

20 SYDNEY BOYS HIGH SCHOOL trial higher school certificate examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided with this paper
- Leave your answers in the simplest exact form, unless otherwise stated
- All necessary working should be shown in every question if full marks are to be awarded
- Marks may NOT be awarded for messy or badly arranged work
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I
 Pages 3-6

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II
 Pages 8-19

90 marks

- Attempt Questions 11-16
- Allow about 2 hour and 45 minutes for this section

Examiner: B.K.

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1. $\cos \left(\frac{-5 \pi}{4}\right)$ is the same as
(A) $\quad-\cos \left(\frac{\pi}{4}\right)$
(B) $-\cos \left(\frac{5 \pi}{4}\right)$
(C) $\cos \left(\frac{-\pi}{4}\right)$
(D) $\quad \cos \left(\frac{\pi}{4}\right)$
2. What is the domain and range of the function $y=\frac{1}{\sqrt{x-9}}$?
(A) $x \geq 9$ and $y>0$
(B) $\quad x>9$ and $y>0$
(C) $\quad-\infty \leq x \leq \infty$ and $-\infty \leq y \leq \infty$
(D) $\quad-3 \leq x \leq 3$ and $y<0$
3. Evaluate $\lim _{x \rightarrow-4} \frac{x^{2}+4 x}{x+4}$
(A) Does not exist
(B) $-\frac{1}{4}$
(C) 4
(D) -4
4. What is the area bounded by the curve $y=3 \sin 2 x$ and the x-axis between $x=\frac{\pi}{4}$ and $x=\frac{3 \pi}{4}$?
(A) $\left|\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x\right|$
(B) $-\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x$
(C) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 3 \sin 2 x d x+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x$
(D) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 3 \sin 2 x d x-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x$
5. The derivative of $e^{\sin x}$ is equal to
(A) $\quad(\cos x) e^{\sin x}$
(B) $e^{\cos x}$
(C) $e^{\sin x}$
(D) $(\cos x) e^{\cos x}$
6. A primitive of $e^{3 x}+\sin (3 x)$ is
(A) $\quad e^{3 x}-\frac{\cos (3 x)}{3}$
(B) $\frac{e^{3 x}}{3}-\frac{\cos (3 x)}{3}$
(C) $3 e^{x}+3 \cos (3 x)$
(D) $\frac{e^{3 x}}{3}-\cos (3 x)$
7. Fifty tickets are sold in a raffle. There are two prizes. Michelle buys 5 tickets. The probability that she does not win either prize is given by
(A) $1-\frac{5}{50} \times \frac{4}{49}$
(B) $\frac{45}{50}+\frac{44}{49}$
(C) $\frac{45}{50} \times \frac{44}{50}$
(D) $\frac{45}{50} \times \frac{44}{49}$
8. A parabola is shown below

What is the equation of the parabola with directrix $y=1$ and focus $F(0,-5)$
(A) $x^{2}=12(y+2)$
(B) $x^{2}=12(y+5)$
(C) $x^{2}=-12(y+2)$
(D) $\quad x^{2}=-24(y+5)$
9. $\frac{\log _{5} 125}{\log _{5} 5}$ simplifies to
(A) $\quad \log _{5} 25$
(B) $\quad \log _{5} 120$
(C) 25
(D) 3
10. Let $a=e^{x}$. Which expression is equal to $\log _{e}\left(a^{2}\right)$?
(A) $e^{2 x}$
(B) $e^{x^{2}}$
(C) $2 x$
(D) x^{2}

Section II

90 marks

Attempt Questions 11-16

Allow about $\mathbf{2}$ hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Use a SEPARATE writing booklet

a) Differentiate with respect to x
(i) $3 x^{e}$
(ii) $\log _{e}(\tan x)$
b) If $y=10 x^{2}+x-2$ has roots α and β, find
(i) $\alpha+\beta$
(ii) $\alpha^{2}+\beta^{2}$
c) The volume $V \mathrm{~cm}^{3}$ of unmelted ice-cream in a container, t seconds after it has been removed from a freezer (at 0°) is modelled by the equation

$$
V(t)=0.02 t^{2}-4 t+200 .
$$

Find the rate (in $\mathrm{cm}^{3} / \mathrm{sec}$) at which the ice-cream is melting 40 seconds after it is removed from the freezer.
d) Solve simultaneously

$$
\begin{aligned}
a+b & =-2 \\
2 a+b & =0
\end{aligned}
$$

Question 11 continues on page 9

Question 11 (continued)
e) Find the equation of the perpendicular bisector of the interval joining $(6,8)$ and $(0,-4)$.
f) Factorise fully $16 x^{3}-54$
g) The graph of $y=f(x)$ passes through the point $(2,65)$ and (2) $f^{\prime}(x)=12 x+29$.

Find $f(x)$.

End of Question 11

Question 12 (15 Marks) Use a SEPARATE writing booklet

a) Find $\int\left(\sin 2 x+e^{-3 x}\right) d x$
b) Evaluate $\int_{1}^{5}\left(2+\frac{1}{x}\right)^{2} d x$
c) The table shows the values of $f(x)$ for five values of x.

x	1	1.5	2	2.5	3
y	5	1	-2	3	7

Use Simpson's Rule with these five values to estimate $\int_{1}^{3} f(x) d x$
d) Solve for x : $\log _{5}(2 x+1)-\log _{5} x=2$
e) A chemical factory releases polluted water into a holding pond in periods of 30 seconds. The rate of change of the total volume of polluted water which has been released after time t seconds from the start of the period is given by

$$
30 t-t^{2} \mathrm{~cm}^{3} / \mathrm{s} \text { for } 0 \leq t \leq 30 .
$$

Find the total volume of polluted water released for such a 30 second period.

Question 12 (continued)

f) The triangle $A B C$ is isosceles with $A B=B C$.

