2009

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time - 180 minutes.
- Write using black or blue pen.

Pencil may be used for diagrams.

- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Express your answers in simplest exact form unless otherwise stated.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW question in a separate answer booklet.

Total Marks - 120 Marks

- Attempt questions 1-10
- All questions are of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Answer each question/section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A

Question 1 (12 marks) Use a SEPARATE writing booklet Marks
(a) Solve $\frac{2 t}{5}+14=8$.
(b) If $m_{1}=34, m_{2}=7, M=53$ and $g=9 \cdot 8$, find correct to 4 significant figures the value of

$$
\left(\frac{m_{1}-m_{2}}{M+m_{1}+m_{2}}\right) g
$$

(c) The line $k x-2 y=23$ passes through the point $(3,-1)$.

Find the value of k.
(d) Simplify $\frac{x}{4}+\frac{3 x-1}{3}$.
(e) Factorise $3 x^{2}+5 x-12$.
(f) Solve $7-4 x>12$.
(g) Write down the exact value of $\operatorname{cosec} \frac{\pi}{4}$.
(a) Solve $\tan x^{\circ}=1$ for $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$.
(b) The diagram below shows the line $l: 2 x-y+8=0$ and the point $Q(2,12)$ on it. The line k has gradient -2 and passes through the point $P(6,-8)$.
The lines l and k intersect at R.

(i) Show that the equation of the line k is given by $2 x+y-4=0$.
(ii) Show that the coordinates of R are $(-1,6)$.
(iii) Show that the distance $Q R$ is $3 \sqrt{5}$.
(iv) Find the perpendicular distance from P to the line l.

Leave your answer in simplified surd form.
(v) Find the area of $\triangle P Q R$.
(c) In the diagram below, $A B C$ is a triangle in which $A B=4 \mathrm{~cm}, B C=7 \mathrm{~cm}$, and $C A=6 \mathrm{~cm}$.

(i) Use the Cosine Rule to show that $\cos C=\frac{23}{28}$.
(ii) Write down the size of $\angle C$ correct to the nearest degree.
(iii) Calculate the area of $\triangle A B C$.

Leave your answer correct to the nearest square centimetre.

End of SECTION A

SECTION B

Question 3 (12 marks) Use a SEPARATE writing booklet
(a) Differentiate with respect to x
(i) $\left(3-x^{2}\right)^{3}, \quad 2$
(ii) $\log _{e}\left(x^{2}+3\right), \quad \mathbf{2}$
(iii) $x \cos x$. 2
(b) The graph of $y=f(x)$ passes through the point $(3,5)$ and $f^{\prime}(x)=3-2 x$. Find an expression for $f(x)$.
(c) In the diagram below, $A B$ and $A C$ are straight lines.
$A X=8, B X=2, A Y=12$ and $C Y=3$.

(i) Prove that $\triangle A B C \| \triangle A X Y$. 2
(ii) Prove that $X Y$ is parallel to $B C$.
(d) Find $\int \sqrt{x-6} d x$.
(a) Find the value of k if the quadratic equation $(x-3)(x+k)=k(x+2)$ has two equal roots.
(b) After retiring from teaching Mathematics, Eric borrows $\$ 130000$ to start a Shanghai Chinese restaurant. He is charged interest on the balance owing at the rate of 9.75% p.a. compounded monthly.

He agrees to repay the loan including the interest by making equal monthly instalments of $\$ M$.
(i) How much does Eric owe at the end of the first month just before he pays his first instalment?
(ii) Write an expression involving M for the total amount owed by Eric just after the first instalment is paid.
(iii) Calculate the value of M (to the nearest cent) that which will repay the loan after 13 years.
(iv) In how many months (to the nearest whole month) will the loan be repaid if

Eric made instalments of $\$ 1700$ per month?
(c) Sketch the parabola which
(i) has a focus of $(2,1)$ and directrix $x=4$.
(ii) Find the equation of the parabola.

