2013

TRIAL HIGHER SCHOOL

CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time - 180 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- Show all necessary working in

Questions 11-16

Total Marks - 100 Marks

Section I 10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II 90 Marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section.

Examiner: External Examiner

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Section I
Total marks - 10
Attempt Questions 1 - 10

Answer each question on the multiple choice answer sheet provided.

1) $\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}+\cos ^{2} \theta$ equals
(A) 1
(B) $\frac{1}{2}+\cos ^{2} \theta$
(C) $1+\tan ^{2} \theta$
(D) $1+\cos ^{2} \theta$
2)

In the figure above, x equals
(A) 31°
(B) 34°
(C) 40°
(D) 48°
3)

In the figure above $A B \| D C, A B=q$ and $D C=p . B C$ equals
(A) $\frac{(p+q) \sin 50^{\circ}}{2 \sin 70^{\circ}}$
(B) $\frac{(p+q) \sin 70^{\circ}}{2 \sin 50^{\circ}}$
(C) $\frac{(p-q) \sin 70^{\circ}}{\sin 60^{\circ}}$
(D) $\frac{(p-q) \sin 50^{\circ}}{\sin 70^{\circ}}$
4) The period of the function $f(x)=\sin \left(3 x-\frac{\pi}{3}\right), x \in R$ is
(A) $\frac{\pi}{9}$
(B) $\frac{2 \pi}{3}$
(C) 2π
(D) $\frac{\pi}{3}$
5) The solution(s) of the equation $e^{x}+e^{-x}=-\frac{3}{2}$, where $x \in R$, is (are)
(A) $\ln 2$ only
(B) $\pm \ln 2$
(C) $\quad-\ln 2$ only
(D) None of these
6) From the graph of $y=f(x)$, when is $f^{\prime}(x)$ negative?

(A) $\quad x<-3$ or $x>3$
(B) $-3<x<3$
(C) $x \leq-3$ or $x \geq 3$
(D) $-3 \leq x \leq 3$
7) If M is decreasing at an increasing rate, what does this suggest about $\frac{d M}{d t}$ and $\frac{d^{2} M}{d t^{2}}$?
(A) $\quad \frac{d M}{d t}<0$ and $\frac{d^{2} M}{d t^{2}}<0$
(B) $\frac{d M}{d t}>0$ and $\frac{d^{2} M}{d t^{2}}<0$
(C) $\frac{d M}{d t}<0$ and $\frac{d^{2} M}{d t^{2}}>0$
(D) $\frac{d M}{d t}>0$ and $\frac{d^{2} M}{d t^{2}}>0$
8)

In the figure, the radius of the sector is r and $\angle P O Q=x^{\circ}$. If the area of the sector is A then x equals
(A) $\frac{2 A}{r^{2}}$
(B) $\frac{360 A}{\pi r^{2}}$
(C) $\frac{180 A}{\pi r^{2}}$
(D) $\frac{180 A}{r^{2}}$
9) Which of the following expressions gives the total area of the shaded region in the diagram?

(A) $\int_{-1}^{6} f(x) d x$
(B) $-\int_{-1}^{0} f(x) d x+\int_{0}^{6} f(x) d x$
(C) $\quad-\int_{-1}^{1} f(x) d x+\int_{1}^{4} f(x) d x-\int_{4}^{6} f(x) d x$
(D) $\quad \int_{1}^{4} f(x) d x+2 \int_{4}^{6} f(x) d x$
10) Which of the following is the derivative of $y=\ln [f(x)]$
(A) $\frac{f(x)}{f^{\prime}(x)}$
(B) $\frac{f^{\prime}(x)}{f(x)}$
(C) $\frac{1}{f^{\prime}(x)}$
(D) $\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}$

End of Section I

Section II

Free response questions

Total marks - 90
Attempt Questions 11-16

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Factorise $x^{2}-2 x+1-4 y^{2}$
(b) Simplify

$$
\sqrt{\frac{3^{5 k+2}}{27^{k}}}
$$

(c) Simplify

$$
\frac{\log \left(a^{3} b^{2}\right)-\log \left(a b^{2}\right)}{\log \sqrt{a}}
$$

