Mathematics

This is a trial paper ONLY. It does not necessarily reflect the format or the contents of the 2002 HSC Examination Paper in this subject.

Candidate Number

General Instructions

- Reading Time - 5 mins
- Working time -3 hours
- Attempt ALL questions
- ALL questions are of equal value
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied
- Board-approved calculators may be used.
- Diagrams are not to scale
- Each question attempted should be started on a new sheet. Write on one side of the paper only.

Question 1.

(a) Solve for x

$$
(2 x-5)(x+2)=0
$$

(b) If $x=4$, evaluate $\frac{e^{x}-1}{e^{x}+1}$ correct to 3 significant figures
(c) Solve for x

$$
|x+5|=3
$$

(d) Simplify $\frac{3 x}{5}-\frac{x-1}{2}$
(e) Express 0.3 i as a fraction in lowest terms. :

Question 2.

$\mathrm{A}(2,3) \quad \mathrm{B}(-2,-7)$
(a) Find (i) length of $A B$
(ii) midpt of $A \dot{B}$
(iii) gradient of $A B$
(iv) equation of $A B$
(v) y-intercept of $A B$
(b) (i) Find the equation of the line perpendicular to AB passing through $(2,5)$
(ii) What angle does this line make with the x -axis?
(c) Graph the region on the number plane for which $y>3$ and $x+y \leq 3$

$$
0 \& 3
$$

Question 3.

(a)

Find x
(b) Write the exact value of
(i) $\cos 30^{\circ}$
(ii) $\tan 330^{\circ}$

Use the cos rule to find $\angle B$ correct to the nearest minute.

Question 4.

(a) Solve for x :

$$
(x-2)(x+5)=8
$$

(b) Use the quadratic formula to find x correct to 1 decimal place:

0 (b) $2 x^{2}-x-14=0$
(c) (i) Graph on the number plane the piecemeal function

$$
f(x) \begin{cases}\mid 2 x & \text { for } x \leq-2 \\ 4 & \text { for }-2<x<2 \\ 2 x & \text { for } x \geq 2\end{cases}
$$

(ii) State whether the function $y=f(x)$ is odd, even or neither

A (iii) State whether the function $y=f(x)$ is continuous or discontinuous.

Question 5.

(a)

An observer in a boat rows towards a cliff which is 160 m high.
At point B , the angle of elevation of the cliff top is $27^{\circ} 18^{\prime}$
At point C , the angle of elevation of the cliff top is 45°
What is the distance BC to the nearest metre?
(b) The area enclosed by the curve $y=x^{2}$, the y-axis and the line $y=a$ is exactly $10 u^{2}$. Find a to 2 decimal places.
(c) What is the primitive of e^{x} ?

Question 6.

(a) Find $\frac{d y}{d x}$ for
(i) $y=\frac{x-2}{x+4}$
(ii) $y=e^{2 x}$
(iii) $y=\sin 5 x$
(iv) $y=\log _{e}(\tan x)$
(b) Find the equation of the tangent to the curve $y=x^{2}-x$ at the point $(2,2)$
(c) Locate the stationary points on $y=x^{3}-3 x$ and determine their nature.

Question 7.

Seeds from a particular plant have 2 chances in 5 of surviving to flowering stage. $\frac{3}{4}$ of the surviving plants bear pink flowers and $\frac{1}{4}$ bear white flowers.
Three seeds are planted. What is the probability:
(i) none survive
(ii) all 3 survive and bear pink flowers
(iii) at least one pink-flowering plant survives
(b) $\$ 1000$ is deposited in an account that pays 5% pa interest.
(i) How much will it be worth after 15 years?
(ii) If $\$ 1000$ is deposited at the beginning of each year into an account that pays 5% pa interest, what will be the balance at the end of 15 years.
(c) A speed bump has cross-section as shown. Use Simpson's Rule to find the area of the cross-section.
Hence find the volume of concrete required for a speed-bump for a road 10 m wide.

