SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 180 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Start each NEW question in a separate answer booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 120

- Attempt questions 1-10.
- All questions are of equal value.

Examiner: D.McQuillan

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: ln } x=\log _{e} x, x>0
\end{aligned}
$$

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) How many degrees, to the nearest minute, are in 1 radian?
(b) Rationalise the denominator of $\frac{2 \sqrt{2}}{\sqrt{7}-\sqrt{3}}$.

2
(c) Sketch a graph of $y=|2 x-3|$.
(d) Solve the inequality $2 x^{2}+7 x-15 \geq 0$.
(e) Evaluate $\sum_{k=0}^{19}(3 k-1)$.
(f) If $\log _{e} 5 x-\log _{e} 2=2 \log _{e} x$ find all real values of x.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\frac{d y}{d x}$ for the following
(i) $y=\tan \left(x^{2}\right)$
(ii) $y=2 x \sin (2 x)$
(b)
(i) Find $\int \frac{x^{2}}{x^{3}-1} d x$.
(ii) Evaluate $\int_{\frac{\pi}{2}}^{\pi} \cos \left(\frac{1}{2} x\right) d x$ in exact form.
(c) Find the equation of the tangent to $y=\sin \left(x+\frac{\pi}{3}\right)$ at the point where $x=\pi$.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) The diagram shows the points $\mathrm{A}(2,3)$ and $\mathrm{B}(5,4)$

(i) Show that the equation of AB is $x-3 y+7=0$.
(ii) Find the coordinates of M, the midpoint of $A B$.
(iii) Show that the equation of the perpendicular bisector of AB is $3 x+y-14=0$.
(iv) The perpendicular bisector of AB cuts the x -axis at C . Find the coordinates of C .
(v) Find the area of triangle BCO .

Question 3 (continued)
(b)

A right triangle $A B C$ is given with $\angle A=\theta$ and $|A C|=2 . C D$ is drawn perpendicular to $A B, D E$ is drawn perpendicular to $B C, E F \perp A B$, and this process is continued indefinitely as in the figure. Find the total length of all the perpendiculars
$|C D|+|D E|+|E F|+|F G|+\cdots$
in terms of θ.
(a) In Lower Warkworth the local doctor, based on years of data research, estimates that the probability of an adult catching influenza was 0.1 while the probability of a child catching the dreaded influenza was 0.3 . The Blott family consists of Dad, Mum and two young Blotts. Calculate the probability that:
(i) both adults catch influenza
(ii) only one child catches influenza
(iii) exactly one adult and one child catches influenza
(iv) at least one family member catches influenza.
(b)

(i) Find an expression for the area of the regular pentagon with side length 4 cm .
(ii) Find the radius of the circle to two decimal places.
(iii) Hence or otherwise find the area of the shaded segment to two decimal places.
(a)

In the diagram $A B \| F D, A D F$ is a right-angled triangle, C is the midpoint of $A D$ and E is the midpoint of FD.
(i) Explain why $\angle C E D=\angle A B C$.
(ii) Show that $\triangle C D E \equiv \triangle C A B$.
(iii) Show that $A F=2 B C$.
(iv) Show that $\angle A C B=\angle D A F$.

Question 5 (continued)
(b)

If $f(x)$ and $g(x)$ are the functions whose graphs are shown, let $u(x)=f(x) g(x)$ and $v(x)=f(g(x))$ find the value of
(i) $u^{\prime}(1)$
(ii) $v^{\prime}(1)$
(c) Show that if $|x+3|<\frac{1}{2}$, then $|4 x+13|<3$.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) For the curve $y=\frac{x}{x^{2}+1}$.
(i) Find the turning points and determine their nature.
(ii) Find the points of inflection.
(iii) Since $x^{2}+1$ is never zero the curve has no vertical asymptotes. Find the horizontal asymptotes by evaluating $\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}$.
(iv) Sketch the curve.
(b) Tom is 60 years old and about to retire at the beginning of the year 2009. He joined a superannuation scheme at the beginning of 1969. He invested $\$ 750$ at the beginning of each year. Compound interest is paid at 9% per annum on the investment, calculate to the nearest dollar:
(i) The amount to which the 1969 investment will have grown by the beginning of 2009.
(ii) The amount to which the total investment will have grown by the beginning of 2009.