(d) Solve $x^{2}+2 x-8>0$
(e) By considering the cases $x \leq 1$ and $x>1$, or otherwise, solve

$$
\begin{equation*}
|1-x|=x-1 \tag{2}
\end{equation*}
$$

(f) For the parabola $(x-3)^{2}=-4 y$.
(i) Find the coordinates of the vertex.
(ii) State the equation of the directrix of the parabola.
(g) Prove

$$
\begin{equation*}
\frac{\sin \theta}{1-\cos \theta}=\frac{1+\cos \theta}{\sin \theta} \tag{2}
\end{equation*}
$$

(h) Evaluate

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}+x-6}
$$

(i) Find the equation of a straight line passing through the point of intersection of the lines $l_{1}: 2 x-y-4=0$ and $l_{2}: 2 x+3 y-12=0$ and perpendicular to the line $2 x-3 y+1=0$.
(j) Find the equation of the tangent to the curve $y=2 \sin 2 x$ at the point $\left(\frac{\pi}{8}, \sqrt{2}\right)$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Draw a number plane and mark the points $P(-2,2)$ and $Q(-4,-2)$.
(i) Show that the equation of the line through P perpendicular to $P Q$ is given by

$$
x+2 y-2=0
$$

(ii) The line perpendicular to $P Q$ through P intersects the x-axis at R. Find the coordinates of R.
(iii) Show that the mid-point of $Q R$ is $(-1,-1)$. Mark this point T on your diagram.
(iv) Find the perpendicular distance from T to the interval $P R$.
(b) $\quad x$ and y are positive numbers. $x,-2, y$ are consecutive terms of a geometric series, and $-2, y, x$ are consecutive terms of an arithmetic series.
(i) Find the value of $x y$.
(ii) Find the values of x and y.
(iii) Find the sum to infinity of the geometric series

$$
x-2+y \ldots
$$

(c) Given that α and $m \alpha$ are the roots of the equation $x^{2}+p x+q=0$, show that

$$
\begin{equation*}
m p^{2}=(m+1)^{2} q \tag{2}
\end{equation*}
$$

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Differentiate with respect to x :
(i) $x \sin x \quad 1$
(ii) $\ln \left(x^{2}+4\right) \quad 1$
(iii) $e^{5 x}+x \quad 1$
(b) The graph of $y=f(x)$ passes through the point (3,5), and $f^{\prime}(x)=2 x-3$. Find $f(x)$.
(c) Find:
(i)

$$
\int \sqrt{x+10} \cdot d x
$$

(ii)

$$
\int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x \cdot d x
$$

(d) Consider the curve $y=\cos 2 x$:
(i) Sketch $y=\cos 2 x$ for $0 \leq x \leq 2 \pi$.
(ii) Find the area between the curve $y=\cos 2 x$ and the x-axis from $x=0$ to $x=\pi$.
(e) The population P of Newcastle after t years is given by the exponential equation

$$
P=50000 e^{-0.08 t}
$$

(i) Find the time to the nearest year for the initial population to halve.
(ii) Find the number of people who leave Newcastle during the tenth year.
(f) A continuous curve $y=f(x)$ has the following properties for the closed interval $-3 \leq x \leq 5: f(x)>0, f^{\prime}(x)>0, f^{\prime \prime}(x)<0$. Sketch a curve satisfying these conditions.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Given that $f(x)=x(x-2)^{2}$
(i) Show that $f^{\prime}(x)=3 x^{2}-8 x+4$.
(ii) Find 2 values of x for which $f^{\prime}(x)=0$, and give the corresponding values of $f(x)$.
(iii) Determine the nature of the turning points of the curve $y=f(x)$.
(iv) Sketch the curve $y=f(x)$ showing all essential features.
(v) Use your sketch to solve the inequation $x(x-2)^{2} \geq 0$.
(b) An economist predicts that over the next few months, the price of crude oil, p dollars a barrel, in t weeks time will be given by the formula

$$
P=0.005 t^{3}-0.3 t^{2}+4.5 t+98
$$

(i) What is the price at present, and how rapidly is it going up?
(ii) How high does she expect the price to rise?
(c) A coin is made by starting with an equilateral triangle ABC of side 2 cm . With centre A an arc of a circle is drawn joining B to C. Similar arcs join C to A and A to B.