(Answer in cubic metres.)

Question 8.

(a) Find the value(s) of k for which $x^{2}-(k+2) x+(4 k-4)=0$
has (i) two equal roots
(ii) one root the reciprocal of the other
(iii) one root equal to 8
(b) Solve for x : $\quad 4^{x}-7.2^{x}-8=0$
(c)

$$
\text { Given } \mathrm{V}=\pi \mathrm{r}^{2} h, \text { and } r+h=12 \mathrm{~cm}
$$

Show that $\frac{d v}{d r}=3 \pi r(8-r)$
and hence show that the maximum volume of the cylinder is $256 \pi \mathrm{~cm}^{3}$

Question 9.

(a) A curve of $y=f(x)$ passes through the point $(2,5)$ and $(3, a)$. If its gradient function is given by $f^{l}(x)=3 x^{2}-4 x$
Find the value of a.
(b) A parabola has focus at $(2,4)$ and vertex at $(2,-2)$

Find. (i) its focal length
\rightarrow (ii) the equation of the parabola
(iii) the equation of its axis of symmetry
(iv) the equation of its directrix
(c)
(i) By completing the square, or otherwise, find the centre of the circle with equation $x^{2}+6 x+y^{2}-2 y=15$
(ii) Find algebraically the points A and B where the circle cuts the y-axis
(iii) What is the area of $\triangle A B C$?

Question 10.

(a) The two curves $y=2 x^{2}$ and $y=x^{2}+1$ intersect at P and Q as shown.
(i) Find the coordinates of B, P and Q .
(ii) The shaded region is rotated about the y-axis to form a solid bowl shape.

- Find the volume of the bowl in terms of π
(b) Sketch the curve $y=2 \sin x \quad 0 \leq x \leq 2 \pi$

Find the area enclosed by the curve and the x -axis
(c) The curve $y=1+\tan x$ between $x=0$ and $x=\frac{\pi}{4}$ is rotated about the x -axis. Find the volume of the solid so formed.
thassan Salem
SYDNEY GIRLS HIGH SCHOOL -2OO2 MATHEMATICS
TRIAL
Question 1
a)

$$
\begin{array}{ll}
2 x-5=0 & x+2=0 \\
2 x=5 & x=-2 \\
x=\frac{5}{2} & \\
\therefore x^{2}=\frac{5}{2},-2
\end{array}
$$

b) $\frac{e^{4}-1}{e^{4}+1}=\frac{53.59815}{55.59815}=0.964(3 \mathrm{sig} f(g s)$
c)

$$
\begin{array}{ll}
x+5=3 & x+5=-3 \\
x=-2, & x=-8
\end{array}
$$

d)

$$
\begin{aligned}
& \frac{6 x-5(x-1)}{10} \\
& =\frac{6 x-5 x+5}{10} \\
& =\frac{x+5}{10}
\end{aligned}
$$

e)

$$
\text { let } \begin{aligned}
x & =0.31 \\
10 x & =3.13 \\
100 x & =31.31 \\
99 x & =31 \\
x & =\frac{31}{99}
\end{aligned}
$$

Question 2
a)

$$
\text { (1) } \begin{aligned}
& \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} A(2,3) B(-2,-7) \\
&=\sqrt{(-2-2)^{2}+(-7-3)^{2}} \\
&= \sqrt{116}=\sqrt{4} \times \sqrt{29} \\
&=2 \sqrt{29}
\end{aligned}
$$

(ii) $\left(\frac{2 t-2}{2}, \frac{3 t-7}{2}\right)$

$$
=(0,-2)
$$

(iii) $A(2,3) \quad B(-2,-7)$

$$
\begin{aligned}
m_{A B} & =\frac{-7-3}{-2-2} \\
& =\frac{-10}{-4}=\frac{10}{4}=\frac{5}{2} 1
\end{aligned}
$$