End of SECTION B

SECTION C

Question 5 (12 marks) Use a SEPARATE writing booklet
(a) The diagram shows the curves $y=x^{2}$ and $y=4 x-x^{2}$, which intersect at the origin and at the point A.

(i) Show that the coordinates of the point A are $(2,4)$
(ii) Hence find the area enclosed between the curves.
(b) (i) Copy and complete the table of values for $y=\frac{1}{1+x^{2}}$. Express your values in exact form.

x	0	$\frac{1}{2}$	1	$1 \frac{1}{2}$	2
y					

(ii) Use Simpson's Rule with the five function values from part (i) to estimate

$$
\int_{0}^{2} \frac{d x}{1+x^{2}}
$$

Give your answer correct to four decimal places.
(c) The sum of the first and third terms of a geometric series is 13 . The sum of the second and fourth terms is $19 \frac{1}{2}$.
Find the first term and the common ratio.
(a) Prove $\frac{\sin \theta}{1-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}$.
(b) (i) Sketch the curves $y=\sin x$ and $y=\cos x$ for $0 \leq x \leq 2 \pi$ on the same set of axes.
(ii) Find the enclosed area bounded by the curves in part (i).
(c) In the diagram below, triangle $A B C$ is equilateral with a side length of 12 cm . P, Q and R are the midpoints of $B C, A C$ and $A B$ respectively. $R P, P Q$, and $Q R$ are arcs of circles centred at B, C and A respectively.

(i) Show that the area of triangle $A B C$ is $36 \sqrt{3} \mathrm{~cm}^{2}$.
(ii) Find the exact area of sector $A R Q$.
(iii) Hence find the area of the unshaded part, correct to three significant figures.

End of SECTION C

SECTION D

Question 7 (12 marks)
(a) The graph below is of the function $y=f(x)$ where $f(x)=x^{4}-8 x^{2}+10$.

The points A and C are minimum turning points and B is the maximum turning point where the graph cuts the y-axis.

(i) Find the coordinates of B.
(ii) Find $f^{\prime}(x)$.
(iii) Show that $f^{\prime}(0)=f^{\prime}(2)=f^{\prime}(-2)=0$.
(iv) Hence find the coordinates of A and C.
(b) Two bags contain respectively 5 red and 2 white balls, and 4 red and 1 white ball. One ball is drawn at random from each bag.
(i) Draw a probability tree diagram to show all the possibilities.
(ii) Find the probability that the two balls drawn out are of different colours.
(c) A continuous curve $y=f(x)$ has the following properties for the closed interval $a \leq x \leq b$:

$$
f(x)>0, f^{\prime}(x)>0, f^{\prime \prime}(x)<0
$$

Sketch a curve satisfying these conditions.
(a) The diagram below shows the graph of $y=e^{-x}$ and the parabola $y=-x^{2}-a$. The tangent to $y=e^{-x}$ through the point $(-1, e)$ is also the tangent to the parabola at P.

(i) Show that the equation of the tangent is $y=-e x$.
(ii) Show that the value of x for which the tangent to $y=-x^{2}-a$ has gradient $-e$ is $\frac{1}{2} e$.
(iii) Find the coordinates of the point P, and hence find the value of a in exact form
(b) The electrical charge Q retained by a capacitor t minutes after charging is given by $Q=C e^{-k t}$, where C and k are constants.

The charge after 20 minutes is one half of the initial charge.
(i) Show that $k=\frac{1}{20} \ln 2$
(ii) How long will it be before one tenth of the original charge is retained?

Answer to the nearest minute.

End of SECTION D

SECTION E

Question 9 (12 marks) Use a SEPARATE writing booklet Marks
(a) A jet engine uses fuel at the rate of R litres per minute.

The rate of fuel use t minutes after the engine starts operating is given by

$$
R=15+\frac{10}{1+t} .
$$

(i) What is R when $t=0$?
(ii) What is R when $t=9$? 1
(iii) What value does R approach as t becomes very large?