Let $\angle A B D=\angle C B D=\alpha$ and $\angle B A D=\beta$ as shown below

(i) Show $\sin \beta=\cos \alpha$
(ii) By applying the sine rule in $\triangle A B C$, show that

$$
\begin{equation*}
\sin 2 \alpha=2 \sin \alpha \cos \alpha \tag{2}
\end{equation*}
$$

(iii) From (ii), and given that $0<\alpha<\frac{\pi}{4}$, hence show that the limiting sum of the following geometric series

$$
\sin 2 \alpha+\sin 2 \alpha \cos ^{2} \alpha+\sin 2 \alpha \cos ^{4} \alpha+\sin 2 \alpha \cos ^{6} \alpha+\ldots
$$

is equal to $2 \cot \alpha$

End of Question 12

Question 13 (15 Marks) Use a SEPARATE writing booklet

a) Find the equation of the tangent to the curve

$$
y=2 \log _{e}(3 x-2)
$$

at the point $(1,0)$.
b) A petrol tank is designed by rotating the curve $y=\frac{1}{5} x(x-40)$ about the x-axis between $x=0$ and $x=40$. If units are in centimetres, how many litres would the tank hold?

c) The displacement from O of a particle travelling in a straight line is given by $x=2 \sin \frac{\pi}{3} t$, where x is in cm and t is in seconds.
(i) Find the first time when the particle is at rest.
(ii) Find the distance travelled in the first 4 seconds, correct to 1 decimal place.

Question 13 (continued)
d) Jacqueline's farming property is in the shape of a sector.

She planted pine trees in rows along arcs. The first row started 10 m from the point O.
There were 13 trees in the first row, 19 trees in the second row, 25 trees in the third row and so on.
Each row is planted 5 m from the previous row.

(i) If Jacqueline planted 6525 pine trees in total, how many rows did she plant?
(ii) If $\angle A O B$ is 1 radian, what is the length of the last planted row?
e) Sketch the curve $y=x e^{\frac{x}{2}}$ showing any asymptotes and stationary points.

It is NOT necessary to find any points of inflexion.

End of Question 13

Question 14 (15 Marks) Use a SEPARATE writing booklet

a) In a game, two players take turns at drawing and then immediately replacing a marble from a bag. The bag contains 2 green and 3 red marbles.
Player A draws first.
For A to win he must draw a green marble.
For B to win he must draw a red marble. Find the probability that
(i) A wins on his first draw.
(ii) B wins on his first draw.
(iii) A wins in fewer than 4 of his turns.
(iv) A wins eventually.
b) Find any points of inflexion on the curve $y=x^{3}+x^{2}$

Question 14 (continued)
c) In the diagram $F H \| G A$ and $C H \| B A, B C=6, C E=x, E F=7$ and $F G=5$.

(i) Find the value of x, giving reasons.
(ii) Find the length of $B A$, without giving reasons.
d) Exactly 12 years ago, Paul took out a mortgage of $\$ 500000$ to buy a house.

The loan was taken over 25 years at 12% p.a. with interest compounding monthly and Paul makes monthly repayments.
Paul has just won a lottery prize of $\$ 400000$.
(i) Show that the prize is insufficient to pay out the remaining debt.
(ii) How many payments will still be required to pay off the debt? (You may assume that Paul puts the entire prize into paying off the debt.)

End of Question 14

Question 15 (15 Marks) Use a SEPARATE writing booklet

a) What is the value of θ, to the nearest degree?

b) Consider the function $f(x)=k x^{2}-(3 k-4) x+k$.

Show that $f(x)$ is positive definite for $\frac{4}{5}<k<4$.
c) In the diagram below $P(a, m a)$ is a point on the line $y=m x$ which is the internal bisector of $\angle K O S$.
The line $K O$ is $y=2 x$.

(i) Using the fact that the perpendicular distances from P to $O K$ and $O S$ are equal, show that $\frac{|(2-m) a|}{\sqrt{5}}=m a$
(ii) Hence show that $m=\frac{2}{1+\sqrt{5}}$
(iii) Using this result, find the co-ordinates of P if $P N=\sqrt{5}-1$

Question 15 (continued)
d) (i) Find $\frac{d}{d x}\left(x^{2}+1\right)^{3}$.
(ii) Hence evaluate $\int_{0}^{1} 5 x\left(x^{2}+1\right)^{2} d x$
e) P and Q are points on a circle of radius r, and the chord $P Q$ subtends an angle of 2θ radians at its centre O.

NOT TO SCALE
A is the shaded area enclosed by the minor $\operatorname{arc} P Q$ and the tangents to the circle at P and Q from an external point T.
(i) Show that $P T=r \tan \theta$.
(ii) Find an expression for the shaded area, A, in terms of r and θ.

End of Question 15

Question 16 (15 Marks) Use a SEPARATE writing booklet

a) The following is a velocity / time graph of a particle for $0 \leq t \leq 16$.

(i) When is the particle moving to the right?
(ii) When is the acceleration of the particle positive?
(iii) When is the particle furthest from its starting point?
(iv) Approximately when does it return to its starting point?
(v) Sketch the graph of the particle's acceleration against time.
b) The diagram below shows a straight rod $A B$ of length 8 m hinged to the ground at A.
$C D$ is a rod of 1 m .
The end C is free to slide along $A B$ while the end is touching the ground floor such that $C D$ is perpendicular to the ground.

Let $D E=x \mathrm{~m}$ and $\angle B A E=\theta$, where $\frac{1}{8}<\sin \theta<1$.
(i) Express x in terms of θ.
(ii) Find the maximum value of x as θ varies.
(iii) Let M be the area of trapezium $C D E B$. Show that

$$
M=\left(\frac{1+8 \sin \theta}{2}\right)(8 \cos \theta-\cot \theta)
$$

(iv) Does M attain a maximum when x reaches its maximum?