(iv)

$$
\begin{gathered}
y-3=\frac{5}{2}(x-2) \\
y-3=\frac{5 x-10}{2} \\
2 y-6=5 x-10 \\
5 x-2 y-10+6=0 \\
5 x-2 y-4=0
\end{gathered}
$$

(v) y int except, when $x=0$

$$
\begin{gathered}
0-2 y-4=0 \\
-2 y=4 \\
y=-2 \\
\therefore \text { yin tercept is }(0,-2)
\end{gathered}
$$

b) (1) perpendicular to $A B$ se
(ii) $5 y=-2 x+29$

$$
\begin{gathered}
m_{A B} \times m_{A A B}=-1 \\
\therefore \frac{5}{2} \times m=-1 \\
m=-1 \div \frac{5}{2} \\
=-\frac{2}{5} \\
\therefore y-5=-\frac{2}{5}(x-2) \\
y-5=-\frac{2 x+4}{5} \\
5 y-25=-2 x+4 \\
2 x+5 y-29=0
\end{gathered}
$$

$$
y=-\frac{2}{5} x+\frac{29}{5}
$$

$$
\therefore m=-\frac{2}{5}
$$

$$
\theta=15812
$$

$$
\therefore \tan \theta=m
$$

$$
x-\cos
$$

$$
\tan \theta=\frac{2}{5}
$$

$$
\hat{N}^{\prime} \theta=21^{\circ} 48^{\prime} \text { (to the nearest }
$$

c)

$$
X^{-}-\cdots \text { minute) }
$$

$$
\div
$$

Question 3
a) $\operatorname{In} A^{\prime} S A B C$ and $A D E$
$\angle A$ is common
$\angle A C B=\angle A O E$ (given)
$\therefore \triangle A B C \| \triangle A D E$ (equiangular)

$$
\begin{aligned}
& \therefore \frac{A D}{A B}=\frac{A E}{A C} \text { (corresponding sides in similar } \Delta^{\prime} \text { s) } \\
& \therefore \frac{10}{5}=\frac{x+4}{4} \quad \frac{10}{4+z}=\frac{4+x}{5} \\
& 40=5 x+20 \quad 50=16+4 x \\
& 5 x=20 \quad 34=4 x \\
& x=4 \text { units } \quad \frac{34}{4}=x \Rightarrow 2=3 \frac{1}{2}
\end{aligned}
$$

b) (1) $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
(ii) $\tan 330^{\circ}=-\frac{1}{\sqrt{3}}$
c)

$$
\begin{aligned}
\cos \angle B & =\frac{8^{2}+7^{2}-6^{2}}{2 \times 8 \times 7} \\
\cos \angle B & =\frac{77}{112} \\
\cos \angle B & =0.6875 \\
& \therefore B=46^{\circ} 34^{\prime} \text { (to the nearest minute) }
\end{aligned}
$$

Question 4
a)

$$
\begin{gathered}
x^{2}+5 x-2 x-10=8 \\
x^{2}+3 x-10=8 \\
x^{2}+3 x-10-8=0 \\
x^{2}+3 x-18=0 \\
(x-3)(x+6)=0 \\
x=3, x=-6
\end{gathered}
$$

b)

$$
\text { b) } \begin{aligned}
& 2 x^{2}-x-14=0 \\
& x=\frac{1 \pm \sqrt{1-4 x 2 x-14}}{4} \\
& x=\frac{1 \pm \sqrt{113}}{4} \\
& \therefore x=2.9, x=-2.4(101 d . p)
\end{aligned}
$$

c)
(i)