1
(iv) Draw a sketch of R as a function of t.

2
(v) Calculate the total amount of fuel burned during the first 9 minutes.

2
Give your answer correct to the nearest litre.
(b) The position $x \mathrm{~cm}$ at time t seconds of a particle moving in a straight line is given by

$$
x=3 t+e^{-3 t} .
$$

(i) Find the position of the particle when $t=1$.

Give your answer correct to 3 significant figures.
(ii) By finding an expression for the velocity of the particle, show that initially the particle is at rest.
(iii) Find an expression for the acceleration of the particle.
(iv) Find the limiting velocity of the particle as $t \rightarrow \infty$.
$A B C$ is a variable isosceles triangle with $A B=A C$.
The sides $A B$ and $A C$ touch a semicircle of radius $a \mathrm{~cm}$ at P and Q.
O is the centre of the semicircle and $B O C$ is a straight line.

Let $S \mathrm{~cm}^{2}$ be the area of $\triangle A B C$ and $\angle B A O=\theta$.
It is given that $\sin 2 \theta=2 \sin \theta \cos \theta$.
(a) Show that $S=\frac{2 a^{2}}{\sin 2 \theta}$, where $0<\theta<\frac{\pi}{2}$.
(b) Determine the range of values of θ for which S is
(i) Increasing,
(ii) Decreasing.
(c) Sketch the curve of S against θ for $0<\theta<\frac{\pi}{2}$.
(d) If $2 a<O A<3 a$, find the greatest value of S.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Section A
Question I.
a) Solve $\frac{2 t}{5}+14=8$

$$
\begin{aligned}
\frac{2 t}{5} & =-6 \\
2 t & =-30 \\
t & =-15
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left(\frac{34-7}{53+34+7}\right) \times 9 \cdot 8 \\
= & 2.814893617 \\
= & 2.815 \quad 4 \text { sig fig }
\end{aligned}
$$

c)

$$
\begin{gathered}
3 k-2 x-1=23 \\
3 k+2=23 \\
3 k=21
\end{gathered}
$$

$$
\begin{equation*}
k=7 \tag{1}
\end{equation*}
$$

$$
\text { d) } \begin{align*}
& \frac{x}{4}-\frac{3 x-1}{3} \\
= & \frac{3 x+4(3 x-1)}{12} \tag{1}\\
= & \frac{3 x+12 x-4}{12} \\
= & \frac{15 x-4}{12} \tag{1}
\end{align*}
$$

$$
\text { e) } \begin{align*}
& \text { Factorise } \\
& \\
& 3 x^{2}+5 x-12^{-36} \tag{1}\\
& = \\
& \frac{(3 x+9)(3 x-4)}{3} \tag{1}\\
& = \\
& \frac{3(x+9)(3 x-4)}{3} \\
& = \\
& (x+9)(3 x-4)
\end{align*}
$$

f)

$$
\begin{gather*}
7-4 x>12 \\
-4 x>5 \tag{1}\\
x<-5 / 4 \tag{1}
\end{gather*}
$$

g)

$$
\begin{align*}
& \operatorname{cosec} \pi / 4 \\
&= \frac{1}{\sin ^{\pi / 4}} \\
&=\frac{1}{1 / \sqrt{2}} \tag{1}\\
&= \sqrt{2}
\end{align*}
$$

