv) Find the value of the monthly repayment to the nearest cent.

Marks

2

2

Question 10 (12 marks)

ABCD is a rhombus of side 2 cm.

P and Q are points on AC and AB respectively such that

$$CP = AQ = x \text{ cm. } \angle DAP = \theta \text{ (where } 0 < \theta < \frac{\pi}{2} \text{) and } \theta \text{ is a}$$

constant. Let the area of the shaded area PDAQ be $S \text{ cm}^2$.

(i) Show that
$$S = \frac{\sin\theta}{2} (4\cos\theta - x)(2+x)$$
 3

(ii) If
$$\frac{dS}{dx} = 0$$
, find x in terms of θ .

(iii) Find
$$\frac{d^2S}{dx^2}$$
 in terms of θ .

(iv) Suppose that
$$\theta = \frac{\pi}{6}$$
, show that *S* attains its maximum when

$$\frac{PC}{AC} = \frac{\sqrt{3} - 1}{2\sqrt{3}}$$

(v) Suppose that
$$\theta = \frac{\pi}{4}$$
. A student says that *S* attains its maximum again when $\frac{PC}{AC} = \frac{\sqrt{3}-1}{2\sqrt{3}}$.

Explain whether the student is correct.

(vi) Another student says that when P moves from C to A, where $0 < \theta < \frac{\pi}{2}$, S will increase to a certain maximum value and then decrease to 0. Explain whether this student is correct. Marks

2

2

2

AUGUST 2005

Trial Higher School Certificate Examination

YEAR 12

Mathematics

Sample Solutions

Section	Marker
Α	AF
В	DH
С	PB
D	CK
Е	PP

Section A

r

2.a.i.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $m_{AB} = \frac{3 - 0}{-9 - (-7)}$
 $= -\frac{3}{2}$
 $m_{BC} = \frac{9 - 3}{0 - (-9)}$
 $= \frac{2}{3}$
 $m_{AB} \times m_{BC} = -\frac{3}{2} \times \frac{2}{3}$
 $= -1$
 $\therefore AB = L BC$
ii. $y - y_1 = m(y_1 - x_1)$
 $y - 0 = -\frac{3}{2} (x + 7)$
 $2y = -3x - 21$
 $3x + 2y + 21 = 0$
iii. $d = \sqrt{(x_1 - x_1)^2 + (y_1 - y_1)^2}$
 $AB = \sqrt{(-9 + 7)^2 + (3 - 0)^2}$
 $= \sqrt{4 + 9}$
 $= \sqrt{13}$ mits
iv. $BC = \sqrt{(0 - (-9))^2 + (9 - 3)^2}$
 $= \sqrt{81 + 36}$
 $= \sqrt{14 + 9}$
 $= \sqrt{13} \times 5117$
 $Area = \frac{1}{2} \times \sqrt{13} \times 5117$
 $= \frac{39}{2}$ units²
V. equation of SC
 $y = \frac{2}{3}x + 9$
 $3y = 2x + 27$
 $2x - 3y + 27 = 0$
 $Pd = \frac{1ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$
 $= \frac{1}{2(0) + (-3)(0) + 27}$
 $\sqrt{2^2 + (-3)^2}$
 $= \frac{27}{\sqrt{13}}$ units,

. .

Section **B**

- 3. (a) Differentiate:
 - i. $(7 3x^2)^4$

Solution:
$$4 \times (-6x)(7-3x^2)^3 = -24x(7-3x^2)^3$$

ii. $6\ln x$

Solution: $\frac{6}{x}$

iii. $x^2 e^{-x}$

Solution: $2xe^{-x} - x^2e^{-x}$

(b) Find

i. $\int e^{3x} dx$ Solution: $\frac{e^{3x}}{3} + c$

ii.
$$\int 5\cos\left(\frac{x}{2}\right) dx$$

Solution: $2 \times 5\sin\frac{x}{2} + c = 1 - \sin\frac{x}{2} + c$

(c) Evaluate $\int_{1}^{e} \frac{dx}{2x}$

Solution: $\frac{1}{2} [\ln x]_1^e = \frac{1}{2}(1-0),$ = $\frac{1}{2}$.