(i) Find, exactly, the perimeter of the coin.
(ii) Find area of one of its faces.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Given that in $\triangle A B C, X Y| | B C$ and $R Y|\mid S C$,

Prove $A X: X B=A R: R S$.
(b) A couple plan to buy a home and they wish to save a deposit of $\$ 40000$ over five years. They agree to invest a fixed amount of money at the beginning of each month during this time. Interest is at 12% per annum compounded monthly.
(i) Let $\$$ P be the monthly investment. Show that the total investment $\$ \mathrm{~A}$ after five years is given by

$$
A=P\left(1.01+1.01^{2}+\cdots+1.01^{60}\right)
$$

(ii) Find the amount $\$$ P needed to be deposited each month to reach their goal.

Answer correct to the nearest dollar.
(c) A train is travelling on a straight track at $48 \mathrm{~ms}^{-1}$. When the driver sees an amber light ahead, he applies the brakes for a period of 30 seconds, producing a deceleration of $\frac{1}{125} t(30-t) \mathrm{ms}^{-2}$, where t is the time in seconds after the brakes are applied.
(i) Find how fast the train is moving after 30 seconds.
(ii) How far it has travelled in that time.
(d) Two ordinary dice are thrown. Find the probability that the sum of the numbers on the uppermost faces is at least 10 .
(e) Consider the function $f(x)=x^{2} \ln x-\frac{x^{2}}{2}$:
(i) Show that $f^{\prime}(x)=2 x \ln x$.
(ii) Hence find $\int_{1}^{2} x \ln x . d x$.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a)

$A B C D$ is a quadrilateral with $A D$ perpendicular to $A B$. Given that $\angle C A B=\beta$, $\angle A B C=\alpha, \angle A C D=\theta, A D=p$ and $B C=q$.
(i) Show that $\angle A D C=90-(\theta-\beta)$
(ii) Using the sine rule, prove that

$$
q=\frac{p \sin \beta \cos (\theta-\beta)}{\sin \theta \sin \alpha}
$$

(b) Consider the function $y=f(x)=1+e^{2 x}$.
(i) Find $f(0), f(1), f(2)$.
(ii) Show that $x=\frac{1}{2} \ln (y-1)$.
(iii) The volume V formed when the area between $y=1+e^{2 x}$, the y-axis, and the lines $y=2$ and $y=4$ is rotated about the y-axis is given by:

$$
V=\frac{\pi}{4} \int_{2}^{4}[\ln (y-1)]^{2} \cdot d y
$$

Use Simpson's rule with 3 function values to estimate this volume. Leave your answer rounded to 3 significant figures.
(c)

In the above figure, the line $L: y=m x+1$ cuts the circle $x^{2}+y^{2}=25$ at two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.
(i) Show that x_{1} and x_{2} are the roots of $\left(1+m^{2}\right) x^{2}+2 m x-24=0$.
(ii) Show that area of $\triangle O A B=\frac{1}{2}\left(x_{2}-x_{1}\right)$.

End of paper.

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

2013 MATHEMATICS TRIAL -SOLUTIONS (2-UNIT)

$$
\text { 1. } \begin{aligned}
& \frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}+\cos ^{2} \theta \\
= & \frac{\tan ^{2} \theta}{\sec ^{2} \theta}+\cos ^{2} \theta \\
= & \sin ^{2} \theta \\
= & \cos ^{2} \theta
\end{aligned}
$$

2.

$$
\begin{aligned}
122^{\circ} & =x^{\circ}+56^{\circ}+26^{\circ} \\
122^{\circ} & =x^{\circ}+82^{\circ} \\
x & =40^{\circ}
\end{aligned}
$$