Justify your answer.

End of paper

2016
SYDNEY BOYS HIGH SCHOOL trial higher school certificate examination

Mathematics

Sample Solutions

Question	Teacher
Q11	AMG
Q12	BK
Q13	JWC
Q14	RD
Q15	JM
Q16	RB

MC Answers

1. A
2. D
3. D
4. A
5. D
6. D
7. B
8. B
9. C
10. C
11. $\cos \left(\frac{-5 \pi}{4}\right)$ is the same as
(A) $-\cos \left(\frac{\pi}{4}\right)$
(B) $\quad-\cos \left(\frac{5 \pi}{4}\right)$
(C) $\cos \left(\frac{-\pi}{4}\right)$
(D) $\quad \cos \left(\frac{\pi}{4}\right)$

$$
\begin{array}{rlr}
\cos \left(\frac{-5 \pi}{4}\right) & =\cos \left(\frac{5 \pi}{4}\right) \quad[\cos x \text { is even }] \\
& =\cos \left(\pi+\frac{\pi}{4}\right) & \\
& =-\cos \left(\frac{\pi}{4}\right) &
\end{array}
$$

2. What is the domain and range of the function $y=\frac{1}{\sqrt{x-9}}$?
(A) $x \geq 9$ and $y>0$
(B) $x>9$ and $y>0$
(C) $-\infty \leq x \leq \infty$ and $-\infty \leq y \leq \infty$
(D) $-3 \leq x \leq 3$ and $y<0$

$$
\begin{gathered}
x-9>0 \\
\therefore x>9 \\
y=\frac{1}{\sqrt{x-9}}>0
\end{gathered}
$$

3. Evaluate $\lim _{x \rightarrow-4} \frac{x^{2}+4 x}{x+4}$
(A) Does not exist
(B) $-\frac{1}{4}$
(C) 4
(D) -4

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{x^{2}+4 x}{x+4} & =\lim _{x \rightarrow-4} \frac{x(x+4)}{x+4} \\
& =\lim _{x \rightarrow-4} x \\
& =-4
\end{aligned}
$$

4. What is the area bounded by the curve $y=3 \sin 2 x$ and the x-axis between $x=\frac{\pi}{4}$ and $x=\frac{3 \pi}{4}$?
(A) $\left|\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x\right|$
(B) $-\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x$
(C) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 3 \sin 2 x d x+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x$
(D)) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 3 \sin 2 x d x-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x$

5. The derivative of $e^{\sin x}$ is equal to
(A) $(\cos x) e^{\sin x}$
(B) $e^{\cos x}$
(C) $e^{\sin x}$
(D) $\quad(\cos x) e^{\cos x}$

$$
\frac{d}{d x}\left(e^{f(x)}\right)=f^{\prime}(x) e^{f(x)}
$$

6. A primitive of $e^{3 x}+\sin (3 x)$ is
(A) $e^{3 x}-\frac{\cos (3 x)}{3}$
(B) $\frac{e^{3 x}}{3}-\frac{\cos (3 x)}{3}$
(C) $3 e^{x}+3 \cos (3 x)$
(D) $\frac{e^{3 x}}{3}-\cos (3 x)$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+C$ and $\int \sin a x d x=-\frac{1}{a} \cos a x+C$
7. Fifty tickets are sold in a raffle. There are two prizes. Michelle buys 5 tickets. The probability that she does not win either prize is given by
(A) $1-\frac{5}{50} \times \frac{4}{49}$
(B) $\frac{45}{50}+\frac{44}{49}$
(C) $\frac{45}{50} \times \frac{44}{50}$
(D) $\frac{45}{50} \times \frac{44}{49}$

A is wrong as it allows Michelle to win one of the prizes
B is wrong due to the addition
C is wrong as it assumes the ticket is replaced before drawing the next prize.
8. A parabola is shown below

What is the equation of the parabola with directrix $y=1$ and focus $F(0,-5)$
(A) $x^{2}=12(y+2)$
(B) $\quad x^{2}=12(y+5)$
(C) $x^{2}=-12(y+2)$
(D) $x^{2}=-24(y+5)$

The parabola is concave down and the vertex is the midpoint of $(0,1)$ and $(0,-5)$ i.e. $(0,-2)$. $a=$ focal distance $=3$.
9. $\frac{\log _{5} 125}{\log _{5} 5}$ simplifies to
(A) $\quad \log _{5} 25$
(B) $\quad \log _{5} 120$
(C) 25
(D) 3
$\frac{\log _{5} 125}{\log _{5} 5}=\frac{\log _{5} 5^{3}}{1}=3 \log _{5} 5=3$
10. Let $a=e^{x}$. Which expression is equal to $\log _{e}\left(a^{2}\right)$?
(A) $e^{2 x}$
(B) $e^{x^{2}}$
(C) $2 x$
(D) x^{2}

$$
\begin{aligned}
\log _{e}\left(a^{2}\right) & =2 \log _{e} a \\
& =2 \log _{e} e^{x} \\
& =2 x \log _{e} e \\
& =2 x
\end{aligned}
$$

2U THSC 2016 Multiple choice solutions
Mean (out of 10): 8.82

1. $\cos \left(-\frac{5 \pi}{4}\right)$

$$
=\cos \left(\frac{5 \pi}{4}\right)
$$

$$
=\cos \left(\pi+\frac{\pi}{4}\right)
$$

$$
=-\cos \frac{\pi}{4}
$$

(A)

A	166
B	9
C	3
D	6

2. $\begin{aligned} y=\frac{1}{\sqrt{x-9}} & x>9 \\ y & >0\end{aligned}$

A	14
B	171
C	0
D	0

3. $\lim _{x \rightarrow-4} \frac{x^{2}+4 x}{x+4}$
$=\lim _{x \rightarrow-4} \frac{x(x+4)}{x+4}$
$=\lim _{x \rightarrow-4} x$
$=-4$
(D)

