

SYDNEY GIRLS HIGH SCHOOL HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics 2012

General Instructions

- Reading Time- 5 minutes
- Working Time 3 hours
- Write using a blue or black pen
- Board approved calculators may be used
- A Standard Integrals Sheet is provided at the back of this paper which may be detached and used throughout the paper.

Name:....

Teacher:....

This is a trial paper ONLY.

It does not necessarily reflect the format or the contents of the 2012 HSC Examination Paper in this subject.

Total Marks 100

Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II

90 marks

- Attempt questions 11 16
- Answer on the blank paper provide.
- Start a new sheet for each question.
- Allow about 2 hours & 45 minutes for this section

Question one (1mark)

Simplify
$$5\sqrt{3} + \sqrt{20} - 2\sqrt{12} + \sqrt{45}$$

a) $\sqrt{5} - \sqrt{3}$ b) $\sqrt{5} + \sqrt{3}$ c) $5\sqrt{5} + 9\sqrt{3}$ d) $5\sqrt{5} + \sqrt{3}$

Question two (1mark)

Find the length of the arc which subtends angle of 15° at the centre of a circle of radius 0.1m.(answer correct to 3 decimal places)

a) 1.500	b) 0.262	c) 0.026	d) 0.008
----------	----------	----------	----------

Question three (1mark)

Solve |2x-1| = 3x

a)
$$x = -1$$
 b) $x = -1$ or $x = \frac{1}{5}$ c) $x = \frac{1}{5}$ d) $x = 1$

Question four (1mark)

If
$$\int_{0}^{a} (4-2x) dx = 4$$
, find the value of *a*.
a) $a = -2$ b) $a = 0$ c) $a = 4$ d) $a = 2$

<u>Question five (1mark)</u>

The derivative of the function $y = 2x\cos(e^{1-5x})$ is :

a) $y' = -10x \cos(e^{1-5x})$ b) $y' = 2\cos(e^{1-5x}) + 10x \sin(e^{1-5x})(e^{1-5x})$ c) $y' = -10x \sin(e^{1-5x})$ d) $y' = 2\cos(e^{1-5x}) - 10x \sin(e^{1-5x})$

<u>Question six</u> (1mark)

a) 24 b) 300 c) 298 d) 25

Question seven (1mark)

Given that the curve $y = ax^2 - 8x - 8$ has a stationary point at x = 2, find the value of a.

a) $a = \frac{1}{2}$ b) a = 2 c) a = 6 d) a = -2

Question eight (1mark)

The solution to this equation $\frac{3x-2}{4} - \frac{4-x}{3} = -4$ is:

a) x = 2 b) $x = 5\frac{3}{5}$ c) x = -2 d) $x = -5\frac{1}{5}$

Question nine (1mark)

Find the values of *m* for which $24 + 2m - m^2 \le 0$

a) $m \le -4$ or $m \ge 6$ b) $m \le -6$ or $m \ge 4$ c) $-4 \le m \le 6$ d) $-6 \le m \le 4$

<u>Question ten (1mark)</u>

In a game that Batman invented, two ordinary dice are thrown repeatedly until the sum of the two numbers shown is either 7 or 9. If the sum is 9 you win . If the sum is 7 you lose. If the sum is any other number , you continue to throw until it is 7 or 9. The probability that a second throw required is :

a)
$$\frac{13}{18}$$
 b) $\frac{1}{9}$ c) $\frac{5}{18}$ d) $\frac{1}{54}$

Question eleven (15 marks)

a) Factorise
$$4x^2 - 8x - 5$$
 (2)

b) Solve
$$3x^3 - 1 = 2x \cdot 3x^2$$
 (1)

c) Find the domain and the range of :

i)
$$f(x) = \sqrt{3 - x^2}$$
 (2)

ii) State whether
$$f(x)$$
 is odd or even, giving reasons. (2)

d) Integrate the following:

i)
$$\int \left(3x^2 + \frac{1}{x}\right)^2 dx$$
 (2)

$$ii) \int 4\sin(2x-1)dx \tag{1}$$

e) Given
$$\log_a 2 = x$$
, find $\log_a (2a)^3$ in terms of x. (2)

f) Find the primitive function of $\frac{3x}{x^2+1}$. (1)

g) Solve $\sin \theta = \sqrt{3} \cos \theta$ for $0 \le \theta \le 2\pi$ (2)

<u>Question Twelve</u> (15 marks)

a) Differentiate

i)
$$y = \frac{3x}{7\cos x}$$
(2)

ii)
$$y = 4x^2 \ln(2-x)$$
 (2)

b) A(2,-2), B(-2,3) and C(0,2) are the vertices of a triangle *ABC*. Plot the points to form triangle *ABC*

i) Find the equation of the line
$$AC$$
 in general form (2)

ii) Calculate the perpendicular distance of
$$B$$
 from the side AC (2)

iii) Find the coordinates of *D* such that *ABCD* is a parallelogram (2)

(3)

c) Prove $\frac{\cos\theta}{1-\tan\theta} + \frac{\sin\theta}{1-\cot\theta} = \sin\theta + \cos\theta$

d) Differentiate $y = \ln\left(\frac{2x-3}{x^2+6}\right)$ (2)

<u>Question thirteen</u> (15 marks)

a) Consider the function f(x) = 1-3x + x³ in the domain -2 ≤ x ≤ 3
i) Find the stationary points and determine their nature. (3)
ii) Find the point of inflexion. (2)
iii) Draw a sketch of the curve y = f(x) in the domain -2 ≤ x ≤ 3, clearly showing all important features. (2)
iv) What is the maximum value of the function in the given domain? (1)

b) $\int 1 + \sec^2 \pi x \, dx$

- c) The line y = 3x p + 2 is tangent to the parabola $y = x^2 + 1$. Find the value of p. (2)
- d) The diagram shows the graph of the function y = f(x), copy the diagram on your answer sheet, and draw the graph of f'(x). (2)

e) Solve the equation $5^{2x} - 4.5^x - 5 = 0$.