(1) even function
(iii) discontinuous witimiow

Question 5
a) $\angle A C B=135^{\circ}$ (angle sum of straight line is 180°)
$\therefore \angle B A C=17^{\circ} 42^{\prime}$ (angle sum of triangle $=180^{\circ} \mathrm{J}$
$\angle C A D=45^{\circ}$ (angle sum of $\triangle=180^{\circ}$)
$\triangle A O C$ is isosceles
$C D=160 \mathrm{~m}$

$$
\begin{aligned}
& \therefore C D= 160 \mathrm{~m} \\
& \sin 45^{\circ}= \frac{160}{A C} \\
& A C=\frac{160}{\frac{1}{\sqrt{2}}} \\
& 160 \div \frac{1}{\sqrt{2}} \\
& 160 \times \sqrt{2} \\
& A C=160 \sqrt{2} \text { metres } \\
& \ln \triangle A B C \\
& \frac{B C}{\sin 17^{\circ} 421}=\sin 27^{\circ} 18^{\prime}
\end{aligned}
$$

Qivacti- to finch $B D$

$$
\text { using } \tan 27^{\circ} / 8^{\prime}=\frac{160}{56+160}
$$

$$
\therefore B C+160=\frac{160}{\tan 27^{\circ} / 5^{\circ}}
$$

$$
\begin{aligned}
& \Rightarrow B C=\frac{A C \sin 17^{\circ} 42^{\prime} \Rightarrow E C}{}=1+9.9 \\
&=150 \mathrm{~m}
\end{aligned}
$$

$$
A C=160 \sqrt{2}
$$

$$
\therefore B C=\frac{160 \sqrt{2} \times \sin \sqrt{7^{\circ}} 42}{\sin 27^{\circ} 181}
$$

$$
\therefore B C=149.99 \ldots
$$

$$
=150 \mathrm{~m} \text { (to The nearest }
$$

metre)
b)

$$
\begin{aligned}
& y=x^{2} \\
& x^{2}=y \\
& x= \pm \sqrt{y} \\
& \therefore \int_{0}^{a} y^{1 / 2} d y=\left[\frac{y^{3 / 2}}{3 / 2}\right]_{0}^{a}=10 \\
& \sqrt{y^{3}} \div \frac{3}{2} \\
& \sqrt{y^{3}} \times \frac{2}{3} \\
& {\left[\frac{2 \sqrt{y^{3}}}{3}\right]_{0}^{9}=10} \\
& \pm \frac{2 \sqrt{a^{3}}}{3}-\frac{2 \sqrt{0}}{3}=10 \\
& \frac{2 \sqrt{a^{3}}}{3}=10 \\
& \therefore \frac{2 \sqrt{a^{3}}}{3}=10 \quad-\frac{2 \sqrt{a^{3}}}{3}=10 \\
& 2 \sqrt{a^{3}}=30 \\
& \sqrt{a^{3}}=15 \\
& a^{3}=225 \\
& a=6.08 \text { (to 2d.p) } \\
& \begin{aligned}
-2 \sqrt{a^{3}} & =30 \\
\sqrt{a^{3}} & =-15
\end{aligned} \\
& \begin{aligned}
\sqrt{a^{3}} & =-15 \\
a^{3} & =225
\end{aligned} \\
& \begin{array}{l}
\text { Tsame solution }
\end{array} \\
& \therefore a=6.08
\end{aligned}
$$

(ii) $y=e^{2 x}$

$$
\frac{d y}{d x}=2 e^{2 x}
$$

(iii) $y=\sin 5 x$

$$
\begin{aligned}
\frac{d y}{d x} & =\cos 5 x \times 5 \\
& =5 \cos 5 x
\end{aligned}
$$

(iv) $\frac{d y}{d x}=\frac{\sec ^{2} x}{\tan x}$
b)

$$
\begin{aligned}
& y=x^{2}-x \\
& d y=2 x-1 \\
& d x \\
& a t x=2, m_{T}=2 \times 2-1 \\
& =3 \\
& \therefore y-2=3(x-2) \\
& y-2=3 x-6 \\
& 3 x-y-4=0
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=x^{3}-3 x \\
& \frac{d y}{d x}=3 x^{2}-3
\end{aligned}
$$