(d) If
$$\frac{dy}{dx} = 6x - 9$$
 and $y = 0$ when $x = 1$, express y in terms of x .
Solution: $y = 3x^2 - 9x + c$.
 $y = 0$ when $x = 1, \therefore 0 = 3 - 9 + c$, so $c = 6$.
Hence $y = 3x^2 - 9x + 6$.

i. In the diagram above prove that $\angle BDA = \angle BAC$.

Solution: $\angle ABD = \angle CBA$ (common) $\frac{AB}{BC} = \frac{4}{8} = \frac{2}{4} = \frac{BD}{AB}$ (data) $\therefore \ \triangle BAD /// \ \triangle BCA$ (2 sides same ratio, included angle equal) $\therefore \ \angle BDA = \angle BAC$ (corresponding \angle s of similar \triangle s)

 ii. P, Q are the midpoints of sides AB and AC respectively of the triangle ABC.
 PQ is produced to R so that PQ = QR.

Prove that $CR = \frac{1}{2}AB$.

Solution: Method 1: AQ = QC (data) PQ = QR (construction) $\angle AQP = \angle CQR \text{ (vertically opposite angles)}$ $\therefore \triangle APQ \equiv \triangle CQR \text{ (SAS)}$ AP = CR (corresponding sides of congruent triangles)but $AP = \frac{1}{2}AB \text{ (P bisects } AB)$ *i.e.*, $CR = \frac{1}{2}AB$.

Solution: Method 2: $PQ \parallel BC$ 2PQ = BC (midpoint theorem for \triangle s) 2PQ = PR (construction) $\therefore PBCR$ is a parm. (opposite sides equal and parallel) Hence RC = PB (opposite sides of parm.) $\therefore CR = \frac{1}{2}AB$.

- 4. (a) Let α and β be the roots of the equation $2x^2 5x + 1$. Find the values of
 - Find the values of i. $\frac{5}{\alpha} + \frac{5}{\beta}$ Solution: $\alpha + \beta = \frac{5}{2}$, $\alpha\beta = \frac{1}{2}$. $\frac{5}{\alpha} + \frac{5}{\beta} = 5\left(\frac{\alpha + \beta}{\alpha\beta}\right)$, $= 5\left(\frac{\frac{5}{2}}{\frac{1}{2}}\right)$, = 25.

ii.
$$(\alpha - \beta)^2$$

Solution:
$$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2,$$

 $= \alpha^2 + 2\alpha\beta + \beta^2 - 4\alpha\beta,$
 $= (\alpha + \beta)^2 - 4\alpha\beta,$
 $= \frac{25}{4} - \frac{4}{2},$
 $= \frac{17}{4}.$

(b) Find the values of k for which the equation

$$x^2 - (k-2)x + (k+1) = 0$$

has real roots.

Solution: For real roots,
$$\Delta \ge 0$$
,
 $(k-2)^2 - 4(k+1) \ge 0$,
 $k^2 - 4k + 4 - 4k - 4 \ge 0$,
 $k^2 - 8k \ge 0$.
 $\therefore k \le 0 \text{ or } k \ge 8$.

(c) Find the equation of the normal to $y = 2x^2 - 3x + 1$ at the point (-1, 6).

Solution: $\frac{dx}{dy} = 4x - 3, \\
= -7 \text{ when } x = -1. \\
\therefore y - 6 = \frac{1}{7}(x + 1), \\
7y - 42 = x + 1, \\
x - 7y + 43 = 0.$ (d) i. By considering a suitable infinite geometric series, express $0 \cdot \dot{4}$ as a fraction in simplest form.

Solution: $0 \cdot \dot{4} = 0 \cdot 4 + 0 \cdot 4 \times 0 \cdot 1 + 0 \cdot 4 \times 0 \cdot 01 + 0 \cdot 4 \times 0 \cdot 001 + \dots,$ = $0 \cdot 4(1 + 0 \cdot 1 + 0 \cdot 1^2 + 0 \cdot 1^3 + \dots),$ = $\frac{0 \cdot 4}{1 - 0 \cdot 1},$ = $\frac{4}{9}.$

ii. Express $\sqrt{0.4}$ in simplest precise decimal form.