3. Eliminate $A B$:

4. $f(x)=\sin \left(3 x-\frac{\pi}{3}\right)$

$$
\text { Period }=\frac{2 \pi}{3}
$$

5. $e^{x}+e^{-x}=-\frac{3}{2}$

None of these
6. $f^{\prime}(x)<0$

$$
-3<x<3
$$

A
7. $\frac{d M}{d t}<0$ and $\frac{d^{2} M}{d t^{2}}>0$
$O R \frac{d M}{d t}<0$ and $\frac{d^{2} M}{d t^{2}}<0$

8. $A=\frac{x}{360} \times \pi \times r^{2}$
$\frac{360 A}{\pi r^{2}}=x$
B
9. $A=\int_{-1}^{1} f(x) d x+\int_{1}^{4} f(x) d x$

$$
-\int_{4}^{6} f(x) d x
$$

C
10. $y=\ln [f(x)]$

$$
y^{\prime}=\frac{f^{\prime}(x)}{f(x)}
$$

2 unit Trial 2013
(11) (a) $x^{2}-2 x+1-4 y^{2}$

$$
(x-1)^{2}-4 y^{2} \Rightarrow A^{2}-B^{2}
$$

$$
\underbrace{(x-1-2 k+2-3 k)^{\frac{1}{2}}}_{(1-2 y)(x-1+2 y)}
$$

(b) $\sqrt{\frac{3^{5 k+2}}{3^{3 k}}}=\left(3^{5 k+2}\right.$

$$
=\left(3^{2 k+2}\right)^{\frac{1}{2}}=3^{k}
$$

(c) $\frac{\log a^{3}+\log b^{2}-\left(\log a+\log b^{2}\right)}{\log a^{1 / 2}}$
$\log a^{1 / 2}$
$3 \log a+2 \log b-\log a-2 \log b$
$\frac{1}{2} \log a$

$$
\frac{2 \log a}{\frac{1}{2} \log a}=4
$$

(d) $x^{2}+2 x-8>0$

$x<-4$ and $x>2$ (1)

Test $x=1, L H S / 0 /=0$ $R H S H=0$

$$
\begin{aligned}
& \text { (e) }|1-x|=x-1 \\
& 1-x=x-1 \text { or }-(1-x)=x-1 \\
& 2=2 x \\
& x=1
\end{aligned}
$$

15

$$
\text { (f) }(x-3)^{2}=-4 y
$$

$$
(x-k)^{2}=4 a(y-k)
$$

(i) $h=3, k=0, a=1$
(ii) $\underbrace{V(3,0) \text { (1) }}_{\text {衫 }}$

But for $x>1$
$|1-x|=x-1$ is also true
(2) so $x \geqslant 1$ is the anution-

$$
\begin{aligned}
& \text { (g) } \frac{\sin \theta}{1-\cos \theta}=\frac{1+\cos \theta}{\sin \theta} \\
& \text { LHS } \frac{\sin \theta}{(1-\cos \theta)} \times \frac{(1+\cos \theta)}{(1+\cos \theta)}=\frac{\sin \theta(1+\cos \theta)}{1-\cos ^{2} \theta} \\
& =\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta} \\
& =\frac{1+\cos \theta}{\sin \theta} \\
& \text { =RHS. } \\
& \text { (h) } \\
& \lim _{x \rightarrow 2} \frac{(x-2)}{(x+3)(x+2)} \\
& \rightarrow \frac{1}{5} \text { (1) }
\end{aligned}
$$

/I (i)

$$
\text { i) } \begin{gathered}
2 x-y-4=0 \\
2 x+3 y-12=0 \\
-4 y+8=0 \\
4 y=8 \Rightarrow y=2
\end{gathered}
$$

So

$$
\begin{gathered}
2 x-2-4=0 \\
2 x-6=0 \\
x=3
\end{gathered}
$$

Pt of intersection $(3,2)$.
now

$$
\begin{aligned}
& 2 x-3 y+1=0 \\
& 2 x+1=3 y \\
& y=\frac{2}{3} x+\frac{1}{3}
\end{aligned}
$$