Question 2
a)

$$
\tan x^{\circ}=1 \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

$$
\begin{align*}
& x=45^{\circ}, 225^{\circ} \\
& \text { b) (2) } m=-2 \quad(6,-8) \\
& y+8=-2(x-6) \\
& y+8=-2 x+12 \\
& 2 x+y-4=0 \tag{1}
\end{align*}
$$

$$
\begin{array}{r}
\text { ii) } x: 2 x+y-4=0 \\
\text { l: } 2 x-y+8=0 \\
4+e \quad 4 x+4=0 \\
4 x=-4 \\
x=-1 \tag{4}
\end{array}
$$

sub into $x,-2+y-4=0$

$$
y=6
$$

$$
\therefore R=(-1,6)
$$

iii) $D=Q(2,12) \quad R(-1,6)$

$$
\begin{align*}
0 & =\sqrt{(2+1)^{2}+(12-6)^{2}} \\
& =\sqrt{3^{2}+6^{2}} \\
& =\sqrt{45}=3 \sqrt{5} \text { (1) } \tag{1}
\end{align*}
$$

$$
\mid \text { iv } d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

line: $2 x-y+8=0$
ponts $(6,-8)$

$$
\begin{align*}
d & =\frac{|2 \times 6+(-1) \times(-8)+8|}{\sqrt{2^{2}+(-1)^{2}}} \\
& =\frac{|12+8+8|}{\sqrt{5}} \\
& =\frac{28}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{28 \sqrt{5}}{5} \tag{2}
\end{align*}
$$

v)

$$
\begin{align*}
A & =1 / 2 \times 3 \sqrt{5} \times \frac{28 \sqrt{5}}{5} \\
& =42 u^{2} \tag{1}
\end{align*}
$$

C)

$$
\begin{aligned}
\cos C & =\frac{6^{2}+7^{2}-4^{2}}{2 \times 6 \times 7} \\
& =\frac{69}{84} \\
& =\frac{23}{28}
\end{aligned}
$$

ii) $C=34,77194403$ $=35^{\circ}$ nearest degree (i)
iii)

$$
\begin{align*}
A & =1 / 2 a b \sin c \\
& =1 / 2 \times 7 \times 6 \times \sin 35 \\
& =12.04510516 \\
& =12 \mathrm{~cm}^{2} \tag{2}
\end{align*}
$$

(a)

$$
\text { (i) } \begin{align*}
\frac{d}{d x}\left(3-x^{2}\right)^{3} & =3\left(3-x^{2}\right)^{2} \times-2 x \\
& =-6 x\left(3-x^{2}\right)^{2}(8) \tag{2}
\end{align*}
$$

(ii) $\frac{d}{d x}\left(\log _{0}\left(x^{2}+3\right)\right)=\frac{2 x}{x^{2}+3}$
(iii)

$$
\begin{aligned}
\frac{d}{d x}(x \cos x) & =x \times-\sin x+\cos x \times 1 \\
& =-x \sin x+\cos x-1
\end{aligned}
$$

(b)

$$
\begin{aligned}
f^{\prime}(x) & =3-2 x \\
f(x) & =\int(3-2 x) d x \\
& =3 x-x^{2}+0
\end{aligned}
$$

data
$\frac{(3,5)}{(3,5)}$

$$
\begin{align*}
5 & =9-9+c \\
c & =5 \\
f(x) & =3 x-x^{2}+5 \tag{2}\\
& \triangle A B C
\end{align*}
$$

In $\triangle A B C / / / \triangle A X Y$
(c) (i) $\times \hat{A} Y=\hat{B A C}$ commou angle.

$$
\begin{align*}
& \frac{A X}{A B}=\frac{8}{10}=\frac{4}{5} \tag{i}\\
& \frac{A Y}{A C}=\frac{12}{15}=\frac{4}{3} \\
& A A R C
\end{align*}
$$

Commow angle,
sidesin same ratió
fest.
(ii) Because $\triangle A B C / I \triangle A \times 1$ -

3 (d)

$$
\begin{align*}
& \int(x-6)^{\frac{1}{2}} d x \\
& =\frac{(x-6)^{1 \frac{1}{2}}}{1 \frac{1}{2} \times 1}+c \\
& =\frac{2}{3}(x-6) \sqrt{x-6}+c \tag{1}
\end{align*}
$$