Solution:
$$\sqrt{0 \cdot 4} = \sqrt{\frac{4}{9}},$$

= $\frac{2}{3},$
= $0 \cdot 6.$

(e) Find the coordinates of the centre and the radius of the circle with equation

$$x^2 + y^2 - 8x + y + \frac{1}{4} = 0$$

Solution: $x^2 - 8x + y^2 + y = -\frac{1}{4},$ $x^2 - 8x + 16 + y^2 + y + \frac{1}{4} = -\frac{1}{4} + 16 + \frac{1}{4},$ $(x - 4)^2 + (y + \frac{1}{2})^2 = 4^2.$ \therefore Centre $(4, -\frac{1}{2}),$ radius 4.

Section C

$$(WESTTON S (a) = x^{2} + x^{2} - x + 1.$$

$$dy = 3x^{2} + 2x - 1$$

$$d'_{W} = 6x + 2.$$

$$(i) = 6x + 4x - 1 = 0.$$

$$(i) = 760 \text{ Auring fairly: } dy = 0.$$

$$3x^{2} + 2x - 1 = 0.$$

$$(3x - 1)(x + 1) = 0.$$

$$x = -1_{3} = \frac{2}{3}.$$

$$(i) = \frac{2}{3}.\frac{22}{27}$$

$$(i) = \frac{2}{3}.\frac{22}{37}$$

$$(i) = \frac{2}{3}.\frac{2}{37}$$

(b)
$$4 \sin^{2} x - 3 = 0.$$

 $\sin^{2} x = \frac{3}{4}$
 $\sin^{2} x = \frac{\pm\sqrt{3}}{2}$
 $\sqrt{x} = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}.$

$$\frac{QUESTION 6}{(a)} (1) \quad 3x^{d} - 8 = 2x^{2}$$

$$x^{d} = 8$$

$$x = 2\sqrt{2} (N(6, x > 0))$$

$$q = 1/6$$

$$\therefore \left[\frac{\beta \ln (2\sqrt{2}, 16)}{\alpha \sqrt{2}}\right]$$

$$(11) \quad A = \int \left[2x^{2} - (3x^{2} - 8)\right] dn$$

$$= \int (8 - x^{2}) dn$$

$$= \int (8x - \frac{x^{3}}{3}) \int_{0}^{1/2} dn$$

$$= \frac{16\sqrt{2}}{3} - \frac{16\sqrt{2}}{3}$$

$$= \frac{13\sqrt{2}}{3} \sqrt{2} \sqrt{2}$$

(b)
$$LHS = \frac{8in \theta}{1 - i\theta \theta}$$

= $\frac{8in \theta}{1 - i\theta \theta} \times \frac{1 + i\theta \theta}{1 + i\theta \theta}$
= $\frac{8in \theta}{1 + i\theta \theta}$
= $\frac{8in \theta}{1 - i\theta \theta}$
= $\frac{8in \theta}{1 - i\theta \theta}$
= $\frac{1 + i\theta \theta}{8in \theta}$
= $\frac{1 + i\theta \theta}{8in \theta}$
= $\frac{8iHS}{1 + i\theta \theta}$

$$(C) (i) S_{n} = \frac{\alpha(i - r^{n})}{i - r}$$

$$= \frac{\alpha (i - (\omega)^{n})}{i - (\omega)^{n}}$$

$$= \frac{\alpha (i - (\omega)^{n})}{i - (\omega)^{n}}$$

$$= \frac{\alpha (i - (\omega)^{n})}{\alpha (i - (\omega)^{n})}$$

$$= \frac{\alpha (i - (\omega)^{n})}{\alpha (i - (\omega)^{n})}$$

(11)
$$T = \omega \delta^{2} 0$$
 and $0 < \omega \delta 0 < 1$
 $for 0 < 0 < I_{T}$
 $(NB. limiting sum exists)$
 $NB. limiting sum exists$
 $refere 1 < 1 < 1.$