2

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) If α and β are the roots of the equation $3 x^{2}-12 x-9=0$, find the values of:
(i) $\frac{1}{\alpha^{3} \beta^{3}}$

1

2
(b) A particle moves in a straight line and the graph shows the velocity v of the particle after time t.

(i) What is happening to the particle at t_{1} ?
(ii) What is happening to the particle at t_{2} ?
(iii) Sketch the graph of displacement x, as a function of t, if the particle is initially at the origin.
(c) The locus of the point $\mathrm{P}(x, y)$ such that the sum of the squares of its distances from the points $A(2,4)$ and $B(6,-8)$ is 118 , is a circle. Find the centre and radius of the circle.

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate $10^{x}+10 x$.
(b) A particle moves in a straight line. At time t seconds its displacement $x \mathrm{~cm}$ from a fixed point O on the straight line is given by:

$$
x=t+\frac{1}{t+1}
$$

(i) What is the initial displacement of the particle?
(ii) When is the particle at rest? 2
(iii) What is the acceleration after 5 seconds.
(iv) What happens to the acceleration as t increases? What does this tell you about the velocity as t becomes large.
(c) A petrol tank is designed by the rotation of the curve $y=\frac{1}{5} x(x-40)$ about the x axis between the planes $x=0, x=40$. If the units are in centimetres, how many litres would the tank hold?

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) The population of a small town grows from 9000 to 11000 in 10 years.
(i) Find the annual growth rate to the nearest per cent, assuming it is proportional
to the population.

2

(i) For the given figure show that $a=\frac{3 b}{b-5}$.
(ii) Find the equation of the line through the point $(3,5)$ that cuts off the least area from the first quadrant.
(c) A ladder 2 metres long rests against a vertical wall. Let θ be the angle between top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta=\frac{\pi}{3}$.
(a) If $x \sin \pi x=\int_{0}^{x^{2}} f(t) d t$ find $f(4)$.
(b) The graph of the function $y=\log _{e}\left(x^{2}\right)$ is shown below.

(i) Use the Trapezoidal rule with 5 function values to approximate $\int_{1}^{3} \log _{e}\left(x^{2}\right) d x$ and explain why this approximation underestimates the value of the integral.
(ii) Find $\int_{0}^{\ln 9} e^{\frac{y}{2}} d y$ and hence find the exact value of $\int_{1}^{3} \log _{e}\left(x^{2}\right) d x$.

Question 10 (continued)
(c)

The figure shows a function $y=a x^{2}$ with the property that, for every point P on the middle function $y=2 x^{2}$, the area A and B are equal. Find the value of a.

24 Thse 08
Question 1
(a)

$$
\begin{aligned}
1^{\circ} & =\frac{180^{\circ}}{\pi} \\
& =57^{0} 18^{\prime} \quad[2]
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{2 \sqrt{2}}{\sqrt{7}-\sqrt{3}} & =\frac{2 \sqrt{2}}{\sqrt{7} \cdot \sqrt{3}} \times \frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}+\sqrt{3}} \\
& =\frac{2 \sqrt{14}+2 \sqrt{6}}{7-3} \\
& =\frac{1}{2}(\sqrt{14}+\sqrt{6})[2]
\end{aligned}
$$

(c) $y=|2 x-3|$

$$
\begin{aligned}
& \text { (d) } \begin{aligned}
2 x^{2}+7 x-15 & \geqslant 0 \\
(2 x-3)(x+5) & \geqslant 0 \\
x \leqslant-5, x \geqslant \frac{3}{2} & -5]_{\frac{1}{2} x}
\end{aligned} \\
& {[2]}
\end{aligned}
$$