to find stationary points, let $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \therefore 3 x^{2}-3=0 \\
& 2+3\left(x^{2}-1\right)=0 \\
& 3(x+1)(x-1)=0 \\
& \therefore x= \pm 1
\end{aligned}
$$

when $x=1, y=-2$
when $x=-1, y=2$
\therefore stationary points are $(1,-2)$ and $(-1,2)$
$y^{\prime \prime}=6 x$
at $x=1, y_{1 \prime}^{\prime \prime}=6<>0 \therefore(1,-2)$ is a minimum turning point at $x=-1, y^{\prime \prime}=-6,<0 \therefore(-1,2)$ is a maximum turing Point
b) $(4) A=P\left(1+\frac{R}{100}\right)^{N}$

$$
\begin{aligned}
A & =1000\left(1+\frac{S}{100}\right)^{15} \\
A & =1000(105)^{15} \\
& =\$ 12078.93\left(102 d_{9}\right)
\end{aligned}
$$

(11)

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
A_{1}=1000(1.05)^{1} \\
+ \\
1000(1.05)^{2} \\
A_{2}= \\
=1000(1.05)+100(1.05)^{2} \\
=1000\left(1.05+1.05^{2}\right)
\end{array}
\end{aligned}
$$

$$
\therefore A_{15}=\frac{1000\left(1.05+1.05^{2}+1.05^{3}+\ldots 1.05^{13}\right)}{G \cdot P}
$$

$$
\text { with } a=1.05 \quad x=1.05, n=15
$$

$$
S_{n}=\frac{a(r-1)}{r-1}
$$

$$
S_{n}=\frac{1.05\left(1.05^{15}-1\right)}{0.05}
$$

$$
\begin{aligned}
& \therefore A_{15}=\frac{1000\left(\frac{1.05\left(1.055^{15}-1\right.}{0.05}\right)}{} \frac{\$ 22657.49(\text { to } 2 d p)}{}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \\
& h=25 \\
& \left.A \doteqdot \frac{25}{3}[0+0+4(8+8)+2(10)]\right] \\
& \text { Area } \doteq 700 \mathrm{~cm}^{2} \\
& \text { Volume }=700 \times 10 \\
& =7000 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 7
a) (1) $P($ surviving $)=\frac{2}{5}$
$P($ not suronong $)=1-\frac{2}{5}$
(i) $P\left(\tilde{s}^{2}, \tilde{s}^{2}\right)$

$$
=\frac{3}{5} 314
$$

$$
\begin{aligned}
& =\left(\frac{3}{5}\right)^{\prime} \\
& =\frac{27}{125}
\end{aligned}
$$

(ii)

three fer per plants $=\frac{3}{10} \times 3 \quad\left(\frac{3}{10}\right)^{3}$

$$
=\frac{9}{10}=\frac{27}{100}
$$

(iii)

$$
\begin{aligned}
\begin{aligned}
& 1-f(\text { nonsusoung }) 1-f(\text { None arriving }) \\
& 1-1
\end{aligned} & =1-\frac{27}{125} \\
& =\frac{98}{125}
\end{aligned}
$$

Question 8
a)

$$
\begin{gathered}
\text { (1) } \Delta=(k+2)^{2}-4 \times 1 \times(4 k-4) \\
k^{2}+4 k+4-4(4 k-4) \\
k^{2}+4 k+4-16 k+16 \\
\Delta=k^{2}-12 k+20
\end{gathered}
$$

equal roots ie $\Delta=0$

$$
\begin{aligned}
\therefore k^{2}-12 k+20 & =0 \\
(k-2)(k-10) & =0
\end{aligned}
$$

$\therefore k=2 \quad b=10$.
(ii) let roots be α and $\frac{1}{\alpha}$

$$
\begin{gathered}
\alpha \times \frac{1}{\alpha}=1 \\
\therefore \quad \frac{42-4}{1}=1 \\
4 b-4=1 \\
4 h=5 \\
h=\frac{5}{4}
\end{gathered}
$$