A	10
B	1
C	8
D	166

4. $y=3 \sin 2 x$

$$
\begin{equation*}
A_{1}=\int_{\frac{\pi}{4}}^{\pi / 2} 3 \sin 2 x d x-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} 3 \sin 2 x d x \tag{D}
\end{equation*}
$$

A	20
B	0
C	19
D	146

$$
\text { 5. } \frac{d}{d x}\left(e^{\sin x}\right)
$$

$$
=e^{\sin x} \cdot \cos x
$$

A	182
B	0
C	1
D	2

6. $\int\left(e^{3 x}+\sin 3 x\right) d x$

$$
=\frac{1}{3} e^{3 x}-\frac{1}{3} \cos 3 x+c
$$

| A | 0 |
| :---: | :---: | :---: |
| B | 178 |
| C | 3 |
| D | 4 |
| 7. | $\frac{45}{50} \times \frac{44}{49}$ |

A	29
B	4
C	3
D	149

子。

$$
\begin{aligned}
& x^{2}=-4 \times 3 \times(y+2) \\
& x^{2}=-12(y+2)
\end{aligned}
$$

A	5
B	5
C	169
D	5

$$
\text { a. } \begin{align*}
& \frac{\log _{5} 125}{\log _{5} 5} \\
= & \log _{5} 125 \\
= & \log _{5} 5^{3} \\
= & 3
\end{align*}
$$

A	5
B	3
C	7
D	170

10.

$$
\begin{aligned}
& \log _{e}\left(e^{2}\right) \\
= & \log _{e}\left(e^{x}\right)^{2} \\
= & 2 x
\end{aligned}
$$

A	6
B	4
C	162
D	13

Solutions: SBHS Maths THSC 2016

Question 11

(a)
(i)

$$
\frac{d}{d x}\left(3 x^{e}\right)=3 e x^{e-1}
$$

[Comment: The unusual nature of this function confused many candidates.]

$$
\text { (ii) } \begin{aligned}
\frac{d}{d x} \ln (\tan x) & =\frac{\sec ^{2} x}{\tan x} \\
& =\cot x+\tan x \\
& =\sec x \operatorname{cosec} x
\end{aligned}
$$

[Comment: Most candidates succeeded to find this derivative. Many made correct, but unnecessary, simplifications.]
(b) $y=10 x^{2}+x-2$

$$
a=10, b=1, c=-2
$$

(i) $\alpha+\beta=\frac{-b}{a}$

$$
=-\frac{1}{10}
$$

(ii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
\begin{aligned}
& =\left(-\frac{1}{10}\right)^{2}-2\left(-\frac{2}{10}\right) \\
& =\frac{41}{100}
\end{aligned}
$$

[Comment: Most had no difficulty with part (i), but many misremembered the formula in part (ii).]
(c) $\quad V=0.02 t^{2}-4 t+20-200$

$$
\frac{d V}{d t}=0.04 t-4
$$

After 40 seconds:

$$
\begin{aligned}
\frac{d V}{d t} & =0.04 \times 40-4 \\
& =-2.4
\end{aligned}
$$

Thus melting at $2.4 \mathrm{~cm} / \mathrm{sec}$
[Comment: Very well answered.]
(d) $a+b=-2$
$2 a+b=0$
$a=2$
Clearly, in (1), $b=-4$
Solution (2,-4)
[Comment: Usually well answered. Some subtracted incorrectly.]
(e) Perpendicular bisector of the interval joining $(6,8)$ to $(0,-4)$.

$$
\begin{aligned}
& \text { Mid-Point } M\left(\frac{6+0}{2}, \frac{8-4}{2}\right)=M(3,2) \\
& \begin{aligned}
\text { Gradient } m & =\frac{8+4}{6-0} \\
\quad & =2
\end{aligned}
\end{aligned}
$$

Thus $m_{\perp}=-\frac{1}{2}$
\therefore Line is $y-2=-\frac{1}{2}(x-3)$

$$
x+2 y-7=0
$$

[Comment: Generally well answered. Some failed to find the mid-point, while others managed to get the gradient wrong. Many did not state the result in general form, but did not lose a mark.]
(f) $\quad 16 x^{3}-54=2\left(8 x^{3}-27\right)$

$$
=2(2 x-3)\left(4 x^{2}+6 x+9\right)
$$

[Comment: Generally well answered, but those who had fractions or irrationals in their factors lost some, or both, marks.]
(g) Given $y^{\prime}=12 x+29$

$$
\begin{aligned}
& \text { Thus } y=6 x^{2}+29 x+C \\
& \text { When } x=2, \quad y=65 \\
& \text { Thus } 65=6 \times 4+58-C \\
& C=-17
\end{aligned}
$$

$$
\text { Hence } y=6 x^{2}+29 x-17
$$

[Comment: Very well answered.]

