

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2013

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 180 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- Show all necessary working in Questions 11–16

Total Marks - 100 MarksSection I10 Marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section.

Section II **90 Marks**

- Attempt Questions 11–16
- Allow about 2 hour 45 minutes for this section.

Examiner: *External Examiner*

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Objective-response Questions

Section I Total marks – 10 Attempt Questions 1 – 10

Answer each question on the multiple choice answer sheet provided.

In the figure above, *x* equals

- (A) 31°
- (B) 34°
- (C) 40°
- (D) 48°

In the figure above AB||DC, AB = q and DC = p. BC equals

- (A) $\frac{(p+q)\sin 50^{\circ}}{2\sin 70^{\circ}}$
- (B) $\frac{(p+q)\sin 70^{\circ}}{2\sin 50^{\circ}}$

(C)
$$\frac{(p-q)\sin 70^\circ}{\sin 60^\circ}$$

(D)
$$\frac{(p-q)\sin 50^\circ}{\sin 70^\circ}$$

4) The period of the function $f(x) = \sin\left(3x - \frac{\pi}{3}\right)$, $x \in R$ is

- (A) $\frac{\pi}{9}$
- (B) $\frac{2\pi}{3}$
- (C) 2π
- (D) $\frac{\pi}{3}$

5) The solution(s) of the equation $e^x + e^{-x} = -\frac{3}{2}$, where $x \in R$, is (are)

- (A) ln 2 only
- (B) $\pm \ln 2$
- (C) $-\ln 2$ only
- (D) None of these

6) From the graph of y = f(x), when is f'(x) negative?

- (A) x < -3 or x > 3
- (B) -3 < x < 3
- (C) $x \le -3 \text{ or } x \ge 3$

(D)
$$-3 \le x \le 3$$

7) If *M* is decreasing at an increasing rate, what does this suggest about $\frac{dM}{dt}$ and $\frac{d^2M}{dt^2}$?

- (A) $\frac{dM}{dt} < 0$ and $\frac{d^2M}{dt^2} < 0$
- (B) $\frac{dM}{dt} > 0$ and $\frac{d^2M}{dt^2} < 0$

(C)
$$\frac{dM}{dt} < 0 \text{ and } \frac{d^2M}{dt^2} > 0$$

(D) $\frac{dM}{dt} > 0$ and $\frac{d^2M}{dt^2} > 0$

In the figure, the radius of the sector is r and $\angle POQ = x^{\circ}$. If the area of the sector is A then x equals

(A)	$\frac{2A}{r^2}$
(B)	$\frac{360A}{\pi r^2}$
(C)	$\frac{180A}{\pi r^2}$
(D)	$\frac{180A}{r^2}$

9) Which of the following expressions gives the total area of the shaded region in the diagram?

- (A) $\int_{-1}^{6} f(x) \, dx$
- (B) $-\int_{-1}^{0} f(x) dx + \int_{0}^{6} f(x) dx$
- (C) $-\int_{-1}^{1} f(x) dx + \int_{1}^{4} f(x) dx \int_{4}^{6} f(x) dx$
- (D) $\int_{1}^{4} f(x) dx + 2 \int_{4}^{6} f(x) dx$

- 5 -

10) Which of the following is the derivative of $y = \ln[f(x)]$

(A)
$$\frac{f(x)}{f'(x)}$$

(B)
$$\frac{f'(x)}{f(x)}$$

(C)
$$\frac{1}{f'(x)}$$

(D)
$$\frac{f''(x)}{f'(x)}$$

End of Section I

Section II Total marks – 90 Attempt Questions 11 – 16

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Factorise
$$x^2 - 2x + 1 - 4y^2$$
 1

(b) Simplify

$$\sqrt{\frac{3^{5k+2}}{27^k}}$$

(c) Simplify

$$\frac{\log(a^3b^2) - \log(ab^2)}{\log\sqrt{a}}$$

(d) Solve
$$x^2 + 2x - 8 > 0$$
 1

(e) By considering the cases
$$x \le 1$$
 and $x > 1$, or otherwise, solve
 $|1 - x| = x - 1$ 2

(f) For the parabola
$$(x - 3)^2 = -4y$$
.

