

SYDNEY BOYS HIGH MOORE PARK, SURRY HILLS

AUGUST 2006

TRIAL HIGHER SCHOOL CERTIFICATE YEAR 12

Mathematics

General Instructions:

- Reading time- 5 minutes.
- Working time - 3 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.
- Hand in your answer booklets in 5 sections:

Section A (Questions 1 and 2),
Section B(Questions 3 and 4),
Section C(Questions 5 and 6),
Section D(Questions 7 and 8),
Section E(Questions 9 and 10).

Total marks-120 Marks

- Attempt questions $1-10$.
- All questions are of equal value.

Examiner: Mr P.Bigelow

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Section A - Start a new booklet

Question 1 (12 marks)

(a) Find integers a and b such that $x^{2}+6 x+14 \equiv(x+a)^{2}+b$.
(b) Find $e^{2 \cdot 5}$ correct to 2 decimal places.
(c) What is the exact value of $\cos \frac{7 \pi}{6}$?
(d) Solve $|4-x|=7$.
(e) By rationalising the denominator, express $\frac{4}{\sqrt{5}-\sqrt{3}}$ in simplest form.
(f) Solve $a^{2}=12 a$.

Question 2 (12 marks)

(a)

(i) Write down the coördinates of points A and B.
(ii) Find the value of θ to the nearest degree.
(iii) Find the perpendicular distance of C from the line $4 x+3 y-$ $12=0$.
(iv) Find the area of the triangle $A B C$.

The line $4 x+3 y-$ $12=0$ has x and y intercepts A and B respectively and makes an angle θ with the positive direction of the x-axis.
C is the point $(4,2)$.
(b) Solve the pair of simultaneous equations

$$
\begin{aligned}
& 3 x-y=16 \\
& x+4 y=1
\end{aligned}
$$

(c) Consider the parabola

$$
y=x^{2}-4 x+8
$$

Find the coördinates of the focus.

Section B - Start a new booklet

Question 3 (12 marks)

(a) A vessel sails 12 km due north from a port P to A. A second boat sails 20 km from P to B on a bearing of 120°.
(i) What is the distance $A B$?
(ii) What is the bearing of B from A, correct to the nearest minute?
(b) Differentiate
(i) $\frac{2}{x^{4}}$
(ii) $\sin \left(x^{3}\right)$
(iii) $x \tan x$
(c)

In the diagram $D E / / B C . A B=$ $16 \mathrm{~cm}, A E=18 \mathrm{~cm}$ and $E C=$ 6 cm .
(i) Prove that $\triangle A D E / / / \triangle A B C$.
(ii) Find the length of $D B$.

Question 4 (12 marks)

(a) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$
(leave your answer in exact form).
(b) Solve $\sqrt{3} \tan x=1$ for $0 \leq x \leq 2 \pi$.
(c) Simplify $\sqrt{\frac{1-\cos ^{2} A}{1+\tan ^{2} A}}$.
(d) Find the slope of the tangent to the curve $y=\cos \left(x+\frac{\pi}{3}\right)$ at the
point $\left(0, \frac{1}{2}\right)$.
(e) Find
(i) $\int \cos 2 x d x$
(ii) $\int \frac{4}{e^{3 x}} d x$
(f) Find the values of c for which the equation $x^{2}+(c-2) x+4=0$ has real roots.

Section C - Start a new booklet

Question 5 (12 marks)

(a) Write down a quadratic equation with roots $1+\sqrt{3}$ and $1-\sqrt{3}$.
(b) The diagram shows the graph of a function $f(x)$.

(i) Copy this graph.
(ii) On the same set of axes, draw a sketch of the derivative $f^{\prime}(x)$ of the function.
(c) The positive multiples of 7 are $7,14,21, \ldots$
(i) What is the largest multiple of 7 less than 1200 ?
(ii) What is the sum of the positive multiples of 7 which are less than 1200 ?
(d)

The region enclosed by the
(e) The graph of $y=f(x)$ passes through $(2,5)$ and $f^{\prime}(x)=3 x^{2}+2$. Find $f(x)$.