$$(111) \quad S = \frac{\sin^2 \theta}{1 - \omega 5' \theta} \qquad \left(\begin{array}{cc} -ie & \frac{a}{1 - v} \end{array} \right)$$
$$= \frac{\sin^2 \theta}{\sin^2 \theta}$$
$$= 1$$
$$\therefore \quad S - S_m = 1 - \left(1 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$
$$= 1 - \left(2 - \omega 5^{2n} \theta \right)$$

lig104 ~ > log, 10 6 $n\log t > 6.$ $n > \frac{b}{\log t}$ > 9.965. ... [m=10] is the bast value.

Section D

$$\frac{\text{Question 7}}{(1)} = \text{Win 1st prije}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{2}{20} \cdot \frac{1}{19} = \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{2}{20} \cdot \frac{18}{19} = \frac{9}{45}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{2}{20} \cdot \frac{18}{19} = \frac{9}{45}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{12}{20} \cdot \frac{18}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{20} \cdot \frac{17}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{20} \cdot \frac{17}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{20} \cdot \frac{17}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{20} \cdot \frac{17}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{20} \cdot \frac{17}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{20} \cdot \frac{17}{19} = \frac{153}{140}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{10} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(1) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(2) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(2) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(2) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(2) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(2) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(3) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(4) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(5) P(W_1 \text{ and } W_2) = \frac{1}{190} \cdot \frac{1}{190}$$

$$(5) P(W_1 \text{ and } W_2) = \frac{1}$$

Section E

(9)(a) (i)
$$f(x) = x^2 - \ln(2x-1) \Longrightarrow 2x-1 > 0$$
 [: $\ln u$ is defined for $u > 0$]
 $\therefore x > \frac{1}{2}$
(ii) $f'(x) = 2x - \frac{2}{2x-1}$
 $= 2x - 2(2x-1)^{-1}$
 $f''(x) = 2 + 2(2x-1)^{-2} \times 2$
 $= 2 + \frac{4}{(2x-1)^2}$
(iii) Stationery points are when $f'(x) = 0$

(iii) Stationary points are when
$$f'(x) = 0$$

$$f'(x) = 2x - \frac{2}{2x - 1} = 0$$

$$\therefore 2x(2x - 1) - 2 = 0$$

$$\therefore x(2x - 1) - 1 = 0$$

$$\therefore 2x^2 - x - 1 = 0$$

(iv)
$$2x^2 - x - 1 = 0$$

 $\therefore (2x+1)(x-1) = 0$
 $\therefore x = 1 \Rightarrow y = 1$
 $f''(x) > 0 \text{ for } x > \frac{1}{2}, \text{ so } y = f(x) \text{ is always concave up.}$
So (1,1) is the minimum point on the function.
So the minimum value is 1.

(b) (i) Even though it is interest free, the repayments are required each month. $A_1 = 50\ 000 - M$ $A_2 = A_1 - M = 50\ 000 - 2M$ and so on for 6 months so that $A_6 = 50\ 000 - 6M$.

(ii)
$$A_7 = A_6 (1 \cdot 005) - M$$

= $(50\ 000 - 6M)(1 \cdot 005) - M$
 $A_8 = A_7 (1 \cdot 005) - M$
= $[(50\ 000 - 6M)(1 \cdot 005) - M](1 \cdot 005) - M$
= $(50\ 000 - 6M)(1 \cdot 005)^2 - M(1 + 1 \cdot 005)$