4 (a)

$$
\begin{gathered}
(x-3)(x+k)=k(x+2) \\
x^{2}+x k-3 x-3 k=k x+2 k \\
x^{2}+x^{k}-k x-3 x-3 k-2 k=0 \\
x^{2}-3 x-5 k=0 \\
x^{2}+4 a c=0
\end{gathered}
$$

equal rooits $\Rightarrow \Delta=b^{2}-4 a c=0$

$$
\begin{aligned}
& a=1 \\
& b=-3 \\
& c=-5 k
\end{aligned}
$$

$$
9-4 \times 1 \times-5 k=0
$$

$$
9+20 \%=0
$$

$$
20 k=-9
$$

$$
k=-\frac{q}{20}
$$

(c)
(i)

$$
\begin{aligned}
& s(2,1) \\
& x=4
\end{aligned}
$$

$$
\left.(y-k)^{2}=-4 a(x)-k\right)
$$

$$
\begin{align*}
& a=1 \tag{2}\\
& V=(3,1)
\end{align*}
$$

(ii) $(y-1)^{2}=-4(x-3) v$

4 (b) boriouls $\$ 130,000$

$$
\text { 9.75\% poar compounded montthy } \Rightarrow \frac{9.75}{12} q=
$$

equal mowthty instalments $\$ \mathrm{~m}$.
(i)

$$
\begin{align*}
\phi A_{1} & =130,000+130,000 \times 0.008125 \\
& =130,000(1+0.008125) \\
& =130,000(1.008125)=\$ 131056.250 \tag{1}
\end{align*}
$$

(ii) $\$ 130000(1,008125)$
(iii) 13 years $=156$ montho

$$
\begin{aligned}
\text { (iiij) 13 years } & =156 \text { montho } \\
\$ A_{2} & =130000(1.008125)^{2}-m(1+0.008125) \\
\$ A_{156} & =130000(1.008125)^{156}-m\left(1+1.008125+1.008125^{155}\right. \\
\$ A_{136} & =0 \\
m & =\frac{130000(1.008125)^{156}}{1+1008125+\cdots+(1008125)^{155}}
\end{aligned}
$$

denom. $S_{n}=\frac{r l-a}{r-1}=\frac{0.008125 \times 1.008125^{155}-1}{1008125^{-1}}$

$$
m=\$ 1473.11^{0.008}
$$

$$
\begin{aligned}
& \$ A_{n} . \\
& \text { (iv) } 130000(1.008125)^{131}-1700(1+1.008125+\cdots \\
& \left.+\cdots 1.008125^{n-1}\right) . \\
& \text { let } \$ A_{n}=0 \\
& 1700\left(1+1.008125+\cdots+1.008125^{n-1}\right)=130000(1.008125) \\
& \text { sum } 1+1,008125^{\prime}+\cdots+1.008125^{n-1} \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1 .\left(1.008125^{n}-1\right)}{1008125^{n}-1}=\frac{1.008125^{n}-1}{.008125} \\
& \frac{1700\left(1.008125^{n}-1\right)}{0.008125}=130000(1.008125)^{n} \\
& 1700\left(1.008125-1 \begin{array}{c}
n \\
-1
\end{array}\right)=1056.25(1.008125)^{n} \\
& 1700\left(1.008125^{n}\right)^{n}-1700=1056.25(1.005125)^{n} \\
& 643.75(1.008125)^{n}=1700 \\
& 1.008125^{n}=2.640776699 \\
& n \log 1.008125=\log 2.640776699
\end{aligned}
$$

$n=120$ month. (2)

$$
\begin{gather*}
y=x^{2} \\
y=4 x-x^{2} \\
4 x-x^{2}=x^{2} \\
2 x^{2}-4 x=0 \\
2 x(x-2)=0 \\
x=0,2 \\
y=0,4 \tag{2}
\end{gather*}
$$

$$
A=\frac{2}{3}\left[\left(1+\frac{1}{5}\right)^{4}+\left(2 \times \frac{1}{2}\right)+4\left(\frac{2}{5}+\frac{4}{13}\right)\right]
$$

$$
=\frac{1}{6}\left(\frac{431}{65}\right)
$$

$$
=1 \frac{41}{380}
$$

$$
=1.1051(4 \alpha \alpha)
$$

Pout is $(2,4)$

$$
\begin{aligned}
A & =\int_{0}^{2}\left(4 x-x^{2}\right) d x-\int_{0}^{2} x^{2} d x \\
& =\int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{2}{3} x^{3}\right]_{0}^{2} \\
& =8-\frac{16}{3}
\end{aligned}
$$