Question 6 (12 marks)

(a) Given the curve with equation

$$
y=x^{3}-3 x^{2}-9 x+2 .
$$

(i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(ii) Find the coördinates of the stationary points and determine their nature.
(iii) Sketch the graph of the function for the domain $-2 \leq x \leq 5$.
(iv) State the maximum value of the function over this domain.
(b) (i) Copy and then complete the table for $y=\operatorname{cosec} \frac{\pi x}{6}$.

x	1	2	3
y			

(ii) Using Simpson's Rule with three function values find an approxima value for

$$
\int_{1}^{3} \operatorname{cosec} \frac{\pi x}{6} d x
$$

(c) The population of Goldtown is given by $P=30000 e^{-0.08 t}$.
(i) Find the time to the nearest year for the population to halve.
(ii) Find the decline in the population of Goldtown during the ninth year.

Section D - Start a new booklet

Question 7 (12 marks)

(a) Make a sketch of a continuous curve $y=f(x)$ that has the
following properties:
$f(x)$ is odd, $f(3)=0, \quad f^{\prime}(1)=0$.
$f^{\prime}(x)>0$ for $x>1$,
$f^{\prime}(x)<0 \quad$ for $0 \leq x<1$.
(b) A bag contains three times as many red marbles as white marbles. If a marble is chosen at random, what is the probability that it is white?
(c) Find $\int_{0}^{4} f(x) d x$ for the following function.

(d) Simone borrows $\$ 20000$ over 4 years at a rate of 1% compound interest per month. If she pays off the loan in 4 equal yearly instalments find
(i) the amount she will owe after one month.
(ii) the amount she will owe after the first year, just before she pays the first instalment.
(iii) the amount of each instalment.
(iv) the total amount of interest she will pay.
(e) Find the limiting sum of the geometric series

$$
4-2 \sqrt{2}+2-\cdots
$$

Question 8 (12 marks)

(a) Evaluate $\int_{0}^{\ln 4} e^{-2 x} d x$.
(b)

The graphs of $y=\sin x$ and $y=1+\cos x$ are shown intersecting at $A\left(\frac{\pi}{2}, 1\right)$ and $B(\pi, 0)$.

Calculate the total area of the two shaded regions.
(c) Water is being released from a dam. The rate of flow, F megalitres per hour is given by $F=t(t-12)^{2}$, where t is the numbere of hours since the flow began.
The function applies until the flow ceases.
(i) For how long does the water flow?
(ii) Find the maximum rate of flow.
(iii) What is the total volume of water released?

Section E - Start a new booklet

Question 9 (12 marks)

(a) The displacement of a particle x metres from the origin, at time t seconds, is given by

$$
x=\frac{1}{3} t^{3}-6 t^{2}+27 t-18
$$

(i) Find expressions for velocity and acceleration.
(ii) When is the acceleration zero?
(iii) Where is the particle at this time and what is its velocity?
(b) A uniform cube has three green faces, two white faces, and one red face. If a player throws a green face they win; if red, they lose; and if white they throw again. Robert will throw until he either wins or loses. What is the probability that
(i) Robert wins with his third throw?
(ii) Robert wins with his first, second, or third throw?
(iii) Robert wins?

Question 10 (12 marks)

(a) Solve for x (correct to 3 significant figures)

$$
3^{x-2}=50
$$

(b)

The diagram shows a sector $O A B$ of a circle, centre O, and radius x metres. Arc $A B$ subtends an angle θ radians at O. An equilateral triangle $B C O$ adjoins the sector.
(i) Write down expressions for the
(α) area of sector $O A B$
(β) area of the triangle $B C O$
(γ) length of the arc $A B$.
(ii) Hence write down expressions for the
(α) area
(β) perimeter of the figure $O A B C$.
(iii) The perimeter of this figure is $(12-2 \sqrt{3})$ metres.
(α) For what value of x is the area a maximum?
(β) Show that the maximum area is $(6-\sqrt{3}) \mathrm{m}^{2}$.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note: $\ln x=\log _{e} x, \quad x>0$

200624 TRIAL.
Question 1
a)

$$
\text { a) } \begin{aligned}
& x^{2}+6 x+14 \\
= & x+6 x+9+5 . \\
= & (x+3)^{2}+5 . \\
\equiv & (x+a)^{2}+b . \\
a= & 3 \& b=5 .
\end{aligned}
$$

b) $e^{2.5} \div 12.18(2 d p)$
c)

$$
\begin{aligned}
\cos \frac{7 \pi}{6} & =-\cos \frac{\pi}{6} \\
& =\frac{-\sqrt{3}}{2}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \text { d) }|4-x|=7 \\
& 4-x=7 \text { or } 4-x=-7 \\
& x=-3 \text { or }+x=11
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
& \frac{4}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \\
= & \frac{4(\sqrt{5}+\sqrt{3})}{5-3} \\
= & 2(\sqrt{5}+\sqrt{3})
\end{aligned}
$$

f)

$$
\begin{gathered}
a^{2}=12 a \\
a(a-12)=0 \\
a=12 \text { or } a=0
\end{gathered}
$$