(1)
(e) $\sum_{k=0}^{19}(3 k-1)=-1+2+5 t+56$

This is an A.S.; $\begin{aligned} a & =-1, l=56 \\ n & =20\end{aligned}$

$$
\begin{align*}
S_{20} & =\frac{20}{2}(-1+56) \\
& =550 \tag{2}
\end{align*}
$$

(f)

$$
\begin{aligned}
& \ln 5 x-\ln 2=2 \ln x \\
& \ln \frac{5 x}{2}= \ln x^{2} \\
& \therefore \frac{5 x}{2}=x^{2}, x>0 \\
& 2 x^{2}-5 x=0 \\
& x(2 x-5)=0 \\
& x=0 \text { or } 5 / 2
\end{aligned}
$$

But $x>0$

$$
\begin{equation*}
\therefore x=5 / 2 \tag{2}
\end{equation*}
$$

Question 2

$$
\begin{aligned}
& \text { a) i } y=\tan \left(x^{2}\right) \\
& \frac{d y}{d x}=\frac{2 x \sec ^{2}\left(x^{2}\right)}{1}
\end{aligned}
$$

11

$$
\begin{align*}
y & =2 x \sin (2 x) \\
\frac{d y}{d x} & =2 x \times \cos (2 x) \times 2+\sin (2 x) \times 2 \\
& =4 x \cos (2 x)+2 \sin (2 x) \tag{1}
\end{align*}
$$

$$
\text { b) } \begin{aligned}
\int \frac{x^{2}}{x^{3}-1} d x & =\frac{1}{3} \int \frac{3 x^{2}}{x^{3}-1} \\
& =\frac{1}{3} \log _{e}\left(x^{3}-1\right)+c
\end{aligned}
$$

$$
\begin{aligned}
i \int_{\pi / 2}^{\pi} \cos \left(\frac{1}{2} x\right) d x & =\left[2 \sin \left(\frac{1}{2} x\right)\right]_{\pi / 2}^{\pi}(1) \\
& =2 \sin \frac{\pi}{2}-2 \sin \frac{\pi}{4}(1) \\
& =2-\sqrt{2}
\end{aligned}
$$

C) $y=\sin (x+\pi / 3)$	when $x-\pi$	$2 y+\sqrt{3}=-1(x-\pi)$
$\frac{d y}{d x}=\cos \left(x+\frac{\pi}{3}\right)$	$y=\sin \left(\frac{4 \pi}{3}\right)$	$2 y+\sqrt{3}=-x+\pi$
at $x=\pi$	$=\frac{-\sqrt{3}}{2}$ (1)	$x+2 y+\sqrt{3}-\pi=0$
$\frac{\partial y}{d x}=\cos \left(\frac{4 \pi}{3}\right)$	$y+\frac{\sqrt{3}}{2}=-\frac{1}{2}(x-\pi)$	
$=-1 / 2$		

Question (3) [12 marks $]$
(a)
(i)

$$
\begin{align*}
& \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \frac{y-3}{x-2}=\frac{1}{3} \tag{2}\\
& x-3 y+7=0
\end{align*}
$$

(ii)

$$
\begin{align*}
& \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) . \tag{1}\\
& (2+5 / 2,3+4 / 2) \\
& (7 / 2,7 / 2)
\end{align*}
$$

(iii)

$$
m_{A B}=1 / 3 .
$$

\therefore grad of perp.
line to $A B=-3$.
\therefore Equatión of the perp. bisector of A.

$$
\begin{align*}
A & =\frac{1}{2} \times \frac{14}{3} \times \mathbb{F}^{2} \\
& =28 / 3 \\
& =9 \frac{1}{3} \tag{2}
\end{align*}
$$

(v)

$$
\text { Area }=911_{3} \text {. }
$$

- In $\triangle A D C, \angle A C D=90-8$

$$
\begin{align*}
& \therefore \angle D C E=0 \\
& \frac{|D C|}{2}=\sin \theta \Rightarrow|D C|=2 \sin \theta^{\circ} \tag{i}
\end{align*}
$$