QR
(a)

$$
\begin{aligned}
& \int\left(\sin 2 x+e^{-3 x}\right) d x \\
= & \frac{-\cos 2 x}{2}-\frac{e^{-3 x}+c}{3}
\end{aligned}
$$

$12(e)$

$$
\begin{aligned}
& \frac{d V}{d t}=-30 t-t^{2} \\
& V=\int_{0}^{30}\left(30 t-t^{2}\right) d t
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \int_{1}^{5}\left(2+\frac{1}{x}\right)^{2} d x \\
&= \int_{11}^{5}\left(4+\frac{4}{x}+\frac{1}{x^{2}}\right) d x \\
&= {\left[4 x+4 \ln x-\frac{1}{x}\right]_{1}^{5} } \\
&= {\left[\left(20+4 \ln 5-\frac{1}{5}\right)\right.} \\
&=16 \frac{4}{5}+4 \ln 5
\end{aligned}
$$

(c) $\quad \int_{1}^{3} f(x) d x \doteq \frac{w}{3}[$ Ends +4 (o dds) $)+2$ (eve rant) $]$

$$
\begin{aligned}
& \text { Done wellifthey knew the } \geq \frac{0,5}{3}[5+7+4(1+3)+2(-2)] \\
& \text { formula. Some used Trap } \\
& \text { tutu. }
\end{aligned}
$$

Mostly done well. Some did not expand first. The-other error. integrate $1 / \mathrm{x}$

$$
=\left[15 t^{2}-\frac{t^{3}}{3}\right]_{0}^{30}
$$

$$
=[(13500-9000)-0]
$$

$$
=4500 \cdot \mathrm{~cm}^{3}
$$

$$
=\left[\left(20+4 \ln 5-\frac{1}{5}\right)-(4+4 \ln 1-1)\right]
$$

ie $4500 \mathrm{~cm}^{3}$ released.
Done well.

$$
\begin{aligned}
& \sin \beta=\frac{B D}{A B} \\
& \cos \alpha=\frac{B D}{1 B} \\
& \therefore \sin \beta=\cos \alpha
\end{aligned}
$$

(ii) By sine rule, in $\triangle A B C$,

$$
\text { (d) } \log _{5}(2 x+1)-\log _{5} x=2
$$

$$
2 x+1=25 x
$$

$$
\begin{aligned}
& \frac{\sin 2 \alpha}{A C}=\frac{\sin \beta}{B C} \quad / \\
\Rightarrow & \frac{\sin 2 \alpha}{2 \times A D}=\frac{\cos \alpha}{A B} \quad(\sin \varphi \sin \beta=\cos , \quad \operatorname{an}=B C
\end{aligned}
$$

$$
\begin{aligned}
&(2 x+1)-\log _{5}-x=2 \\
& \log _{5}\left(\frac{2 x+1}{x}\right)=2 \\
& \frac{2 x+1}{x}=25
\end{aligned} \quad \begin{aligned}
& \frac{\tan \alpha \alpha}{A C}=\frac{\sin p}{B C} \\
&
\end{aligned} \quad \Rightarrow \frac{\sin 2 \alpha}{2 \times A D}=\frac{\cos \alpha}{A B}
$$

$$
23 x=1 \Rightarrow x=\frac{1}{23}
$$

\qquad
This question was done well.

$$
\begin{aligned}
& 13 a) \\
& y=2 \ln (3 x-2) \\
& y^{\prime}=2 \times\left(\frac{3}{3 x-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { At } x=1, \\
& m=2 \times\left(\frac{3}{3-2}\right)=6 \\
& \therefore y-0=6(x-1) \\
& \therefore y=6 x-6
\end{aligned}
$$

Aw 1: gradient
AW 2: correct eqn. of the tangent

$$
\begin{aligned}
& \text { (Bb) } \\
& \begin{aligned}
y & =\frac{x^{2}}{5}-8 x \quad \text { Some candidates ho } \\
y^{2} & =\frac{x^{4}}{25}-\frac{16 x^{3}}{5}+64 x^{2} \\
v & =\pi \int_{0}^{40} \frac{x^{4}}{25}-\frac{16 x^{3}}{5}+64 x^{2} d x \\
& =\pi\left[\frac{x^{5}}{125}-\frac{16 x^{4}}{20}+\frac{64 x^{3}}{3}\right]_{0}^{40} \\
& =\pi\left(819200-2048000+136533 \frac{1}{3}\right) \\
& =136533 \frac{\pi}{3} \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

$-\frac{1}{2}$ if not converted

$$
=\frac{2048 \pi}{15} \text { Litres }
$$ correctly to litres.

$$
\approx 428.932117 \text { litres }
$$

Q13c

$$
\begin{aligned}
& \text { i) } x=2 \sin \frac{\pi}{3} t \\
& v=\frac{d x}{d t}=\frac{2 \pi}{3} \cos \frac{\pi t}{3} \\
& v=0, \cos \frac{\pi t}{3}=0 \\
& \frac{\pi t}{3}=\frac{\pi}{2} \\
& t=\frac{3}{2}
\end{aligned}
$$

\therefore The particle is first at rest at $3 / 2$ seconds
ご

t	0	$11 / 2$	3	4
d	0	2	0	$-\sqrt{3}$

\therefore Distance travelled in the first 4 sec is $4+\sqrt{3} \quad$ Aw $1 \quad 4-\sqrt{3}$

Q13d)

$$
\begin{aligned}
& \text { i) } 13,19,25, \ldots \\
& 6525=\frac{n}{2}(26+(n-1) 6) \\
& 6 n^{2}+20 n-13050=0 \\
& 3 n^{2}+10 n-6525=0 \\
& n=-\frac{10 \pm 280}{6} \\
& n>0 \therefore n=45
\end{aligned}
$$

ii)

$$
\begin{aligned}
l & =r \theta \\
l & =(44 \times 5+10) \times 1 \mathrm{rad} \\
& =230 \mathrm{~cm}
\end{aligned}
$$

Generally well done.

$$
\text { Aw 1: } 45 \times 5+10
$$

$$
\text { or } 45 \times 5
$$

Aw 2: 230 cm
Some candidate did not interpret question correctly and found sum of arc lengths.