QUESTION 2.
a) $4 x+3 y-12=0$
when $x=0 \quad y=4$
when $y=0 \quad x=3$

$$
\text { ii) } \begin{aligned}
\tan (180-\theta) & =\frac{4}{3} \\
180-\theta & =\tan ^{-1}\left(\frac{4}{3}\right) \\
180-\theta & =53^{\circ} 8^{\prime}
\end{aligned}
$$

$\theta=127^{\circ}$ nearest degree.
iiI)

$$
\text { (ii) } \begin{aligned}
& d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \\
&=\left|\frac{16+b-12}{5}\right| \\
&=2 \text { units } \\
& \text { (v) } \begin{aligned}
A & =\frac{1}{2} b \times h . \\
& =\frac{1}{2} \times \sqrt{4^{2}+3^{2}} \times 2 . \\
& =5 \text { units }^{2}
\end{aligned} \text {. }
\end{aligned}
$$

$$
C=\left(\begin{array}{ll}
(x, & y_{1}
\end{array}\right)
$$

$$
=\left(42^{2}\right)
$$

B)
—(2) $\Rightarrow x=1=4 y^{3}$
$y=-1$
subs $y=-1$ into (2).

$$
\begin{aligned}
& y=-1 \text { into (2) } \\
& x-4=1 \quad \therefore \quad \therefore=5
\end{aligned}
$$

c)

$$
\begin{gathered}
y=x^{2}-4 x+8 . \\
y=(x-2)^{2}+4 . \\
(x-2)^{2}=4\left(\frac{1}{4}\right)(y-4)
\end{gathered}
$$

vertex $=(2,4)$.
focal length $=\frac{1}{4}$.
\therefore focus $=\left(2,4 \frac{1}{4}\right)$

$$
\begin{align*}
& \begin{array}{l}
3 x-y=16 \\
x+4 y=1
\end{array} \\
& x+4 y=1 \\
& \text { Subs } 3 \text { into (1). } \\
& 3(1-4 y)-y=16 \\
& -13 y=13
\end{align*}
$$

SECTION B

Question 3

(i)

$$
(A B)^{2}=12^{2}+20^{2}-2 \cdot 12 \cdot 20 \cos 120^{\circ}
$$

$$
A B=18 \cos =28 \mathrm{~km}
$$

$$
\text { (í) } \frac{\sin \theta}{20}=\frac{A B \sin 120^{\circ}}{A B}
$$

$\theta=38^{\circ} 13^{\prime} 1$
\therefore Beoring is
$(180 \cdots \theta)$ ie $141^{\circ} 47^{\prime} 1$
(b) (i) $y=2 x^{-4} \Rightarrow y^{\prime}=-8 x^{-5}$
(ii) $y=\sin \left(x^{3}\right) \Rightarrow y^{\prime}=3 x^{2} \cdot \cos x^{3} 1$
(iii) $y=x \tan x \Rightarrow y^{\prime}=x \sec ^{2} x+1 \cdot \tan x 2$

(i) $\angle A$ is common
$\angle A D E=\angle A B C\binom{\text { corresp. angles in }}{\text { /. }}^{\prime}$
\therefore Triagles $A B C$ and $A D E$ are 1 equiangular \Rightarrow Similar.
(ii) let $B D=x \Rightarrow A D=16-x$

$$
\begin{aligned}
& \frac{16-x}{16}=\frac{18}{24} \\
& 4 x=16
\end{aligned} \Rightarrow x=4
$$