(g) Prove

$$\frac{\sin\theta}{1-\cos\theta} = \frac{1+\cos\theta}{\sin\theta}$$

(h) Evaluate

$$\lim_{x \to 2} \frac{x - 2}{x^2 + x - 6}$$

- (i) Find the equation of a straight line passing through the point of intersection of the lines l_1 : 2x y 4 = 0 and l_2 : 2x + 3y 12 = 0 and perpendicular to the line 2x 3y + 1 = 0.
- (j) Find the equation of the tangent to the curve $y = 2 \sin 2x$ at the point $\left(\frac{\pi}{8}, \sqrt{2}\right)$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a)	Draw a number plane and mark the points $P(-2, 2)$ and $Q(-4, -2)$.		
	(i)	Show that the equation of the line through <i>P</i> perpendicular to <i>PQ</i> is given by $x + 2y - 2 = 0$	2
	(ii)	The line perpendicular to PQ through P intersects the x-axis at R . Find the coordinates of R .	2
	(iii)	Show that the mid-point of QR is $(-1, -1)$. Mark this point T on your diagram.	1
	(iv)	Find the perpendicular distance from T to the interval PR .	2

(b) x and y are positive numbers. x, -2, y are consecutive terms of a geometric series, and -2, y, x are consecutive terms of an arithmetic series.

(i)	Find the value of <i>xy</i> .	1

- (ii) Find the values of x and y.
- (iii) Find the sum to infinity of the geometric series

$$x - 2 + y \dots 2$$

3

(c) Given that α and $m\alpha$ are the roots of the equation $x^2 + px + q = 0$, show that

$$mp^2 = (m+1)^2 q$$

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate with respect to x: (i) $x \sin x$

(ii) $\ln(x^2 + 4)$ 1

(iii)
$$e^{5x} + x$$
 1

(b) The graph of y = f(x) passes through the point (3, 5), and f'(x) = 2x - 3. Find f(x). 2

(c) Find:

 $\int \sqrt{x+10} \, dx$

(ii)

(f)

(i)

$$\int_0^{\frac{\pi}{8}} \sec^2 2x \, dx \qquad \qquad 1$$

1

(d) Consider the curve $y = \cos 2x$:

(i) Sketch
$$y = \cos 2x$$
 for $0 \le x \le 2\pi$. 1

- (ii) Find the area between the curve $y = \cos 2x$ and the x-axis from x = 0 to $x = \pi$. 2
- (e) The population P of Newcastle after t years is given by the exponential equation

$$P = 50000e^{-0.08t}$$

(i)	Find the time to the nearest year for the initial population to halve.	1
(ii)	Find the number of people who leave Newcastle during the tenth year.	2
	tinuous curve $y = f(x)$ has the following properties for the closed interval $x \le 5$: $f(x) > 0$, $f'(x) > 0$, $f''(x) < 0$. Sketch a curve satisfying these tions.	2

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a)	Given that $f(x) = x(x-2)^2$		
	(i)	Show that $f'(x) = 3x^2 - 8x + 4$.	1
	(ii)	Find 2 values of x for which $f'(x) = 0$, and give the corresponding values of $f(x)$.	1
	(iii)	Determine the nature of the turning points of the curve $y = f(x)$.	2
	(iv)	Sketch the curve $y = f(x)$ showing all essential features.	2
	(v)	Use your sketch to solve the inequation $x(x-2)^2 \ge 0$.	1
(b)	An economist predicts that over the next few months, the price of crude oil, p dollars a barrel, in t weeks time will be given by the formula		
		$P = 0.005t^3 - 0.3t^2 + 4.5t + 98$	
	(i)	What is the price at present, and how rapidly is it going up?	2

- (ii) How high does she expect the price to rise?
- (c) A coin is made by starting with an equilateral triangle ABC of side 2 cm. With centre A an arc of a circle is drawn joining B to C. Similar arcs join C to A and A to B.

2

2

2

- (i) Find, exactly, the perimeter of the coin.
- (ii) Find area of one of its faces.

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Given that in $\triangle ABC, XY || BC$ and RY || SC,

Prove AX: XB = AR: RS.

- (b) A couple plan to buy a home and they wish to save a deposit of \$40 000 over five years. They agree to invest a fixed amount of money at the beginning of each month during this time. Interest is at 12% per annum compounded monthly.
 - (i) Let \$P be the monthly investment. Show that the total investment \$A after five 2 years is given by

$$A = P(1.01 + 1.01^2 + \dots + 1.01^{60})$$

(ii) Find the amount \$P needed to be deposited each month to reach their goal. Answer correct to the nearest dollar.

(c) A train is travelling on a straight track at 48 ms⁻¹. When the driver sees an amber light ahead, he applies the brakes for a period of 30 seconds, producing a deceleration of $\frac{1}{125}t(30-t)$ ms⁻², where t is the time in seconds after the brakes are applied.

- (i) Find how fast the train is moving after 30 seconds. 2
- (ii) How far it has travelled in that time.
- (d) Two ordinary dice are thrown. Find the probability that the sum of the numbers on the uppermost faces is at least 10.