- In $\triangle E C D$

$$
\begin{align*}
& \frac{|D E|}{|D C|}=\sin \theta \tag{1}\\
& \therefore|D E|=D C \sin \theta \\
&=2 \sin ^{2} \theta .
\end{align*}
$$

- In \triangle DEF 2

$$
\begin{aligned}
& \frac{|F E|}{|D E|}=\sin \theta \\
& \Rightarrow F E=2 \sin ^{3} \theta
\end{aligned}
$$

l.e sum

$$
\begin{aligned}
& 2 \sin \theta+2 \sin ^{2} \theta+2 \sin ^{3} \theta \\
= & 2\left(\sin \theta+\sin ^{2} \theta+\cdots\right. \\
= & \frac{2 \sin \theta}{\sin \theta}
\end{aligned}
$$

question (9). 12 marks J
(a) $\frac{d p}{d t}=k p$.
(2) $p=p_{0} e^{k t}$

When $t=0, p=9000$

$$
1 . e p=P_{0}=9000
$$

When $t=10, p=11000$!

$$
\begin{aligned}
& \therefore 110 \phi \phi=9 \phi \phi \phi e^{10 k} \\
& \therefore e^{10 k}=11 / 9 \\
& k=\frac{1}{10 \ln (11 / 9)=0.02} \\
& \therefore P=9000 e^{25 k} \\
& =9000 \times 1.65149 \\
& P=14863 .
\end{aligned}
$$

From similar Δ 's
(i) $\frac{b-5}{3}=\frac{5}{a-3}$.

$$
\therefore \quad a-3=\frac{15}{b-5}
$$

$$
\Rightarrow a=\frac{15}{b^{-5}+3}+3 b
$$

$$
=\frac{b-415+3 b-15}{b-5}
$$

(2.) $a=\frac{3 b}{b-5}$

$$
\begin{aligned}
& \text { (ii) } A=\frac{1}{2} a b \\
& \therefore A=\frac{3 b^{2}}{2(b-5)} \\
& \frac{d A}{d b}=\frac{12 b(b-5)-6 b^{2}}{(b-5)^{2}} \\
& 0=\frac{6 b(b-10)}{(b-5)^{2}} \\
& \Rightarrow b=0,10
\end{aligned}
$$

When $b=10, a=6$.
Equation:

$$
\begin{aligned}
& \text { quation: } \\
& y-5=-\frac{5}{3}(x-3)
\end{aligned}
$$

Equation
(4) $5 x+3 y-30=0$.

Test

b	9	10	11
$\frac{d A}{d b}$		$-2 \pi / 8$	0
$(-1) 6$			

$$
\therefore 5 x^{0}+3 y-30=0
$$

cuts leas 5 Area.
(c)

$$
\begin{aligned}
& \frac{x}{2}=\sin \theta \\
& x=2 \sin \theta \cdot 1 \\
& \frac{d x}{d \theta}=2 \cos \theta \cdot 1 \\
& \left.\frac{d x}{d \theta} \right\rvert\, \theta=\pi / 3
\end{aligned}
$$

Question 4
a (r) 0.01
(ii) $0.3 \times 0.7 \times 0.7 \times 0.3=0.42$
(iii) $0.1 \times 0.9 \times 0.3 \times 0.7 \times 4=0.0756$
(iv) $1-0.0 \times 0.9 \times 07 \times 0.7=0.6031$
b (i)

$$
\begin{aligned}
& \tan 36^{\circ}=\frac{2}{n} \\
& n=\frac{2}{\tan 30^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =5 \times \frac{1}{2} \times 4 \times h \\
& =\frac{20}{\tan 36^{\circ}} \mathrm{cm}^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\sin 36^{\circ} & =\frac{2}{r} \\
r & =\frac{2}{\sin 36^{\circ}} \\
& =3,40
\end{aligned}
$$

(iii)

$$
\frac{\frac{4 \pi}{\sin ^{2} 36^{\circ}}-\frac{20}{\tan 36^{\circ}}}{5}=1.77 \mathrm{~cm}^{2}
$$

Trad HSC 20082 unit
(5)
(a)