Q13e)
Intercepts $\quad x=0, \quad y=0$

$$
\left.\begin{aligned}
& y=x e^{x / 2} \\
& y^{\prime}=e^{x / 2}\left(\frac{x}{2}+1\right) \\
& y^{\prime}=0, \quad x=-2, \quad y=-2 / e \\
& x|c| c \mid c \\
& \hline y^{\prime} \mid
\end{aligned} \frac{-2}{0} \right\rvert\,+\quad .
$$

I_1 min at $(-2,-2 / e)$

$$
x \rightarrow \infty, \quad y \rightarrow \infty
$$

$x \rightarrow-\infty, y \rightarrow 0 \therefore$ hort. any at $y=0$

$$
x-\text { intercept }=0, \quad y \text {-intercept }=0
$$

2U THSC 2016 Q14 solutions

Mean (out of 15): 8.84

$$
\text { (a) (i) } \begin{aligned}
& P(A \text { wins on last drain) } \\
= & \frac{2}{5}
\end{aligned}
$$

0	1	Mean
1	184	0.995

0	1	Mean
102	83	0.449

A large number of students didn't understand that, for B to win, A had to lose first.

```
(iii) \(P\) (A wins in fewer than 4 turns)
    \(=P(\) using in 1\()+P(\) wins in 2\()+P(\) wins in 3\()\)
    \(=\frac{2}{5}+\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}+\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\)
    \(=\frac{2}{5}+\frac{12}{125}+\frac{72}{3125}\)
    \(=1250+300+72\)
                            2125
\(=\frac{1622}{3125}\)
```

0	0.5	1	1.5	2	Mean
95	3	6	16	65	0.873

Again, students didn't appreciate that A and B take it in turns.

0	0.5	1	1.5	2	Mean
108	2	9	5	61	0.754

Similar problems to earlier parts.

$$
\text { (b) } \quad \begin{aligned}
y & =x^{3}+x^{2} \\
y^{\prime} & =3 x^{2}+2 x \\
y^{\prime \prime} & =6 x+2
\end{aligned}
$$

$$
\text { For paint of inflexion } \begin{aligned}
y^{\prime \prime} & =0 \\
\therefore 6 x+2 & =0 \\
\therefore x & =-\frac{1}{3}
\end{aligned}
$$

0	0.5	1	1.5	2	Mean
5	27	64	26	63	1.311

Some students lost marks for not calculating actual values for $y^{\prime \prime}$ for points on either side of the possible point of inflexion to demonstrate that there has been a change of concavity. Some students used a $y^{\prime \prime \prime}$ test to indicate that there has been a change of concavity. This is a legitimate, but not standard, technique. A number of students found and classified stationary points but this was not required.
(c) (i) $\frac{x}{6}=\frac{E H}{A H}=\frac{7}{5}$ (Proportional division theorem)

$$
\begin{aligned}
\therefore x & =\frac{42}{5} \\
& =8 \frac{2}{5}
\end{aligned}
$$

0	0.5	1	1.5	2	Mean
22	4	29	19	111	1.522

A large number of students proved the result using similar triangles (the basis of the Proportional Division Theorem).

0	0.5	1	Mean
40	10	135	0.757

Most students were able to calculate the appropriate value. A common error involved students not realising that their calculation for BA required $\mathrm{x}+6$ to be used, not just 6 .
(d) Anst owing after Imonth $=500000 \times 1.01-M$
... 2 mowits
$=500000 \times 1.01^{2}-m \times 1.01-m$
… 300 momphs
$=500000 \times 1.01^{300}-\frac{1.1 .\left(1.01^{300}-1\right)}{1.01-1}$
$\frac{m\left(1.01^{300}-1\right)}{0.01}=500000 \times 1.01^{300}$ $m=\frac{500000 \times 1.01^{300} \times 0.01}{1.01^{300}-1}$ $=\$ 5266.12$

Ant owing after 144 months
$=500000 \times 1.01^{144}-5266.12 \times \frac{1.01^{14.4}-1}{0.01}$

```
=4150.01.36
```

\therefore the $\$ 400000$ prize will not cleor
the debt

0	0.5	1	1.5	2	2.5	3	Mean
35	19	14	10	17	12	78	1.819

Sadly some students did not realise that this question related to geometric series. Others, having calculated the monthly payment required to pay off the loan in 25 years did not know how to use it to calculate the amount owing after 12 years.
(ii) Amt aftor- 1 month $=15091.34 \times 1.01-524.12$ $=9976.13$

```
... 2 marth \(=9976.13 \times 1.01-5266.12\)
        \(=4809.77\)
    _- 3 mand, \(=4809.77 \times 1.01-5266.12\)
    \(=-408.23\)
```

\therefore Debt clecred aftw 3 months Rofund 5408.25

0	0.5	1	Mean
97	41	47	0.365

A number of students assumed that the requirement to pay interest on the remaining $\$ 15091.34$ would not push the number of payments required beyond 3 . They made their calculation by simply dividing $\$ 15091.34$ by $\$ 5266.12$. (If they had used this technique on the original debt of $\$ 500000$ they would have deduced that only 95 payments would be required instead of the actual 300 payments.)

Question 15
a)

Angle sum of a triangle:

$$
\begin{aligned}
26^{\circ}+90+21^{\circ}+\theta & =180^{\circ} \\
137^{\circ}+\theta & =180^{\circ} \\
\theta & =43^{\circ}
\end{aligned}
$$

Comments:
Majority of students answers this question very well.
Common mistakes were:

- that some students forgot to give there answer to the nearest degree,
- also some students calculated the wrong angle.
b) $\quad f(x)=k x^{2}-(3 k-4) x+k$
positive definite when $\Delta<0$ and $k>0$.

$$
\begin{aligned}
& \Delta=(3 k-4)^{2}-4(k)(k) \\
&=9 k^{2}-24 k+16-4 k^{2} \\
&=5 k^{2}-24 k+16 \\
&\left.\Delta=0 \Rightarrow 5 k^{2}-24 k+16=0 \quad \therefore \quad \begin{array}{l}
(5 k-20)(5 k-4)=0 \quad S=-24 \\
5
\end{array}\right\}(-4,-20) \\
& B(k-4)(5 k-4)=0 \\
& 8 \\
& \therefore k=4, \frac{4}{5}
\end{aligned}
$$

$$
\Delta<0:
$$

Comments:

This question was very poorly answered. This question was a 'show that' question. Common errors were:

- that some students didn't show where the discriminant was less than zero,
- also some students incorrectly calculated the discriminant.
c) i) $\quad\left[d=\frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}}\right]$

Equation of $K 0: y-2 x=0$
\qquad

$$
\begin{aligned}
& P M=P N \\
& m a=\frac{|2 a-m a+0|}{\sqrt{(2)^{2}+(-1)^{2}}}
\end{aligned}
$$

$$
\therefore \quad m a=\frac{((2-m) a \mid}{\sqrt{5}}
$$

ii) From the diagram: $a>0$ and $0<m<2$

$$
\begin{aligned}
\therefore \quad \sqrt{5} m a & =|(2-m) a| \\
\sqrt{5} m a & =2 a-m a \\
m a+\sqrt{5} m a & =2 a \\
m(1+\sqrt{5}) & =2 a \\
\therefore(1+\sqrt{5}) & =2 \\
\therefore m & =\frac{2}{1+\sqrt{5}}
\end{aligned}
$$

iii) If

$$
\begin{aligned}
& P N=\sqrt{5}-1 \\
& P M=\sqrt{5}-1 \\
& \therefore \frac{P M}{M O}=\frac{2}{1+\sqrt{5}} \\
& \frac{\sqrt{5}-1}{M O}=\frac{2}{1+\sqrt{5}} \\
& M O=\frac{(1+\sqrt{5})(\sqrt{5}-1)}{2} \\
&=\frac{4}{2} \\
&=2
\end{aligned}
$$

$$
\begin{aligned}
& \therefore p \text { is } \\
&\left(2, \frac{4}{1+\sqrt{5}}\right) \\
&(2, \sqrt{5}-1)
\end{aligned}
$$

Comments:
This question was very poorly answered.
Common mistakes were:

- that students didn't correctly 'show' what the value of $m a$ was,
- students also produced the negative value of m not realising that the gradient of m is positive and between 0 and 2.
d) i)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+1\right)^{3} & =3\left(x^{2}+1\right)^{2} \cdot 2 x \\
& =6 x\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Comments:

Part (i), was answered well and part (ii) not so well.
Common mistakes were:

- that in part (i), students didn't multiply be the derivative of inside the brackets,
- in part (ii), students either didn't balance out the question so that you have the answer from part (i),
- also students made errors in substituting in the bounds of the integral.

i) In \triangle OPT: $\tan \theta=\frac{P T}{r}$

$$
\therefore P T=r \tan \theta
$$

(ii) Area $=2 \times \frac{1}{2} \times r \times r \tan \theta-\frac{1}{2} \times r^{2} \times 2 \theta$

$$
=r^{2}(\tan \theta-\theta)
$$

Comments:
Part (i), was answered well and part (ii) not so well.
Common mistakes were:

- students found the area of the sector, not the area of the shaded part.
- most students also just found the area of the segments

Trial HSC zens $2010.10 \%(1)$
(16) (a) (i) when is the first time graph is above the x acis; N is positive \Rightarrow moving forward.

$$
\begin{equation*}
t>4 \tag{0}
\end{equation*}
$$

$$
\text { accept } 4<t<16
$$

(ii) treat. He graph as a curve sketching
exeruse. Accel positive means slope of tangent exeruse. Accel positive means slope of tangent lire to the (v) curve positive $0<t<10$
(iii)

2 shaded areas cancel each other out.
Area of unshaded pant will provide answer to furthest away. $t=16$ (1)
(iv) we need to work out T from my graph.

Will accept $t=1,8,9$
(V)

Britive slope \Rightarrow above x axis
$0<t<10$.
Horizontal tangent $t=10$,
slope 0. slope 0 .
$t>10$ use has negative slope.
Prob nifleswor point between min and max.
larker was surprised how well this question
was answered the a caph as was answered, If you take the graph as a curve sketching/ Tangent etc. exec cesie, most preston can bee solved that wing.
(b) (i)

$\triangle A C D \| \triangle A B E \quad 2$ angle test.

$$
\frac{A C}{8}=\frac{1}{B E}=\frac{A D}{A D+x}
$$

Get some info:

$$
\begin{aligned}
& \tan \theta=\frac{1}{A D} \\
& \sin \theta=\frac{B E}{8} \Rightarrow B E=8 \sin \theta \\
& \cos \theta=\frac{A D+x}{8} \Rightarrow A D+x=8 \cos \theta \\
& \tan \theta=\frac{B E}{A E}=\frac{8 \sin \theta}{A D+x} \quad *
\end{aligned}
$$

Use * $(A D+x) \tan \theta=8 \sin \theta$
we need. to keep x so $\tan \theta=\frac{1}{A D}$ from above $\Rightarrow A D=\frac{1}{\tan \theta}$

$$
\begin{gathered}
\left(\frac{1}{\tan \theta}+x\right) \tan \theta=8 \sin \theta \\
1+x \tan \theta=8 \sin \theta \\
x \tan \theta=8 \sin \theta-1 \\
x=\frac{8 \sin \theta-1}{\tan \theta}
\end{gathered}
$$

(2).
(ii) Given $x=\frac{8 \sin \theta-1}{\tan \theta}$

OR

$$
\begin{aligned}
\dot{x} & =\frac{\tan \theta \times 8 \cos \theta-(8 \sin \theta-1) \times \sec ^{2} \theta}{\tan ^{2} \theta} \\
& =\frac{8 \cos \theta \tan \theta-8 \sin ^{2} \theta \sec ^{2} \theta+\sec ^{2} \theta}{\tan ^{2} \theta} \\
& =\frac{8 \cdot c \cdot \frac{5}{c}-\frac{5 \cdot \frac{1}{c^{2}}+\frac{1}{c^{2}}}{t^{2}}}{}
\end{aligned}
$$