(e) Consider the function $f(x) = x^2 lnx - \frac{x^2}{2}$:

- (i) Show that f'(x) = 2x ln x. 1
- (ii) Hence find $\int_{1}^{2} x lnx. dx.$ 2

End of Question 15

2

2

2

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a)

ABCD is a quadrilateral with *AD* perpendicular to *AB*. Given that $\angle CAB = \beta$, $\angle ABC = \alpha$, $\angle ACD = \theta$, AD = p and BC = q.

(i) Show that
$$\angle ADC = 90 - (\theta - \beta)$$

(ii) Using the sine rule, prove that
$$q = \frac{p \sin \beta \cos(\theta - \beta)}{\sin \theta \sin \alpha}$$

(b) Consider the function $y = f(x) = 1 + e^{2x}$.

(i) Find
$$f(0), f(1), f(2)$$
. 1

(ii) Show that
$$x = \frac{1}{2} \ln(y - 1)$$
.

The volume V formed when the area between $y = 1 + e^{2x}$, the y-axis, and the (iii) lines y = 2 and y = 4 is rotated about the y-axis is given by:

$$V = \frac{\pi}{4} \int_{2}^{4} [\ln(y-1)]^{2} \, dy$$

Use Simpson's rule with 3 function values to estimate this volume. Leave your answer rounded to 3 significant figures.

Question 16 continues on the next page

1

2

3

In the above figure, the line L: y = mx + 1 cuts the circle $x^2 + y^2 = 25$ at two points $A(x_1, y_1)$ and $B(x_2, y_2)$.

(i) Show that
$$x_1$$
 and x_2 are the roots of $(1 + m^2)x^2 + 2mx - 24 = 0$. 2

(ii) Show that area of
$$\triangle OAB = \frac{1}{2}(x_2 - x_1)$$
. 3

End of paper.

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

$$\text{NOTE : } \ln x = \log_e x, \ x > 0$$

2 unit Trial 2013 $(f)(x-3)^{2}=-4y$ 15) (x-k) = 4a(y-k)2 (i) h = 3, k = 0, a = 1 $(\chi - 1 - 2y)\chi - 1 + 2y)$ $\bigvee (3, 0)$ $\begin{array}{c} (6) \sqrt{\frac{3^{5k+2}}{3^{3k}}} = \left(\begin{array}{c} 5k+2 - 3k \\ 3 \end{array}\right)^{\frac{1}{2}} \\ = \left(\begin{array}{c} 2k+2 \\ 3 \end{array}\right)^{\frac{1}{2}} = 3 \end{array} \end{array}$ (ii) AB (c) $\log a + \log b^2 - (\log a + \log b^2)$ 10ga 1/2 directrix y=+1 () 3/0ga+2/0gb-10ga-2/0gb 2 log a $(9) \underline{Sin} \overline{\partial} = \underline{1 + \cos \partial}$ 1-coso sind $\frac{2\log \alpha}{\frac{1}{2}\log \alpha} = 4 \text{ (D)}$ $LHS \underline{SIN} = \underline{SIN} (1 + \cos \theta) = \underline{SIN} (1 + \cos \theta)$ $(1-\cos\theta)$ $(1+\cos\theta)$ $\overline{1-\cos^2\theta}$ = $\frac{1}{100}$ (a) x + 2x - 8 > 0(x + 4)(x - 2) > 0(x + 4)(x - 2)(x + 2)(x - 2)(x + 2)(x +SINTO = 1+COSO = RHS (2)(h) $\lim_{\chi \to 2} \frac{(\chi - 2)}{(\chi + 3)(\chi - 2)}$ x < -4 and x > 2. () $\rightarrow \frac{1}{5}$ (e) |1-3c| = 2c-||-x = x - | or -(1-x) = x - |But for x > 1, $\begin{array}{ll} \lambda = \lambda \chi & -1 + \chi = \chi - 1 \\ \chi = 1 & 0 = 0 \end{array}$ ||-x| = x' | 16also true Test x=1, LHS |o|=0RHS |-1=0So $\chi = /$ 2) so $(x \ge 1)$ is the solution-

11(1) 2x - y - 4 = 02x+3y-12=0 -4y + 8 = 04y=8 => y=2) 2x - 2 - 4 = 050 2x-6=0 $\chi = 3$ Pt of intersection (3,2).