(i) Alternate angles in // Lines $A B \| F D, E B$ transversal.
(ii) show $\triangle C D E \equiv \triangle C A B$

$$
\begin{aligned}
& C D=A C \text { given } \\
& C \hat{E} D=A \hat{B C} \text { alt angles } \\
& E \hat{C}(D=A C B \text { vert. opp } \\
& \therefore \\
& \triangle C D E \equiv \triangle C A B \text { ASS. }
\end{aligned}
$$

Cannot use RHS, SSS.SAS.
(iii) show $A F=2 B C$

$$
\triangle A F E \equiv \triangle E B A \text { (ABS). }
$$

$A B E F$ is a parr.
Line through midpt of I side of $\triangle A D F$
II to a $3^{\text {id d side }} f D$, bisects the other side $E C=B C$ in proportion, so $A F=B E=B C+C D, f{ }^{\prime \prime}$ (iii)

$$
\begin{equation*}
A F=2 B C \tag{2}
\end{equation*}
$$

(iv) show $\hat{A C B}=\triangle \hat{A F}$

From diagram, $A \hat{C} B=90-x$. (angle sum \triangle). $B \hat{A C}=90^{\circ}$. Il lines, transversal.

$$
\begin{align*}
\Delta \hat{A F} & =\hat{A E}+E \hat{A F} \\
& =90^{\circ}-(x+y)+y=90-x \tag{1}
\end{align*}
$$

b)

$$
\begin{aligned}
& u(x)=f(x) g(x) \\
& u^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) .
\end{aligned}
$$

invent.

$$
\begin{aligned}
\text { insen } \begin{array}{rlrl}
y=f(x) & \text { slope } & =2 & \\
& & 0 \leq x \leq 3 \\
& =-\frac{1}{4} & & 3 \leq x \leq 7 \\
\text { ines } y=9(x) & \text { slope } & =-3 & \\
& & 0 \leq x \leq 3 \\
& =1 & & 3 \leq x \leq 7
\end{array}
\end{aligned}
$$

六

$$
\begin{align*}
u^{\prime}(1) & =f(1) g^{\prime}(1)+g(1) f^{\prime}(1) \\
& =2 \times-3+6 \times 2 \tag{2}\\
& =6(2) \\
V(x) & =f(g(x)) \\
V^{\prime}(x) & =f^{\prime}(g(x)) \times g^{\prime}(x) \tag{2}
\end{align*}
$$

i)
so $v^{\prime}(1)=7^{\prime}(g(1)) \times g^{\prime}(1)=f^{\prime}(6) \times g^{\prime}(1)=-\frac{1}{4} \times-3=\frac{3}{4}$

$$
\begin{aligned}
\Rightarrow|4 x+13| & <3 \\
|4 x+13| & \leqslant|4 x+12|+11 \mid \\
& =4|x+3|+1 \\
& <4 \times \frac{1}{2}+1 \\
& =3 .
\end{aligned}
$$

or using $|x+3|<\frac{1}{2}$.

$$
\begin{array}{ll}
x+ & -\frac{1}{2}<x+3<\frac{1}{2} \\
\times 4 & -2<4 x+12<2 \\
+1 & -1<4 x+13<3
\end{array}
$$

So $-3<4 x+13<3$ is also time

$$
\begin{equation*}
\therefore \quad|4 x+13|<3 \tag{2}
\end{equation*}
$$

Question b Qu Trial 2008

$$
\begin{aligned}
& y=\frac{x}{x^{2}+1} \quad \text { Let } \quad v=x \quad u^{\prime}=1 \\
& \frac{d y}{d x}=\frac{x^{2}+1 \quad v^{\prime}=2 x}{v^{\prime}}=\frac{v^{\prime}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Turning points when $\frac{d y}{d x}=0$

$$
\frac{d y}{d x}=\frac{1-x^{2}}{\left(x^{2}+1\right)}=0
$$

$$
x= \pm 1
$$

Turning points at $\left(+1, \frac{1}{2}\right)\left(-1,-\frac{1}{2}\right)$ NATURE.