Hat os can fake. Well answered by most.

$$
\begin{aligned}
& =\frac{8 s-\frac{8 s}{c^{2}}+\frac{1}{c^{2}}}{t^{2}} \\
& =\frac{8 s c^{2}-8 s+1}{c^{2} t^{2}} \\
& =\frac{8 s\left(1-s^{2}\right)-8 s+1}{c^{2} \cdot \frac{s^{2}}{c^{2}}} \\
& =\frac{8 s-8 s^{3}-8 s+1}{s^{2}} \\
& =\frac{1-8 \sin ^{3} \theta}{\sin ^{2} \theta}
\end{aligned}
$$

make $\dot{x}=0 \Rightarrow 1-8 \sin ^{3} \theta=0$

$$
\begin{aligned}
& 8 \sin ^{3} \theta=1 \\
& \sin ^{3} \theta=\frac{1}{8} \\
& \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ},\left(\frac{\pi}{6}\right)
\end{aligned}
$$

$$
\text { If } \sin \theta=\frac{1}{2}
$$

$$
\Rightarrow\left(\frac{1}{8}<\sin \theta<1, \text { data }\right)
$$

$$
x=\frac{8 \sin \theta-1}{\tan \theta}
$$

$$
\begin{array}{r}
=\frac{8 \times \frac{1}{2}-1}{\frac{1}{\sqrt{3}}}=3 \sqrt{3} \mathrm{~m} . \\
\Omega \operatorname{lat}
\end{array}
$$

A. lat to cohere
check for max
Find θ, x and

$$
\begin{aligned}
& \dot{x}=\frac{1-8 s^{3}}{s^{2}} \\
& \ddot{x}=\frac{s^{2} \times 24 s^{2} c-\left(1-8 s^{3}\right) \times 2 s c}{s^{4}}
\end{aligned}
$$ establish using $x^{\prime \prime}$ or other means that we get a max. Not well answered.

Using the above triangle

$$
\begin{align*}
x & =\frac{\frac{1}{4}-24 \times \frac{1}{4} \times \frac{\sqrt{3}}{2}-\left(1-8 \times \frac{1}{8}\right) \times 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}}{\frac{1}{16}} \tag{2}\\
& =\left(\frac{1}{4}-3 \sqrt{3}\right) \times 16<0 \text { maximum! }
\end{align*}
$$

(iii)

area trapezium

$$
\begin{aligned}
m & =\frac{1}{2}(C D+B E) \times D E \\
& =\frac{1}{2}(1+8 \sin \theta) \times \frac{(8 \sin \theta-1)}{\tan \theta}
\end{aligned}
$$

Gut was dependent
On finding $B C=8 \sin \theta=\frac{1}{2}(1+8 \sin \theta) \times\left(\frac{8 \sin \theta}{\frac{\sin \theta}{\cos \theta}}-\frac{1}{\tan \theta}\right)$

$$
\begin{align*}
& \text { witting } x \text { as } \tag{2}\\
& 8 \cos \theta-\cot \theta, m=\frac{1}{2}(1+8 \sin \theta)(8 \cos \theta-\cot \theta)
\end{align*}
$$

(iv) From (ii) $\sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$

$$
\begin{aligned}
& \text { test } \theta=\frac{\pi}{6} \text { and } \frac{\pi}{4} \text { into mn of (iii) } \\
& x=\frac{8 \sin \frac{\pi}{6}-1}{\tan \frac{\pi}{6}}=\frac{3}{\sqrt{3}}=3 \sqrt{3} \quad(5.196 \ldots) \\
& \text { and } x=\frac{8 \sin \frac{\pi}{4}-1}{\tan \frac{\pi}{4}}=\frac{8 \times \frac{1}{\sqrt{2}}-1}{1}=4 \sqrt{2}-1 \quad(4.656 \ldots)
\end{aligned}
$$

$\operatorname{loge}(5)$

$$
\begin{aligned}
m 1= & \frac{1}{2}\left(1+8 \sin \frac{\pi}{6}\right)\left(8 \cos \frac{\pi}{6}-\cot \frac{\pi}{6}\right) \\
= & \left(\frac{1}{2}+4 \times \frac{1}{2}\right)\left(8 \times \frac{\sqrt{3}}{2}-\sqrt{3}\right)=(2.5)(9 \sqrt{3}) \quad(12.99 \ldots) \\
= & \frac{15 \sqrt{3}}{2} .
\end{aligned}
$$

and $m=\frac{1}{2}\left(1+8 \sin \frac{\pi}{4}\right)\left(8 \cos \frac{\pi}{4}-\cot \frac{\pi}{4}\right)$

$$
\begin{aligned}
&=\overline{2}\left(1+8 \sin \frac{1}{4}\right)(8 \cos 4 \\
&=\left(\frac{1}{2}+4 \times \frac{1}{\sqrt{2}}\right)\left(8 \times \frac{1}{\sqrt{2}}-1\right)=\left(\frac{1}{2}+2 \sqrt{2}\right)(4 \sqrt{2}-1) \\
&=15 \frac{1}{2} \cdot(15.498 \ldots)
\end{aligned}
$$

Now $\frac{15 \sqrt{3}}{2}<15 \frac{1}{2}$.
From this we can see the value of M at $\theta=\frac{\pi}{6}$ is less than the value of M at $\theta=\frac{\pi}{4}$.
$\therefore M 1$ does not attain ito maximum value when x attarnsits masc. value. Not well answered by nearly all students. Marked very liberally here!