Line \perp to this has $m=\frac{-3}{2}$

$$
\text { now } \begin{align*}
&\left(y-y_{1}\right)=m\left(x-x_{1}\right) \\
&(y-2)=-\frac{3}{2}(x-3) \\
& 2 y-4=-3 x+9 \\
& 3 x+2 y-13=0 \\
& \text { or } y=-\frac{3}{2} x+\frac{9}{2}+2 \\
& y=-\frac{3}{2} x+6 \frac{1}{2} \tag{2}
\end{align*}
$$

(j) $y=2 \sin 2 x$

$$
y^{\prime}=2 \times \cos 2 x \times 2
$$

$$
=4 \cos 2 x .
$$

at $x=\frac{\pi}{8}$,

$$
\begin{aligned}
m & =4 \times \cos \frac{\pi}{4} \\
& =4 \times \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{4 \sqrt{2}}{2}=2 \sqrt{2} .
\end{aligned}
$$

using $\quad\left(y-y_{1}\right)=m(x-x$,

$$
\begin{align*}
& (y-\sqrt{2})=2 \sqrt{2}\left(x-\frac{\pi}{8}\right) \\
& y=2 \sqrt{2} x-\frac{\sqrt{2} \pi}{4}+\sqrt{2} \tag{2}
\end{align*}
$$

or $0=8 x-2 \sqrt{2} y-\pi+4$

QUESTION 12.24 .2013 TRIAL.

$$
\begin{aligned}
& M_{P Q}=\frac{2--2}{-2--4}=\frac{4}{2}=2 . \\
& M_{l_{1}}=-\frac{1}{2} \quad P(-2,2) .
\end{aligned}
$$

$$
e_{1}: \quad y-2=-\frac{1}{2}(x-2)
$$

$$
2 y-4=-x-2
$$

(PR $\quad x+2 y-2=0$
ii) When $\quad y=0 \quad x=2 \quad \therefore \quad$ crosses at $(2,0)$.

$$
\text { iii) } \begin{aligned}
M P Q R & =\left(\frac{-4+2}{2}, \frac{-2+0}{2}\right) . \\
& =(-1,-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { v) }(x+2 y-2)=0 \quad(-1,-1) \\
& d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|=\frac{1(-1)+2(-1)-2}{\sqrt{1^{2}+2^{2}}}=\frac{-5}{\sqrt{5}}=-\sqrt{5}
\end{aligned}
$$

$x,-2, y$ geo. $\frac{-2}{x}=\frac{y}{-2}=$
-2 y x arith. $y--2=x-y=d$
i) $x y=+4$.

$$
2 y-x+2=0
$$

ii). $a+\left(t a x=\frac{x}{x}\right.$

$$
\begin{aligned}
& 2\left(\frac{4}{x}\right)-x+2=0 . \\
& \frac{8}{x}-x+2=0 . \\
& 8-x^{2}+2 x=0 \\
& x^{2}-2 x-8=0 . \\
& \left(x^{2}-4 x+2 x-8\right. \\
& x(x-4)+2(x-4) \\
& (x+2)(x-4)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x=(4) \text { or }\binom{-2}{-2} \quad x>0 \quad y>0 \quad \text { discard } \\
y=(1) \text { or }
\end{array} \\
& (x-2+y) \quad(4-2+1) \cdot r=-\frac{-2}{4}=\frac{1}{2} \\
& a=x \quad r=-\frac{2}{x} \quad S_{\infty}=\frac{4}{1-\frac{1}{2}}=2 \frac{2}{3} . \\
& S_{\infty}=\frac{a}{1-r}=\frac{x}{1-2 / x}= \\
& \frac{x}{\frac{x+2}{x}} \div=\frac{x^{2}}{x+2}=S_{\infty}
\end{aligned}
$$

$$
\begin{gathered}
(x-\alpha)(x-m \alpha) \quad x^{2}+p x+q \\
m p^{2}=(m+1)^{2} q \\
\alpha+m \alpha=-p \cdot \begin{array}{r}
\text { rearrange } \alpha(1+m)=-p \\
m \alpha^{2}= \\
\therefore \alpha=\frac{-p}{1+m} \\
m\left(\frac{t-p)^{2}}{(1+m)^{2}}\right)=q \\
m p^{2}
\end{array} \quad q(1+m)^{2} .
\end{gathered}
$$