Question 4
(a) $\left[\log _{e}(1+x)\right]_{0}^{1}=\log _{e} 2-\log _{e} 1$

$$
=\log _{e} 21
$$

(b) $\sqrt{3} \tan x=1$

$$
\Rightarrow \quad \tan x=\frac{1}{\sqrt{3}}
$$

$$
x=\frac{\pi}{6} \text { and } \pi+\frac{\pi}{6}
$$

ie $x=\frac{\pi}{6}, \frac{7 \pi}{6}$
(く) $\sqrt{\frac{1-\cos ^{2} A}{1+\tan ^{2} A}}=\sqrt{\frac{\sin ^{2} A}{\sec ^{2} A}}$

$$
=\sqrt{\sin ^{2} A \cos ^{2} A}
$$

$$
=\sin A \cos A
$$

(d)

$$
\begin{gather*}
y=\cos \left(x+\frac{\pi}{3}\right) \\
y^{\prime}=-\sin \left(x+\frac{\pi}{3}\right) \tag{2}
\end{gather*}
$$

At $x=0$ grod.tang. is $-\sin \frac{\pi}{3}=-\frac{\sqrt{3}}{2}$
(e) (i) $\int \cos 2 x d x=\frac{1}{2} \sin 2 x+c$
(ii) $\int \frac{4}{e^{3 x}} d x=4 \int e^{-3 x} d x$

$$
=-\frac{4}{3} e^{-3 x}+c
$$

(f)

$$
x^{2}+(c-2) x+4=0
$$

for noal roots $\Delta \geq 0$

$$
\begin{aligned}
\Delta & \left.=(c-2)^{2}-4(c) 4\right) \\
& =(c-6)(c+2) \\
& \geq 0 \text { when } c \leq 2 \text { or } c \geq 6
\end{aligned}
$$

QUESTION 5
Question 6
(a)
(b)

(c)

$$
7+7(n-1)<1200
$$

(i)

$$
7+7 n-1<1200
$$

$$
n<171.4
$$

(ii)

$$
\begin{aligned}
& \frac{171}{2}(7+1197) \\
& \frac{\operatorname{sum}=102942}{9}
\end{aligned}
$$

(d)
(e)

$$
\begin{aligned}
f(x) & =3 x^{2}+2 \\
f(x) & =x^{3}+2 x+c \\
(2,5) 5 & =8+4+c, c=-7 \\
f(x) & =x^{3}+2 x-7
\end{aligned}
$$

$$
n=171
$$

multiple $=1197^{\circ}$

$$
\begin{aligned}
V & =\pi \int_{0}(4 \sqrt{x})^{2} d x \\
& =\pi \int_{0}^{9} 16 x d x \\
& =\pi\left[8 x^{2}\right]_{0}^{9} \\
& =648 \pi \mathrm{v}^{3}
\end{aligned}
$$

(ii)
(iii)

$f^{\prime}(x)$	$=3 x^{2}+2$
$f(x)$	$=x^{3}+2 x+c$
$(2,5) 5$	$=8+4+c, c=-7$
$f(x)$	$=x^{3}+2 x-7$

(IV)
(b)
(i)
(ii)
(i)

$$
\begin{aligned}
& y=x^{3}-3 x^{2}-9 x+2 \\
& \frac{d u}{d x}=3 x^{2}-6 x-9 \\
& \frac{d^{2} y}{d x^{2}}=6 x-6
\end{aligned}
$$

stat pts $3 x^{2}-6 x-9=0$

$$
(x-3 x x+1)=0
$$

pts $(3,-25)+(-1,7)$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline x & 1 & 2 & 3 \\
\hline y & 2 & 2 & 1 & y=\operatorname{Cosec}\left(\frac{\pi x}{6}\right)
\end{array} \\
& A=\frac{1}{3}\left(1+2+4 \times \frac{2}{\sqrt{3}}\right) \\
& =2.54
\end{aligned}
$$

$15000=30.000 e^{-0.08 t}$

$$
\begin{aligned}
& \frac{1}{2}=e^{-0.08 t} \\
& \ln \left(\frac{1}{2}\right)=-0.08 t \\
& t=-\frac{\ln \frac{1}{2}}{0.08}=8.66 \rightarrow 9 \text { years } \\
& 30000\left(e^{-0.08 \times 8}-e^{-0.08 \times 9}\right) \\
& =1216
\end{aligned}
$$

decline 1216 people

HITHS (2U)"THSC 2006
Question 7

(b) $\frac{1}{4}$
(c)

$$
\begin{aligned}
\int_{0}^{4} f(x) d x & =\frac{1}{2}+3 \times 4-\frac{1}{2} \times 1 \times 2 \\
& =6-1 \\
& =5
\end{aligned}
$$