\therefore min at $\left(-1,-\frac{1}{2}\right)$. max at $\left(1, \frac{1}{2}\right)$.
b) Points of inflexion occur. when $d^{2} y / d x^{2}=0$.

$$
\begin{array}{rr}
\frac{d^{2} y}{d x^{2}}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} & u=1-x^{2} \\
u^{\prime}-2 x \\
v=\left(x^{2}+1\right) \\
v=4 x\left(x^{2}+1\right) \\
\frac{d y}{d x^{2}}=\frac{\left(x^{2}+1\right)^{2}(-2 x)-\left(1-x^{2}\right) 4 x\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{4}} \\
=\frac{-2 x\left(x^{2}+1\right)-4 x\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{3}}
\end{array}
$$

Paints of inflexion are

$$
(0,0),\left(-\sqrt{3},-\frac{\sqrt{3}}{4}\right),\left(+\sqrt{3},+\frac{\sqrt{3}}{4}\right)
$$

c) $\operatorname{Lim}_{x \rightarrow \infty}\left(\frac{x}{x^{2}+1}\right)=\operatorname{Lim}_{x \rightarrow \infty}\left(\frac{x / x^{2}}{x^{2} / x^{2+\frac{1}{2}}}\right)$
since $\operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x}=0$.

$$
\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}=0 .
$$

Horizontal assymptote, at $y=0$.

Q6 b)
i)

$$
\begin{aligned}
A & =750(1-09)^{40} \\
& =23557.065 \\
& =\$ 23557
\end{aligned}
$$

nearest \$ \$
ii) $1 / e_{2} \quad 750(1.09)^{4.0}+750(1.09)^{39}$

$$
\begin{aligned}
& y_{r_{3}} .750(1.09)^{40}+750(1.09)^{39}+750(1.09)^{38} \\
& y_{40 .} 750\left(1.09^{40}+1.09^{39}+\cdots+1.09\right)
\end{aligned}
$$

S_{40} when $a=1.09 \quad n=40 \quad r=1.09$.

$$
S_{n}=\frac{a\left(r^{n} 1\right)}{r-1} S_{40}=\frac{1.09\left(1.09^{40}-1\right)}{0.09}
$$

$$
\begin{aligned}
y_{40} & =\frac{750 \times 1.09\left(1.09^{40}-1\right)}{0.09} \\
& =276218.898 \\
& =\$ 276219 \text { nearest } \$
\end{aligned}
$$

Q7 (a) yoven $3 x^{2}-12 x-9=0$ wich rosts α, β.

$$
\begin{gather*}
\alpha+\beta=-\frac{b}{a}=\frac{12}{3}=4 \\
\alpha \beta=\frac{c}{a}=\frac{-9}{3}=-3 \\
\text { (1) } \frac{1}{\alpha^{3} \beta^{3}}=\frac{1}{(\alpha \beta)^{3}}=\frac{1}{(-3)^{3}}=-\frac{1}{27} \tag{1}\\
\text { (11) } \frac{\beta}{\alpha}+\frac{\alpha}{\beta}=\frac{\beta^{2}+\alpha^{\alpha}}{\alpha \beta}=\frac{\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{16+6}{-3}
\end{gather*}
$$

(b) (i) The pavicte is moving to the lept, thenstops at t, then mares to the right
(II) She panticle reaches its snancminn-velointy at t_{r}, then stants to oleow dous
(III)

(c) $\left.\quad A P^{2}+B P^{2}=118 \Rightarrow(x-2)^{2}+(y-4)^{2}+(x-6)^{2}+y+8\right)^{2}=118$.

$$
\begin{align*}
& \begin{aligned}
& \therefore x^{2}-4 x+4+y^{2}-8 y+16+x^{2}-12 x+36+y^{2}+16 y+64=118 . \\
& 2 x^{2}+2 y^{2} \\
&=118 .
\end{aligned} \tag{4.}\\
& \text { Centre }(4,-2) \\
& 2 x^{2}+2 y^{2}-16 x+8 y+120=118 . \\
& =-1 \\
& =-1+16+4
\end{align*}
$$