Zunit - dolations
13. (a)

$$
\text { (i) } \begin{aligned}
y & =x \sin x \\
\frac{d y}{d x} & =x \cdot \cos x+\sin x
\end{aligned}
$$

$$
\begin{aligned}
& (i i) y=\ln \left(x^{2}+4\right) \\
& \frac{d y}{d x}=\frac{2 x}{x^{2}+4}
\end{aligned}
$$

(iii) $\begin{aligned} y & =e^{5 x}+x \\ d y & =5 e^{5 x}+1\end{aligned}$

$$
\frac{d y}{d x}=5 e^{5 x}+1
$$

(b)

$$
\begin{aligned}
& f^{\prime}(x)=2 x-3 \\
& f(x)=x^{2}-3 x+c \\
& f(3)=5 \Rightarrow 5=9-9+c \Rightarrow c=5 \\
& \therefore f(x)=x^{2}-3 x+5 .
\end{aligned}
$$

(c)
(i) $\int \sqrt{x+10} d x$

$$
\begin{aligned}
& =\frac{2(x+10)^{3 / 2}}{3}+C \\
& =\frac{2 \sqrt{(x+10)^{3}}}{3}+C .
\end{aligned}
$$

(ii) $\int_{0}^{\pi / 8} \sec ^{2} 2 x d x=\left[\frac{1}{2} \tan 2 x\right]_{0}^{\pi / 8}$

$$
\begin{aligned}
& =\frac{1}{2}\left[\tan \frac{\pi}{4}-\tan 0\right]=\frac{1}{2}(1-0) \\
& =\frac{1}{2} .
\end{aligned}
$$

$13(d) \quad y=\cos 2 x$
(i)
$y \uparrow$

$\begin{aligned} & \text { (ii) } \quad \text { Area }=\int_{0}^{\pi / 4} \cos 2 x d x+\left|\int_{\pi / 4}^{3 \pi / 4} \cos 2 x d x\right|+\int_{\frac{3 \pi}{4}}^{\pi} \cos 2 x d x \\ &=\left[\frac{\sin 2 x}{2}\right]_{0}^{\pi / 4}+\left|\left[\frac{\sin 2 x}{2}\right]_{\pi / 4}^{3 \pi / 4}\right|+\left[\frac{\sin 2 x}{2}\right]_{\frac{3 \pi}{4}}^{\pi}\end{aligned}$

$$
\begin{aligned}
& =\frac{1}{2}(1-0)+\frac{1}{2}|(-1-1)|+\frac{1}{2}[(0--1)] \\
& =\frac{1}{2}+1+\frac{1}{2} \\
& =2 \text { square units. }
\end{aligned}
$$

(e) $P=50000 e^{-0.08 t}$
(i) $t=? \quad P=25000 \Rightarrow 25000=50000 e^{-0.08 t} 0.08 x$

$$
\begin{aligned}
0.5 & =e^{-0.08 t} \\
\ln 0.5 & =-0.08 t \\
t & =8.66433 \text { years } \\
t & =9 \text { years (to near }
\end{aligned}
$$

$\therefore t=9$ years (to nearest year) V
(ii) $t=10, P=? \Rightarrow P=50000 e^{-0.08 \times 10}$

$$
t=9, p=50600 \quad \Rightarrow \quad e^{-0.05 \times \bar{M}}=242436 \text { people }=2438 \text { people }
$$

\therefore Poon that left $=24338-22466$
$=1872$ people
13.(f) $-3 \leqslant x \leqslant 5, f(x)>0, f^{\prime}(x)>0 \Rightarrow f(x)$ increasing $f^{\prime \prime}(x)<0 \$ f(x)$ is concave down.