(d) Let $P=\$ 20000$

$$
R=1.01
$$

$Q=$ annwal nistalwent.
(1)

$$
\begin{align*}
A_{1} & =P R \\
& =\$ 20000 \times 1.01 \tag{1}\\
& =\$ 20200
\end{align*}
$$

(II)

$$
\begin{align*}
A_{12} & =P R^{12} \\
& =\$ 20000 \times 1.01^{12} \\
& =\$ 22536.50 \tag{1}
\end{align*}
$$

(iii)

$$
\begin{aligned}
A_{13} & =\left(P R^{12}-Q\right) R \\
A_{36} & =P R^{36}-Q R^{24}-Q R^{12} \\
A_{48} & =P R^{46}-Q R^{36}-Q R^{24}-Q R^{12} \\
& =P R^{48}-\frac{Q\left(R^{44}-1\right)}{R^{12}-1}
\end{aligned}
$$

But $A_{48}=Q$

$$
\begin{aligned}
\therefore Q & =\frac{P R^{48}\left(R^{12}-1\right)}{R^{48}-1} \\
& =\frac{\$ 20000(1.01)^{48}\left(1.01^{12}-1\right)}{1.01^{48}-1} \\
& =\$ 6679.59 \quad[2]
\end{aligned}
$$

(iv) Total Interest

$$
\begin{aligned}
& =4 Q \cdot \$ 20000 \\
& =\$ 6718.36 \quad[1]
\end{aligned}
$$

(e) GS: $4-2 \sqrt{2}+2-\ldots$

$$
\begin{aligned}
a=4 & =\frac{-2 \sqrt{2}}{4} \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{4}{1+\frac{1}{\sqrt{2}}} \\
& =\frac{4 \sqrt{2}}{\sqrt{2}+1} \\
& =8-4 \sqrt{2} \\
(& =2.343) \\
(& \left.=\frac{8}{2+\sqrt{2}}\right)
\end{aligned}
$$

MATHS (RU) THEN 2006
Question 8
(a)

$$
\begin{aligned}
f(x) & =2-x^{2} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2-(x+h)^{2}-\left(2-x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2-x^{2}-2 x h-h^{2}-2+x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{h} \\
& =-2 x
\end{aligned}
$$

When $x=1$

$$
\begin{equation*}
f^{\prime}(1)=-2 \tag{2}
\end{equation*}
$$

(b)

$$
\begin{aligned}
\text { Area }= & \int_{0}^{\pi / 2}((1+\cos x)-\sin x) d x \\
& +\int_{-\pi / 2}^{\pi}(\sin x-(1+\cos x)) d x \\
= & {[x+\sin x+\cos x]_{0}^{\pi / 2} } \\
& +[-\cos x-(x+\sin x)]^{\pi / 2} \\
= & {[(\pi / 2+1+0)-(0+0+1)] } \\
= & {[(-(-1)-(\pi+0))-} \\
= & \left.\frac{\pi}{2}+(1-\pi-(\pi / 2+1))\right] \\
= & 24 \operatorname{lin}^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
F & =t(t-12)^{2} \\
F^{\prime} & =t \cdot 2(t-12)+(t-12)^{2} \cdot 1 \\
& =(3 t-12)(t-12)^{2} \\
F^{\prime} & =0 \text { for } t=4 \text { or } 12
\end{aligned}
$$

(1) $F=0$ when $t=0,12,12$
\therefore Flows for 12 hours $[2]$
(II) Statcinay points at $t=4$ or 12

$$
F^{\prime \prime}=6 t-48
$$

$$
F^{\prime \prime}(4)=-24 \quad F^{\prime \prime}(12)=24
$$

\therefore Rel Max $\quad \therefore$ Rel Min
\therefore Max flow when $t=4$

$$
\begin{equation*}
F(4)=256 \mathrm{ML} / \mathrm{hr} \tag{2}
\end{equation*}
$$

(ii) Total flow

$$
\begin{aligned}
& =\int_{0}^{12}\left(t^{3}-24 t^{2}+144 t\right) d t \\
& =\left[\frac{t^{4}}{4}-\frac{24 t^{3}}{3}+\frac{144 t^{2}}{2}\right]_{0}^{12} \\
& =\left[\frac{t^{4}}{4}-8 t^{3}+72 t^{2}\right]_{0}^{12} \\
& =1728 \mathrm{~mL}
\end{aligned}
$$