(iii) For
$$n > 6$$

$$A_{n} = (50\ 000 - 6M)(1\cdot005)^{n-6} - M(1+1\cdot005+\dots+1\cdot005^{(n-6)-1})$$

$$= (50\ 000 - 6M)(1\cdot005)^{n-6} - M(1+1\cdot005+\dots+1\cdot005^{n-7})$$

$$A_{120} = (50\ 000 - 6M)(1\cdot005)^{114} - M\left(\underbrace{1+1\cdot005+\dots+1\cdot005^{113}}_{114\ \text{terms}}\right)$$

$$= (50\ 000 - 6M)(1\cdot005)^{114} - M \times \left(\frac{1\cdot005^{114}-1}{1\cdot005-1}\right)$$

$$= (50\ 000 - 6M)(1\cdot005)^{114} - M \times \left(\frac{1\cdot005^{114}-1}{0\cdot005}\right)$$

$$= (50\ 000 - 6M)(1\cdot005)^{114} - 200M(1\cdot005^{114}-1)$$

(iv)
$$A_{120} = 0$$

 $\therefore (50\ 000 - 6M)(1\cdot 005)^{114} - 200M(1\cdot 005^{114} - 1) = 0$
 $\therefore 50\ 000(1\cdot 005)^{114} - 206M(1\cdot 005)^{114} + 200M = 0$
 $\therefore M\left[206(1\cdot 005)^{114} + 200\right] = 50\ 000(1\cdot 005)^{114}$
 $\therefore M = \frac{50\ 000(1\cdot 005)^{114}}{206(1\cdot 005)^{114} + 200} \approx $539\cdot 18$

(10) (i) Let X be the intersection of the diagonals. $\angle XAD = \angle XAC = \theta$ [property of rhombi] $AX = 2\cos\theta \Rightarrow AC = 4\cos\theta$ $\therefore AP = 4\cos\theta - x$

The shaded area is the sum of triangles ADP and APQ.

$$S = \frac{1}{2} \times 2 \times (4\cos\theta - x)\sin\theta + \frac{1}{2} \times (4\cos\theta - x) \times x\sin\theta$$
$$= \frac{\sin\theta}{2} (4\cos\theta - x)(x+2)$$

[**NB** *S* is a concave down parabola in *x*]

(ii)
$$S = \frac{\sin \theta}{2} \Big[8\cos \theta + (4\cos \theta - 2)x - x^2 \Big]$$
$$\frac{dS}{dx} = \frac{\sin \theta}{2} \Big[(4\cos \theta - 2) - 2x \Big] = \sin \theta (2\cos \theta - 1 - x)$$
$$\therefore \frac{dS}{dx} = 0 \Rightarrow x = 2\cos \theta - 1 \quad [\because \sin \theta \neq 0]$$

(iii)
$$\frac{dS}{dx} = \sin\theta \left(2\cos\theta - 1 - x\right)$$

 $\therefore \frac{d^2S}{dx^2} = -\sin\theta \left[<0 \text{ for } 0 < \theta < \frac{\pi}{2} \right]$

(iv)
$$\theta = \frac{\pi}{6}$$

 $\frac{dS}{dx} = 0 \Rightarrow x = 2\cos\left(\frac{\pi}{6}\right) - 1 = \sqrt{3} - 1$
 $\frac{d^2S}{dx^2} < 0 \Rightarrow S \text{ is a maximum}$
 $AC = 4\cos\left(\frac{\pi}{6}\right) = 2\sqrt{3}$
 $\therefore \frac{PC}{AC} = \frac{\sqrt{3} - 1}{2\sqrt{3}}$
(v) $\theta = \frac{\pi}{4}$
 $\frac{dS}{dx} = 0 \Rightarrow x = 2\cos\left(\frac{\pi}{4}\right) - 1 = \sqrt{2} - 1$
 $\frac{d^2S}{dx^2} < 0 \Rightarrow S \text{ is a maximum}$
 $AC = 4\cos\left(\frac{\pi}{4}\right) = 2\sqrt{2}$
 $\therefore \frac{PC}{AC} = \frac{\sqrt{2} - 1}{2\sqrt{2}}$

So the statement is FALSE.

(vi) If
$$\theta = \frac{\pi}{3}$$
 then
 $\frac{dS}{dx} = 0 \Rightarrow x = 2\cos\left(\frac{\pi}{3}\right) - 1 = 0$
 $\frac{d^2S}{dx^2} < 0 \Rightarrow S$ is a maximum
So if $\theta = \frac{\pi}{3}$ then S STARTS at its maximum value and then decreases
to 0.
So the statement is FALSE.