positive and increasing v
concave down $V \checkmark$

QUESTION FOURTEEN. MATHEMATICS 2013.
a) i

$$
\begin{aligned}
f(x) & =x(x-2)^{2} \\
& =x^{3}-4 x^{2}+4 x \\
f^{\prime}(x) & =3 x^{2}-8 x+4
\end{aligned}
$$

ii) $f^{\prime}(x)=0$
when $3 x^{2}-8 x+4=0$

$$
\begin{aligned}
(3 x-2)(x-2) & =0 \\
x & =2, y=0 \\
x & =2 / 3, y=\frac{32}{27}
\end{aligned}
$$

sin

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x-8 \\
& =4 \text { when } x=2 \\
& =-4 \text { when } x=2 / 3 \text { MAX }
\end{aligned}
$$

$w)$

v) From ahetch

$$
x>0
$$

c) $P=.005 t^{3}-3 t^{2}+4.5 t+98$
i) When $t=0 \quad P=98, \$ 98$

$$
\frac{a P}{d t}=.015 t^{2}-.6 t+4.5
$$

when $t=0, \frac{d P}{d t}=4.5, \$ 4.50 / \mathrm{w}$
ii) $\frac{d P}{d t}=0$ when

$$
\begin{array}{r}
\frac{3}{200} t^{2}-\frac{6}{10} t+\frac{9}{2}=0 \\
3 t^{2}-120 t+900=0 \\
t^{2}-40 t+300=0 \\
(t-10)(t-30)=0 \\
t=10,30
\end{array}
$$

$$
\begin{aligned}
\frac{d^{2} p}{d t^{2}} & =-03 t-0.6 \\
& =-0.3 \text { cohen } x=10
\end{aligned}
$$

Hence Rolatwe MAX.

Q15
(a) $A X: X B=A 4: Y C$ (proportional division theorme)

$$
A R: R S=A Y: Y C(" \quad 1 \quad ")
$$

$$
\therefore A X: \times B=A R: R S
$$

(b) (i) Amt cifter 1 month

$$
=1 \times 1.01
$$

Ant after 2 month

$$
=P \times 1.01^{2}+P \times 1.01
$$

Ant after 3 manths

$$
\begin{aligned}
& =\left(P \times 1.01^{2}+P \times 1.01\right) \times 1.01+P \times 1.01 \\
& =P\left(1.01^{3}+1.01^{2}+1.01\right)
\end{aligned}
$$

$\therefore A=$ Anct aftr 60 morth

$$
=P\left(1.01^{60}+1.01^{54}+\cdots+\cdot+1.01\right)
$$

a required 2
(ii)

$$
\begin{aligned}
\text { (ii) } A & =\frac{P \times 1.01 \times\left(1.01^{60}-1\right)}{1.01-1} \\
\therefore 40000 & =P \times 101 \times\left(1.01^{60}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore P & =\frac{40000}{101\left(1.01^{60}-1\right)} \\
& =484.9286 \ldots \\
& \approx \$ 485
\end{aligned}
$$

(c)

$$
\begin{aligned}
\ddot{x} & =-\frac{t}{125}(30-t) \\
& =\frac{c^{2}}{125}-\frac{6 t}{25} \\
\dot{x} & =\frac{t^{3}}{375}-\frac{3 t^{2}}{25}+c
\end{aligned}
$$

When $t=0 \quad 48=c$

$$
\begin{aligned}
& \therefore \dot{x}=\frac{t^{3}}{375}-\frac{3 t^{2}}{25}+48 \\
& \therefore x=\frac{t^{4}}{1500}-\frac{t^{3}}{25}+48 t+c
\end{aligned}
$$

whe $t=0: 0=c_{1}$

$$
\therefore x=\frac{t^{4}}{1500}-\frac{t^{3}}{25}+48 t
$$

(i) when $t=30, \dot{x}=\frac{30^{3}}{375}-\frac{3 \times 30^{2}}{25}+48$

$$
=12 \mathrm{mr}^{-1}
$$

(ii)

$$
\begin{align*}
\text { When } t=30, x & =\frac{30^{4}}{1500}-\frac{30^{3}}{25}+48 \times 30 \tag{2}\\
& =900 \mathrm{~m} \\
P(\text { at least } 10) & =P(10)+P(11)+P(12) \\
& =P(46,55,64)+P(56,65)+P \\
& =\frac{6}{36} \\
& =1
\end{align*}
$$