- $2 / 3$ rquene rinite

$$
\begin{align*}
& f(x)=\frac{1}{1+x^{2}} \\
& \qquad \underbrace{1}_{1 / 2}+\frac{1}{1}+1 \\
& y
\end{align*}
$$

x	0	$1 / 2$	1	$3 / 2$	2	
y	1	$4 / 5$	$1 / 2$	$7 / 3$	$1 / 5$	

$$
\begin{align*}
A \approx & \frac{1}{6}(1-0)\left(1+4 \times \frac{4}{5}+\frac{1}{2}\right) \\
& +\frac{1}{6}(2-1)\left(1 / 2+4 \times \frac{4}{13}+\frac{1}{5}\right) \\
= & \frac{1}{6}(47 / 10)+\frac{1}{6}\left(1 \frac{121}{130}\right) \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{41}{60}+\frac{251}{780} \\
& =1 \frac{41}{390} \\
& =1.1051(40(\lambda)
\end{aligned}
$$

0, $K=\frac{2-0}{4}=1 / 2$

NOTE: ExACT nNSWER is $1.107198 \cdots$.
OQ USIVG DECMALS

$$
\begin{aligned}
A & =\frac{1}{6}[1+3.2+0.5]+\frac{1}{6}[.5+1.23077+0.2] \\
& =\frac{1}{6}[6.63077] \\
& =1.1051
\end{aligned}
$$

AND

$$
\begin{align*}
A & \div \frac{1}{6}[1+.2+2 \times .5+4(.8+30769)] \\
& =\frac{1}{6}[6.63076] \tag{3}\\
& =1.1051 \quad \text { (3) } \tag{2}
\end{align*}
$$

c)

$$
\begin{align*}
& a\left(1+r^{2}\right)=13 \\
& \operatorname{ar}\left(1+r^{2}\right)=\frac{39}{2}
\end{align*}
$$

Foome (1)

$$
a=\frac{13}{1+r^{2}}
$$

$\ln (2)$

$$
\begin{gather*}
\frac{13}{1+r^{2}} \cdot r\left(1+r^{2}\right)=\frac{39}{2} \tag{2}\\
13 r=\frac{39}{2} \\
r=3 / 2 \\
a=\frac{13}{1+9 / 4}=4
\end{gather*}
$$

Series is $4+6+9+13 \frac{1}{2}$

$$
T_{1}+T_{3}=13, \quad T_{2}+T_{4}=19^{1 / 2}
$$

6)a)

$$
\begin{aligned}
\text { LHS } & =\frac{\sin \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta} \\
& =\frac{\sin \theta(1+\cos \theta)}{1-\cos ^{2} \theta} \\
& =\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta} \\
& =\frac{1+\cos \theta}{\sin \theta} \\
& =\text { RHS }
\end{aligned}
$$

OR

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \sin ^{2} \theta=(1-\cos \theta)(1+\cos \theta) \\
& \frac{\sin \theta}{1-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}
\end{aligned}
$$

b) i)

ii)

$$
\begin{aligned}
\text { Area } & =\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}(\sin x-\cos x) d x \\
& =[-\cos x-\sin x]_{\frac{\pi}{4}}^{\frac{5 \pi}{4}} \\
& =-\cos \frac{5 \pi}{4}-\sin \frac{5 \pi}{4}-\left(-\cos \frac{\pi}{4}-\sin \frac{\pi}{4}\right) \\
& =-\left(-\frac{1}{\sqrt{2}}\right)-\left(-\frac{1}{\sqrt{2}}\right)-\left(-\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}\right)\right) \\
& =\frac{4}{\sqrt{2}} \\
& =2 \sqrt{2} \text { units }^{2}
\end{aligned}
$$