(iii) Subing $x=8$

$$
\begin{gathered}
64-(h+2) \times 8+(4 h-4)=0 \\
64-8(k+2)+4 k-4=0 \\
64-8 k-16+4 k \times 4=0 \\
44-4 h=0 \\
4 h=44 \\
h=11
\end{gathered}
$$

b)

$$
\begin{aligned}
& \text { let } u=2^{x} \\
& \therefore u^{2}-7 u-8=0 \\
& (u+1)(u-8)=0 \\
& \therefore u=-1 \quad u=8 \\
& \therefore 2^{x}=-1 \\
& \hdashline 2^{x}=8 \\
& \therefore \text { no solutions } \quad \therefore x=3 \\
& \therefore \text { the only solution is } x=3
\end{aligned}
$$

$$
\rightarrow \begin{array}{r}
\rightarrow c) h=12-r \\
V=\pi r^{2} h \\
=\pi r^{2}(12-r) \\
\pi=12 \pi r^{2}-\pi r^{3} \\
\therefore \frac{d W}{d r}=24 \pi r-3 \pi r^{2} \\
3 \pi(8-r)
\end{array}
$$

to find stationary paints

$$
\begin{aligned}
& \text { let } \frac{d v}{d r}=0 \\
& \therefore 3 \pi r(8-r)=0 \\
& 3 \pi r=0, \quad 8 \quad r=0 \\
& r=0 \quad r=8
\end{aligned}
$$

$r \neq 0$ as it is a length

$$
\therefore r=8 \mathrm{~cm}
$$

$$
\begin{aligned}
& \frac{d N}{d r}=24 \pi r-3 \pi r^{2} \\
& \frac{d^{2} U}{d r^{2}}=24 \pi-6 \pi r
\end{aligned}
$$

$$
\text { at } r=8, \frac{d^{2} V}{d r^{2}}=-75.39 \cdot \cdot 20
$$

$$
\text { a maximum } \quad h+r=12 \quad h=4
$$

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi \times 8 \times 8 \times 4 \\
& =256 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Question 9

$$
\begin{aligned}
& \int 3 x^{2}-4 x d x=\frac{3 x^{3}-4 x^{2}}{3}+c \\
& f(x)=x^{3}-2 x^{2}+c
\end{aligned}
$$

passes through $(2,5)$

$$
\begin{gathered}
\therefore 5=c+0 \\
\therefore c=5 \\
\therefore f(x)=x^{3}-2 x^{2}+5
\end{gathered}
$$

passes through $(3, a)$

* Try this
b)
(1)

$$
\text { focal length }=6 \text { cunts }
$$

(ii)

$$
\begin{aligned}
& \text { ester } \\
& (x-2)^{2}=24(y+2){ }^{4 a=24}
\end{aligned}
$$

(iii) $x=2$
(iv) $y=-8$
c)

$$
\begin{aligned}
& \text { (1) } x^{2}+6 x+9+y^{2}-2 y+1: 15+1+9 \\
& (x+3)^{2}+(y-1)^{2}=25 \\
& \therefore \text { centre }=(-3,1)
\end{aligned}
$$

(II) cuts y axis when $x=0$

$$
\therefore(0+3)^{2}+\left(y^{2}-2 y+1\right)=25
$$

$$
\begin{gathered}
3^{2}+(y-1)^{2}=25 \\
(y-1)^{2}=16 \Rightarrow y-1= \pm 4 \\
y=50 r-3 \\
\rightarrow\left\{\begin{array}{l}
9+y^{2}-2 y+1=25 \\
10+y^{2}-2 y=25 \\
1
\end{array} y^{2}-2 y+10-25=0\right. \\
y^{2}-2 y-15=0 \\
(y+3)(y-5)=0 \\
y=-3, y=5
\end{gathered}
$$