NOW 2x - 3y + 1 = 02x + 1 = 3y $y = \frac{2}{3}x + \frac{1}{3}$ Line L to this has $m = \frac{-3}{2}$. now $(y-y_1)=m(x-x_1)$ $(y-2) = -\frac{3}{2}(\chi-3)$ 2y - 4 = -3x + 93x + 2y - 13 = 0 $0r' y = -\frac{3}{2}x + \frac{9}{2} + \frac{2}{2}$ (1) $y = -\frac{3}{2}x + b\frac{1}{2}$

11(j) y = 2 sin 2x $y = 2 \times \cos 2x \times 2i$ $= 4\cos 2x$ $(y-52) = \frac{4}{57}(\chi - \frac{\pi}{8})$ $12y - 2 = 4x - \frac{11}{2}$ $df \ \chi = I, \ m = 4 \times \cos \frac{1}{4}$ = $4 \times \frac{1}{2} \times \frac{1}{2}$ $O = 4\alpha - \sqrt{2}y - \frac{1}{2} + 2$ $=\frac{4\sqrt{2}}{2}=2\sqrt{2}$ $0' 0 = 8 \alpha - 2 \sqrt{2} \sqrt{-11 + 4}$ $(y-y_1) = \tilde{m}(x-x_1)$ Using $(y - \sqrt{2}) = 2\sqrt{2}(x - \frac{\pi}{8})$ 3 versions! Accepted. $y = 2 \int 2 \chi - \frac{\sqrt{2} \pi}{4} + \sqrt{2}$ (2)

QUESTION 12. 2U. 2013 TRIAL.

x, -a, y geo. $\frac{-2}{x} = \frac{y}{-2} = q$ -2 y x arith y--2 = x-y=di) xy = +4. 2y - x + 2 = 0. ii) antitation 2年 先 $2(\frac{4}{2}) - x + 2 = 0$ $\frac{8}{7} - x + 2 = 0$ $8 - x^2 + 2x = 0$ $x^2 - 2x - 8 = 0$ $(x^2 - 4x + 2x - 8)$ x(x - 4) + 2(x - 4)(x + 2)(x - 4) = 0x = (4) or (-2) x = 70 yro. discardy = (1) or (-2)(x-2+y)(4 - 2 + 1) $\Gamma = \frac{1}{4} = \frac{1}{2}$ $S_{\infty} = 4 = 2\frac{2}{3}$ $a=x \quad \Gamma=-\frac{2}{x}$ $S_{00} = \frac{9}{1-\Gamma} = \frac{x}{1-\frac{2}{x}} = \frac{1}{2}$ 8-16- $\frac{x}{x+2} + = \frac{x^2}{x+2} = S_{\infty} = \frac{2^2}{2^3}$

 $(x-\alpha)(x-m\alpha)$ x^2+px+q $m\vec{p}=(m+i)^2q$ $\alpha' + m\alpha = -P \cdot \left[\begin{array}{c} \text{Hearrange} \cdot \alpha \notin (1+m) = -P \cdot \\ m\alpha^2 = q \cdot \\ & & \\$ $m\left(\frac{(\pm P)^2}{(1+m)^2}\right) = q$ $mp^2 = q(1+m)^2$

LUNIT - Dollations 13. (a) (i) y = >(Am>c dy = x. cosx + pinx $(u) y = ln(x^2 + 4)$ $\frac{dy}{d\alpha} = \frac{2\chi}{\chi^2 + 4} \sqrt{\frac{2}{\chi^2 + 4}}$ $\begin{array}{ll} (iii) \quad y = e^{5x} + x \\ dy = 5e^{5x} + 1 \\ dy = 5e^{-x} + 1 \\ dx \end{array}$ f'(x) = 2x - 3 $f(x) = x^{2} - 3x + C$ f(x) = 5 = 3 - 9 - 9 + Cb) \rightarrow C = S $f(x) = x^2 - 3x + 5$. 5(+10 dbc $= \frac{2(x+10)^{3/2}}{2} + C$ $= \frac{2\sqrt{(x+10)^3}}{3} + C$ $(ii) \int_{a}^{T_{g}} gec^{2} 2x dx =$ $=\frac{1}{2}(1-0)$ $=\frac{1}{2}$ tan $\frac{\pi}{4}$ - tan 0 与 ____