$$
\text { c) i) } \begin{aligned}
\text { Area } & =\frac{1}{2} a b \sin c \\
& =\frac{1}{2}(12)(12) \sin 60^{\circ} \\
& =72\left(\frac{\sqrt{3}}{2}\right) \\
& =36 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}(6)^{2} \cdot \frac{\pi}{3} \\
& =6 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\text { Area } & =36 \sqrt{3}-3(6 \pi) \\
& =5.81 \mathrm{~cm}^{2} \text { (to } 3 \text { sig. figures) }
\end{aligned}
$$

SECTIOND
Question 7.
(a) $f(0)=10$.

$$
B(0,10)
$$

$$
\begin{aligned}
& f(x)=x^{4}-8 x^{2}+10 \\
& f^{\prime}(x)=4 x^{3}-16 x
\end{aligned}
$$

(iii)

$$
\begin{aligned}
f^{\prime}(0) & =0 \\
f^{\prime}(2) & =4 \times 8-16 \times 2 \\
& =0 \\
f^{\prime}(-2) & =-4 \times 8+16 \times 2 \\
& =0
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& f(2)=16-8 \times 4+10 \\
&=-6 \\
& f(-2)=-6 . \\
& A(-2,-6) \quad C(2,-6) \quad 2
\end{aligned}
$$

(b) (i)

(ii)

$$
\begin{aligned}
P(R W)+P(w n) & =\frac{5}{7 \times 5}+\frac{2 \times 4}{7 \times 5} \\
& =\frac{13}{35}
\end{aligned}
$$

(c)

Question 8
(a) (i)

$$
\text { i) } \begin{aligned}
\frac{d y}{d x} & =-e^{-x} . \\
\text { at } x & =-1 \\
m & =-e \\
y-e & =-e(x+1) . \\
y-e & =-e x-e . \\
y & =-e x .
\end{aligned}
$$

(ii)

$$
\begin{align*}
\frac{d y}{d x} & =-2 x \\
-2 x & =-e \\
x & =\frac{e}{z} \tag{2}
\end{align*}
$$

(iii) $y=-e \times \frac{e}{2} \quad$ from tangent.

$$
\begin{array}{rl}
& =-\frac{e^{2}}{2} \cdot p\left(\frac{e}{2},-\frac{e^{2}}{2}\right) \cdot \\
-\frac{e^{2}}{2}=-\left(\frac{e}{2}\right)^{2}-a & a=\frac{e^{3}}{2}-\frac{e^{2}}{4} \\
-\frac{e^{2}}{2}=-\frac{e^{2}}{4}-a & a=\frac{e^{2}}{4} \cdot 2
\end{array}
$$

(b) at $t=0 \quad Q=Q$.

$$
Q_{0}=C e^{0} .
$$

ie. $C=Q_{0}$.

$$
Q=Q_{0} e^{-k t}
$$

at $t=20 \quad \frac{Q 0}{2}$

$$
\begin{aligned}
& \frac{Q_{0}}{2}=Q_{0} e^{-R 0 k} \\
& e^{-20 k}=\frac{1}{2} \\
& -20 k=\ln \frac{1}{2} \\
& k=\frac{1}{20} \ln 2 .
\end{aligned}
$$

(ii).

$$
\begin{aligned}
\frac{Q_{0}}{10} & =Q_{0} e^{-k t} \\
\frac{1}{10} & =e^{-k t} \\
-k t & =\ln \frac{1}{10} \\
t & =\frac{20 \ln 10}{\ln 2} \\
& =66 \text { mins }
\end{aligned}
$$