2uTitsc of
Question 8
(d)

$$
\begin{aligned}
& y=10^{x}+10 x \\
& d y=10^{x} \ln 10+10 \\
& d x
\end{aligned}
$$

(b) $x=t+\frac{1}{t+1}$
(1) Whan $t=0, x=1$ [1]
(iI)

$$
\begin{aligned}
& \dot{x}=1-\frac{1}{(t+1)^{2}} \\
& \dot{x}=0 \text { when } \\
& 1-\frac{1}{(t+1)^{2}}=0 \\
& \left(t^{2}+1\right)^{2}-1=0 \\
& t^{2}+2 t+1-1=0 \\
& t^{2}+2 t=0 \\
& t(t+2)=0 \\
& t=0,-2
\end{aligned}
$$

(-2 is extraveous)
Partide is mitially $[2]$ at rest.
(iii)

$$
\begin{aligned}
\ddot{x} & =\frac{2}{(t+1)^{3}} \\
\ddot{x}(5) & =\frac{2}{6^{3}} \\
& =\frac{1}{108} \mathrm{~cm} / \sec ^{2} \\
& \div 9.2593 \times 10^{-3}
\end{aligned}
$$

$[2] \quad \mathrm{cm} / \mathrm{s}^{2}$
(iv) $\ddot{x} \rightarrow 0$ cos $t \rightarrow \infty$,

Ao $\dot{x}^{\prime} \rightarrow$ a linint of $1 \mathrm{~cm} / \mathrm{sec}$.

$$
\begin{align*}
V & =\pi \int_{0}^{40}\left[\frac{1}{5}\left(x^{2}-40 x\right)\right]^{2} d x \\
& =\frac{\pi}{25} \int_{0}^{40}\left(x^{4}-80 x^{3}+1600 x^{2}\right) d x \\
& =\frac{\pi}{25}\left[\frac{x^{5}}{5}-\frac{80 x^{4}}{4}+\frac{1600 x^{3}}{3}\right]_{0}^{40} \\
& =\frac{\pi}{25}\left(3413333 \frac{1}{3}\right) \\
& =428932.117 \mathrm{~cm}^{3} \\
& =429 \mathrm{~L} \tag{3}
\end{align*}
$$

$$
\frac{d}{d x}(t+1)^{7}
$$

$$
=\frac{-1}{(t+1)^{2}}
$$

$$
\begin{aligned}
\dot{x} & =1-(t+1)^{-2} \\
\ddot{x} & =-(-2)(t+1)^{-3} \\
& =\frac{2}{(t-\pi)^{3}} \quad V=\pi \int_{0}^{40} \frac{1}{5}\left(x^{2}-40 x\right)^{2} d x \\
& =\frac{3 \pi}{25} \int_{0}^{40}\left(x^{4}-80 x^{3}+1600 x^{2}\right) d x \\
& =\frac{\pi}{25}\left[\frac{x^{5}}{5}-\frac{80 x^{4}}{4}+\frac{1600 x^{3}}{3}\right]_{0}^{40} \\
& =\frac{\pi}{25}\left(3413333 \frac{1}{3}\right) \\
& =428932.117 \mathrm{~cm}^{3} \\
& =429.2
\end{aligned}
$$

2008 Trial HSC Mathematics:
Solutions- Question 10
10. (a) If $x \sin \pi x=\int_{0}^{x^{2}} f(t) d t$, find $f(4)$.

Solution: Let $x^{2}=u$,

$$
\begin{aligned}
f(u) & =\frac{d}{d u} \int_{0}^{u} f(t) d t \\
& =\frac{d}{d u}\{ \pm \sqrt{u} \sin (\pm \pi \sqrt{u})\} \\
& = \pm \sqrt{u} \cos (\pm \pi \sqrt{u}) \times \frac{\pi}{ \pm 2 \sqrt{u}}+\frac{\sin (\pm \pi \sqrt{u})}{ \pm 2 \sqrt{u}} \\
\therefore f(4) & = \pm \sqrt{4} \cos (\pm \pi \sqrt{4}) \times \frac{\pi}{ \pm 2 \sqrt{4}}+\frac{\sin (\pm \pi \sqrt{4})}{ \pm 2 \sqrt{4}} \\
& =\frac{2 \pi}{4}+0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