13(d) y = cos 2 > 1(i) J' +31-2 T $= \int_{0}^{T_{4}} \cos 2x \, dx + \int_{0}^{3T_{4}} \cos 2x \, dx$ coz2x da Area + $= \frac{3}{2} \frac{7}{4} + \frac{3}{4} \frac{7}{4} + \frac{7}{2} \frac{7}{4} + \frac{7}{4} + \frac{7}{2} \frac{7}{4} + \frac{7}{4} +$ $\frac{1}{2}(1-0) + \frac{1}{2}(-1-1) + \frac{1}{2}(-1-1)$ (0 - -1)---- $= \frac{1}{2} + 1 + \frac{1}{2}$ = 2 square units./____(____ $p = 50000e^{-0.08t}$ (i) $t = ? P = 25000 \implies 25000 = 50000e^{-0.08t}$ $0.5 = e^{-0.08t}$ ln 0.5 = -0.08tt = 8.66433 years. : t= 9 years (to rearest year (ii) t=10, P=? \implies $P=50000 e^{-0.05 \times 1000}$ t=9, $P=50000 e^{-0.08 \times 100} = 24338$ people i. lopn that left = 24338 - 22466 = 187

 $13.(f) - 3 \le x \le 5, f(x) > 0, f(x) > 0 = f(x) increasing$ $f''(x) < 0 \xrightarrow{3} \Rightarrow f(x)$ is concave down. positive and increasing v concave down

QUESTION FOURTEEN. MATHEMATICS 2013.
a) i
$$f(z) = 2(2-2)^{-1}$$

 $= x^{3}-4x^{2}+4z$
 $f(x) = 50i^{2}-8x+4$
ii) $f(z) = 0$
 $x = 2, j = 0$
 $x = 4 \text{ refers } x = 2$
 $y = 4 \text{ refers } x = 2$
 $y = 4 \text{ refers } x = 2$
 $y = 10, p = 118, 4118$
when $t = 10, p = 118, 4118$
 $x = 0, p = 118, 4118$
 $y = 4 \text{ refers } x = 2, x = 0$
 $y = 10, p = 118, 4118$
 $z = 2 \text{ refers } consist = 0$
 $f = 10, f = -10, f + 4.5f + 98$
 $z = 2\pi \text{ refers } consist = 0$
 $f^{2} - 10, f + 5, f + 5, f + 50 \text{ refers } consist = 0$
 $f^{2} - 10, f + 5, f + 5, f + 50 \text{ refers } consist = 0$
 $f^{2} - 10, 0, (x - 30) = 0$
 $f^{2} - 10, 0, (x - 30) = 0$
 $f^{2} - 10, 0, (x - 30) = 0$
 $f^{2} - 10, 0, (x - 30) = 0$
 $f^{2} - 0, 3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$
 $f = -0.3 \text{ refers } f = 0$

dx

When t=0 48 = C

Question 16 THSC Zunit. $(a)(i) \angle ACB = 180 - (d+\beta) (\angle Sum \Delta)$ LADC = 360 - 90 - d - 0 - (180 - (d+B)).= 90 - d - 0 + d + B. = 90 - (0-B). (ii) $\left(\frac{q}{p_{in}}\right) = \frac{AC}{sind}$ $\left(\frac{P}{sin0}\right) = \frac{AC}{sin0}$ $= \frac{p \sin D \sin B}{\sin \theta \sin \theta} \qquad (3) \sin D = \sin (40 - 6 - \beta) \\= \cos (\theta - \beta)$ = $p \sin \beta \cos(\theta - \beta)$ Sind sind. 3

(b)(i)f(0) = |+| = 2 $f(1) = 1 + e^2$ $f(2) = 1 + e^4$ $y = 1 + e^{2\pi}$ (ĭi) e²²=y-1 2x = ln(y-1) $\gamma l = \frac{1}{2} ln(y-1)$ 3 (11/11/ $(1\hat{0})$ V= Tu S_2[In (y-1)] dy $= \frac{\pi}{4} \times \frac{1}{3} \times \ln\left(\left(\ln\left(1\right)\right)^{2} + 4\left(\ln\left(2\right)\right)^{2} + \left(\ln(3)\right)^{2}\right)$ $\simeq 0.819 \text{ units}^3$

(c)(i) $y_i = mx_i + 1$ (D) are free since (x_i, y_i) $x_i^2 + y_i^2 = 25$ (2) is on both cross. (1+m²) x12 + 2m24 - 24= x1+m²x12 + 2mx, +1-25 $= \chi_1^2 + (m\chi_1 + 1)^2 - 25.$ = $\chi_{i}^{2} + y_{i}^{2} - 25 from (1)$ = 25-25 from (2) = 0. Similarly For Z2. (ii) $\begin{array}{c} A \\ \hline z_{1} \\ \hline (-z_{1}) \\ \hline \end{array}$ Aren = $\frac{1}{2} \times (-\chi_{1}) + \frac{1}{2} \times 1 \times \chi_{2}$ $=\frac{1}{2}(x_{2}-x_{1}).$