$\therefore A$ and B are $(0,-3)$
and $(0,5)$

$A B=8$ units
height =3

$$
\begin{aligned}
& =\frac{1}{2} \times 3 \times 8 \\
& =\frac{24}{2} \\
& =12 \text { unis }^{2}
\end{aligned}
$$

$$
12
$$

Question 10
a) (i) intersection: $2 x^{2}=x^{2}+1$

$$
\begin{aligned}
& x^{2}=1 \\
& x^{2}-1=0 \\
& (x+1)(x-1)=0 \\
& \therefore x= \pm 1
\end{aligned}
$$

when $x=1, y=2$
when $x=-1, y=2$
$\therefore Q(-1,2)$ and $P(1,2)$

$$
\begin{gathered}
\quad y=x^{2}+1 \\
\text { at } B, x=0 \\
\therefore y=1 \\
\therefore B(0,1) \\
\therefore B(0,1) ; P(1,2) \text { and } Q(-1,2)
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& y=\frac{2 x^{2}}{2 x^{2}=y} \quad y=x^{2}+1 \\
& 2 x^{2}=y \quad y-1=x^{2} \\
& x^{2}=\frac{y}{2} \quad x^{2}=y-1 \\
& \therefore V=\pi \int_{0}^{1} \frac{y}{2}-(y-1) / 1 y \quad \frac{y-y+1}{2} \frac{y-2(y+1)}{2} \frac{y-2 y-2}{2} \\
& V=\pi \int_{0}^{1} \frac{y-2 y+2}{2} d y \\
& \frac{\pi}{2} \int_{0}^{1}-y=2 y+z d y=\frac{y^{2}}{2}-\frac{2 y^{2}}{2} y+2 y
\end{aligned}
$$

$$
\begin{gathered}
\frac{\pi}{2}\left[\frac{\left.y^{2}-y^{2}+2 y\right]}{2}\right]_{0}^{1} \\
\left.\left\lvert\, \frac{1}{2}-1 \div 2\right.\right]-0 \\
=\left.\frac{5}{2}\right|^{\frac{3}{2} \times \frac{\pi}{2}} \\
\frac{5}{2} \times \frac{\pi}{2}=\frac{35 \pi}{4}
\end{gathered}
$$

Total volume $=2 \times \frac{5 \pi}{4}$

$$
=\frac{10 \pi}{4}=\frac{5 \pi \text { units }^{3}}{2}
$$

b)

$$
\begin{aligned}
& \text { Area }=2 x \int_{0}^{\pi} 2 \sin x d x=[-2 \cos x]_{0}^{\pi} \times 2 \\
& {[2--2]=4 } \\
& 4 \times 2=8 \text { unis }^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } \begin{array}{l}
\frac{\pi}{4} \\
0
\end{array} \int_{0}(1+\tan x)^{2} d x=(1+\tan x)(1+\tan x) \\
=\pi \int_{0}^{\pi / 4} 1+2 \tan x+\tan ^{2} x d x 1 \quad \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\therefore \pi / \tan ^{2} \theta+1=\sec ^{2} \theta \\
\tan ^{2} \theta=\sec ^{2} \theta-1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 4} 1+2\left(\frac{\sin x}{\cos x}\right)+\sec ^{2} x-1 d x=\pi(x+-2 \ln (\cos x)+\tan x-x \\
& \pi \geqslant[x-2 \ln (\cos x)+\tan x-\sqrt{x}]_{0}^{\frac{\pi}{4}} \\
& \pi[-2 \ln (\cos x)+\tan x]_{0}^{\pi / 4} \\
& \pi\left[-2 \ln \left(\frac{1}{\sqrt{2}}\right)+1\right]-[0] \\
& -2 \pi\left(\ln \left(\frac{1}{\sqrt{2}}\right)+1\right) \text { undes } \\
& \pi[-2(\ln /-\ln \sqrt{2})+] \\
& =\pi[2 \ln \sqrt{2}+1] \\
& =\pi(\ln 2+i) \sin ^{3}
\end{aligned}
$$