Solution: Alternative method

$$
\begin{aligned}
F\left(x^{2}\right)-F(0) & =x \sin (\pi x), \\
2 x F^{\prime}\left(x^{2}\right)-0 F^{\prime}(0) & =\sin (\pi x)+\pi x \cos (\pi x), \\
F^{\prime}\left(x^{2}\right) & =\frac{\sin (\pi x)+\pi x \cos (\pi x)}{2 x}, \\
& =f\left(x^{2}\right) . \\
\text { When } x^{2} & =4, \\
x & = \pm 2 . \\
\therefore f(4) & =\frac{\sin (\pm 2 \pi) \pm 2 \pi \cos (\pm 2 \pi)}{ \pm 4}, \\
& =\frac{0+2 \pi}{4}, \\
& =\frac{\pi}{2} .
\end{aligned}
$$

(b) The graph of the function $y=\log _{e}\left(x^{2}\right)$ is shown below.

(i) Use the Trapezoidal rule with 5 function values to approximate $\int_{1}^{3} \log _{e}\left(x^{2}\right) d x$ and explain why this approximation underestimates the value of the integral.

Solution: $\int_{1}^{3} \ln \left(x^{2}\right) \approx \frac{0.5}{2}\{0+2(0.8109+1.3863+1.8326)+2.1972\}$,

$$
\approx 2.564 \text { (3 sig. fig.) }
$$

Each trapezium's sloping edge is under the curve as the curve is always concave downwards. The approximation is short by the amounts between the top of the trapezia and the curve.
(ii) Find $\int_{0}^{\ln 9} e^{\frac{y}{2}} d y$ and hence find the exact value of $\int_{1}^{3} \log _{e}\left(x^{2}\right) d x$.

Solution: $\begin{array}{rlr}\int_{0}^{\ln 9} e^{\frac{y}{2}} d y & =\left[2 e^{\frac{y}{2}}\right]_{0}^{2 \ln 3}, \\ & =2 e^{\frac{2 \ln 3}{2}}-2 \times 1, \\ & =6-2, & \ln 9 \\ & =4 . & \end{array}$
(c)

The figure shows a function $y=a x^{2}$ with the property that, for every point P on the middle function $y=2 x^{2}$, the areas A and B are equal.
Find the value of a.
Solution: \quad Let $P=(p, q)$.

$$
\text { Area } \begin{aligned}
A & =\int_{0}^{p}\left(2 x^{2}-x^{2}\right) d x \\
& =\int_{0}^{p}\left(x^{2}\right) d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{p} \\
& =\frac{p^{3}}{3}
\end{aligned}
$$

Area $B=\int_{0}^{q}\left(\sqrt{\frac{y}{2}}-\sqrt{\frac{y}{a}}\right) d y$,
$=\left[\frac{2 y^{3 / 2}}{3 \sqrt{2}}-\frac{2 y^{3 / 2}}{3 \sqrt{a}}\right]_{0}^{q}$,
$=\frac{2}{3} q^{3 / 2}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{a}}\right)$.
But $q=2 p^{2}$,
so area $B=\frac{2}{3} \cdot 2^{2 / 3} \cdot p^{3}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{a}}\right)$.
Now $A=B$,
i.e. $\frac{p^{3}}{3}=\frac{4 p^{3}}{3}\left(1-\sqrt{\frac{2}{a}}\right)$,

$$
\begin{aligned}
1 & =4-4 \sqrt{\frac{2}{a}} \\
\sqrt{\frac{2}{a}} & =\frac{3}{4} \\
\frac{2}{a} & =\frac{9}{16} \\
a & =\frac{32}{9}
\end{aligned}
$$