Question 9
(a) $\quad R=15+\frac{10}{1+t}$
(i) $R=15+\frac{10}{1}=25$
(ii) $R=15+\frac{10}{1+9}=16$
(iii) As $t \rightarrow \infty$

$$
R \rightarrow 15
$$

since $\frac{10}{1+t} \rightarrow 0$
(iv)

(v)

$$
\begin{aligned}
& \int_{0}^{9}\left(15+\frac{10}{1+t}\right) d t \\
= & {\left[15 t+10 \log _{e}(1+t)\right]_{0}^{9} } \\
= & 158 \mathrm{~L}
\end{aligned}
$$

(b) $\quad x=3 t+e^{-3 t}$
(i) When $t=1, x=3+e^{-3}$

$$
\text { ie } x \div 3.05
$$

(ii) $\quad v=\frac{d x}{d t}=3-3 e^{-3 t}$

When $t=0, v=3-3 e^{0}$

$$
\begin{aligned}
& =3-3(1) \\
v & =0
\end{aligned}
$$

\therefore initially at rest.
(iii) $\ddot{x}=\frac{d v}{d t}=9 e^{-3 t}$

$$
\text { (iv) } \begin{aligned}
& \lim _{t \rightarrow \infty}\left(3-3 e^{-3 t}\right) \\
= & \lim _{t \rightarrow 0}\left(3-\frac{3}{e^{3 t}}\right) \\
= & 3
\end{aligned}
$$

$\left(\right.$ Since $\left.\frac{3}{e^{3 t}} \rightarrow 0\right)$

Q10.

$$
\begin{align*}
S=\frac{B C \times A O}{2} & =B 0 \times A 0 \\
& =\frac{a}{\cos \theta} \times \frac{a}{\sin \theta} \\
& =\frac{2 a^{2}}{2 \sin \theta \cos \theta} \\
& =\frac{2 a^{2}}{2 \sin \theta}
\end{align*}
$$

(b)

$$
\begin{aligned}
\frac{d S}{d \theta} & =-2 a^{2}(\sin 2 \theta)^{-2} \times 2 \cos \alpha \theta \\
& =\frac{-4 a^{2} \cos \alpha \theta}{\sin ^{2} 2 \theta}
\end{aligned}
$$

now increasing stere $\frac{-4 a^{2} \cos \alpha \theta}{\sin ^{2} \alpha \theta}>0$ fro $0<\theta<\frac{\pi}{2}$. dereasig. ie $\cos \alpha \theta>0$ fro $0<2 \theta<\pi$.

$$
\begin{aligned}
& 0<\alpha \theta<\frac{\pi}{2} \\
& 0<\theta<\frac{\pi}{4}
\end{aligned}
$$

decreating shtue $\cos \alpha \theta<0$ for $0<2 \theta<\pi$.

$$
\begin{aligned}
& \frac{\pi}{2}<2 \theta<\pi \\
& \frac{\pi}{4}<\theta<\frac{\pi}{2}
\end{aligned}
$$

(c)

(d)

$$
\begin{aligned}
2 a & <\frac{a}{\sin \theta}<3 a \\
2 & <\frac{1}{\sin \theta}<3 \\
\frac{1}{2} & >\sin \theta>\frac{1}{3}
\end{aligned}
$$

$$
\text { ubere } \sin \theta=\frac{1}{2} \cdot, \cos \theta=\frac{\sqrt{3}}{2}
$$

$$
\therefore S=\frac{a^{2}}{\frac{1}{4} \times \frac{\sqrt{3}}{2}}=\frac{4 a^{2}}{\sqrt{3}} 3
$$

where $\cos \theta=\frac{1}{3} \quad \cos \theta=\sqrt{1-\frac{1}{9}}=\frac{\sqrt{8}}{3}$

$$
\therefore S=\frac{a^{2}}{\frac{1}{3} \times \frac{18}{3}}=\frac{9 a^{2}}{\sqrt{8}} \therefore M A x .
$$