Q9(a) $\quad x=\frac{1}{3} t^{3}-6 t^{2}+27 t-18$
(i)

$$
\begin{align*}
& x=t^{2}-12 t+27 \\
& x=2 t-12 \tag{2}
\end{align*}
$$

(ii) $\stackrel{i}{x}_{x}^{x}=0$ when $t=6 \mathrm{~s}$
(iii) when $t=6, x=0$ in

$$
\dot{x}=-9 \mathrm{~m} / \mathrm{s} 2
$$

(b)

$$
\text { (i) } \begin{align*}
P(\text { wiw } A) & =\frac{1}{3} \times \frac{1}{3} \times \frac{1}{2} \\
& =\frac{1}{18} \tag{2}
\end{align*}
$$

(ii.)

$$
\begin{align*}
& P(4)+P(0 G)+P(h \\
= & \frac{1}{2}+\frac{1}{3} \times \frac{1}{2}+\frac{1}{18} \tag{2}\\
= & \frac{13}{18}
\end{align*}
$$

(iii)

$$
\begin{aligned}
P(\text { win })= & P\left(C_{1}\right)+P\left(\omega c_{i}\right)+P\left(\text { wow } C_{2}\right) \\
& +P\left(\text { whos } c_{i}\right)+\cdots \\
= & \frac{1}{2}+\frac{1}{6}+\frac{1}{18^{2}}+\cdots \\
= & \frac{\left(\frac{1}{2}\right)}{(1-3)} \\
= & \frac{1}{2} \times \frac{3}{2} \\
= & \frac{3}{4}
\end{aligned}
$$

(2) $10(9) 3^{x-2}=50$

$$
\begin{align*}
\ln \left(3^{x-2}\right) & =\ln 50 \\
(x-2) \ln 3 & =\ln 50 \\
x-2 & =\frac{\ln 50}{\ln 3} \\
x & =2+\frac{\ln 50}{\ln 3} \\
& =5.560876 \\
& =5.56 \tag{2}
\end{align*}
$$

(b) (i) (α) Asec) $=\frac{1}{2} x^{2} \theta \quad m^{2}$ II
(β)

$$
\begin{align*}
A \Delta & =\frac{1}{2} x^{2} \cdot \sin \frac{\pi}{3} \\
& =\frac{1}{2} x^{2} \cdot \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3} x^{2}}{4} m^{2} \tag{11}
\end{align*}
$$

(6) $\operatorname{lare}=x 0$

$$
\text { (ii) } \begin{aligned}
(x) A & =\frac{1}{2} x^{2} \theta+\frac{\sqrt{3} x^{2}}{4} \\
& =\frac{x^{2}}{4}(2 \theta+\sqrt{3})
\end{aligned}
$$

(β

$$
\begin{aligned}
p & =3 x+x \theta \\
& =x(3+\theta)
\end{aligned}
$$

(iii)

$$
\begin{array}{r}
12-2 \sqrt{3}=x(3+8) \\
\therefore 3+\theta=\frac{12-2 \sqrt{3}}{2} \\
\theta=\frac{12-2 \sqrt{3}-3}{x}-3
\end{array}
$$

$$
A=\frac{x^{2}}{4}(20+\sqrt{3})
$$

$$
\frac{x^{2}}{4}\left(2 \times\left(\frac{12-2 \sqrt{3}}{x}-3\right)+\sqrt{3}\right)
$$

$$
=\frac{x^{2}}{4}\left(\frac{24-4 \sqrt{3}}{x}-6+\sqrt{3}\right)
$$

$$
=(6-\sqrt{3}) x-(6-\sqrt{3}) \frac{x^{2}}{4}
$$

$$
=(6-\sqrt{3})\left(x-\frac{x^{2}}{4}\right)
$$

$$
\begin{align*}
& A^{\prime}=(6-\sqrt{3})\left(1-\frac{x}{2}\right) \\
& A^{\prime \prime}=(6-\sqrt{3}) \times-\frac{1}{2}<0 \tag{3}
\end{align*}
$$

\therefore Mox arean wher $x=2$

$$
\begin{aligned}
\text { mex area } & =(6-\sqrt{3})(2-1) \\
& =6-\sqrt{3} \quad \mathrm{~m}^{2}
\end{aligned}
$$