(e) $f(x)=x^{2} \ln x-\frac{x^{2}}{2}$
(i)

$$
\begin{aligned}
f^{\prime}(x) & =\ln x \cdot 2 x+x^{2} \cdot \frac{1}{x}-\frac{2 x}{2} \\
& =2 x \ln x+x-x \\
& =2 x \ln x
\end{aligned}
$$

(ii) $\int_{1}^{2} x \ln x d x=\frac{1}{2} \int_{i}^{2} 2 x \ln x d x$

$$
\begin{aligned}
& =\frac{1}{2}\left[x^{2} \ln x-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{2}\left\{\left[4 \ln 2-\frac{4}{2}\right]-\left[1.0-\frac{1}{2}\right.\right. \\
& =\frac{1}{2}\left\{4 \ln 2-2^{2}+\frac{1}{2}\right\} \\
& =2 \ln 2-\frac{3}{4}
\end{aligned}
$$

Question 16 THSC 2mat.

$$
\begin{aligned}
(a)(i) \angle A C B & =180-(\alpha+\beta) \quad(\angle \operatorname{sum} \Delta) \\
\angle A D C & =360-90-\alpha-\theta-(180-(\alpha+\beta)) . \\
& =90-\alpha-\theta+\alpha+\beta . \quad(\angle \text { sum quad }) \\
& =90-(\theta-\beta) .
\end{aligned}
$$

(ii)

$$
\text { (1) } \frac{q}{\sin \beta}=\frac{A C}{\sin \alpha}
$$

(2) $\frac{P}{\sin \theta}=\frac{A C}{\sin O}$.
(4)

$$
\begin{align*}
a & =A C \frac{\sin \beta}{\sin \alpha} \\
& =\frac{p \sin D \sin B}{\sin \theta \sin \alpha} . \tag{3}\\
& =\frac{P \sin \beta \cos (\theta-\beta)}{\sin \theta \sin \alpha .}
\end{align*}
$$

$$
A C=\frac{P \sin D}{\sin \theta}
$$

(3) s

$$
\begin{aligned}
D= & \sin (90-(\theta-\beta) \\
= & \cos (\theta-\beta) \\
& 3
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& f(0)=1+1=2 \\
& f(1)=1+e^{2} \\
& f(2)=1+e^{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =1+e^{2 x} \\
e^{2 x} & =y-1 \\
2 x & =\ln (y-1) \\
x & =\frac{1}{2} \ln (y-1)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
V & =\frac{\pi}{4} \int_{2}^{4}[\ln (y-1)]^{2} d y \\
& =\frac{\pi}{4} \times \frac{1}{3} \times 1 \times\left((\ln (1))^{2}+4(\ln (2))^{2}+(\ln (3))^{2}\right) \\
& \approx 0.819 \text { units }^{3}
\end{aligned}
$$

(c) (i)
$y_{1}=m x_{1}+1$ (1)
$x_{1}^{2}+y_{1}^{2}=25(2)$ is on both curves.

$$
\begin{aligned}
\left(1+m^{2}\right) x_{1}^{2}+2 m x_{1}-24 & =x_{1}^{2}+m^{2} x_{1}^{2}+2 m x_{1}+1-25 \\
& =x_{1}^{2}+\left(m x_{1}+1\right)^{2}-25 \\
& =x_{1}^{2}+y_{1}^{2}-25 \text { from (1) } \\
& =25-25 \text { from (2) } \\
& =0 .
\end{aligned}
$$

Similarly for x_{2}.
(ii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 1 \times\left(-x_{1}\right)+\frac{1}{2} \times 1 \times x_{2} \\
& =\frac{1}{2}\left(x_{2}-x_{1}\right) \cdot 3
\end{aligned}
$$