(2)

(1)

<u>د</u>

Question Fourteen (15 marks)

a) Consider the curve $y = 3\cos 2x$ in the domain $-\pi \le x \le \pi$

i) State the amplitude and the period of the curve	(2)
ii) Sketch the curve in the given domain	(1)

b) The bearing of *B* from *A* is $036^{\circ}T$ and the bearing of *C* from *B* is $156^{\circ}T$.

Copy the diagram on to your answer sheet.

i) Find the value of $\angle ABC$.	(2)
-------------------------------------	-----

- ii) Find the distance AC. (2)
- iii) Find the bearing of A from C. (2)

c) The equation of a parabola is given by $2y = x^2 - 4x + 6$. Find

i)	the coordinates of the vertex	(2)
1)	the coordinates of the vertex	(2

- ii) the coordinates of the focus (1)
- iii) the equation of the directrix. (1)

Question Fifteen (15 marks)

a) Solve $\log_e(2x+2) + \log_e x - \log_e 12 = 0$

b)

(Figure not to scale)

i)	Prove that ΔSAB is similar to ΔSUT .	(2)

- ii) Hence find the length of AB (2)
- c) Use the Simpson's rule with 4 subintervals to find an approximation for the area of the following figure. All measurements are in metres. (2)

d) Find the exact area bounded by the curve $y = \log_e x$, the line x = 8, and the axis. (3)

e) For what values of k does the equation $x^2 + (k+2)x + 4 = 0$, have distinct real roots. (3)

Question sixteen (15 marks)

a) Find the volume of the solid formed when the area bounded by the curve $y = 5 - x^2$, for $x \ge 0$, the y-axis and the line y = 1 is rotated about the x-axis. (3)

b)

The diagram above shows a sector of a circle with centre O and radius r cm.

The arc *BC* subtends an angle θ radians at *O* and the area of the sector is 8 cm^2 .

i) Find an expression for r in terms of θ (1)

ii) Show that the perimeter of the sector is given by
$$P = \frac{8}{\sqrt{\theta}} + 4\sqrt{\theta}$$
 (2)

iii) If $0 \le \theta \le \pi$, find the value of θ for a minimum perimeter. (3)

- c) Spiderman worked out that he could save \$80000 in 5 years by depositing his salary of \$*M* at the beginning of each month into a savings account and withdrawing \$1800 at the end of each month for living expenses. The savings account paid interest at the rate of 6% p.a compounding monthly. Let A_n represent the balance in his savings account at the end of each month.
 - i) show that at the end of the second month the balance in his savings account, immediately after making his \$1800 withdrawal would be given by $A_2 = (1.005^2 + 1.005)M 1800(1.005 + 1)$ (2)
 - ii) Hence calculate his salary. (2)
 - iii) How many years will it take him to save \$120000, if he has the same salary and monthly expenses?

THE END

STANDARD INTEGRALS

$\int x^n dx$	$= \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$
$\int \frac{1}{x} dx$	$=\ln x, x>0$
$\int e^{ax} dx$	$=rac{1}{a}e^{ax}, a \neq 0$
$\int \cos ax \ dx$	$=\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax \ dx$	$=-rac{1}{a}\cos ax, \ a eq 0$
$\int \sec^2 ax \ dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax \ dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE: $\ln x = \log_e x, \quad x > 0$

Multiple Choice - Trial -
1.
$$5\sqrt{3} + \sqrt{20} - 2\sqrt{12} + \sqrt{45}$$

 $5\sqrt{3} + 2\sqrt{5} - 4\sqrt{5} + 3\sqrt{5}$
 $\sqrt{3} + 2\sqrt{5} - 4\sqrt{5} + 3\sqrt{5}$
 $\sqrt{3} + 5\sqrt{5}$
(D)
2. $\ell = \sqrt{0}$ $T = 180^{\circ}$
 $\ell = 0.1 \times 15 \times \frac{1}{180}$ $1^{\circ} = \frac{1}{180}$
 $\ell = 0.026$
(C)
3. $|2x-1| = 3x$
 $2x-1 = 3x$ or $2x-1 = -3x$
 $-1 = x$ $-1 = -5x$
 $check solution $x = \frac{1}{5}$
 $x = \frac{1}{5}$ only solution (C)
4. $\int_{0}^{q} (4-2x) dx = 4$
 $4x - \frac{2\pi^{2}}{2} \Big|_{0}^{q} = 4$
 $4a - a^{2} = 4$
 $a^{2} - 4a + 4 = 0$
 $(a - 2)(a - 2) = 0$
 $\therefore a = 2$ (D)
3. $y = 2x \cdot \cos(e^{1-5x})$
 $\frac{chy}{dx} = \frac{udy}{dx} + \frac{vdx}{dx}$
 $= 2x \cdot - \sin(e^{1-5x}) \times -5 \times e^{1-5x} + 2\cos e^{1-5x}$
 $= 2\cos e^{1-5x} + 10x \sin(e^{1-5x}) \cdot e^{1-5x}$
(B)$

6.
$$\sqrt{11} + \sqrt{28} + \sqrt{63} + \dots + p = 300\sqrt{5}$$

 $\sqrt{11} + \sqrt{21} + 3\sqrt{5} + \dots + p = 300\sqrt{5}$
 $a = \sqrt{5}$
 $d = \sqrt{7}$
 $d = \sqrt{7}$
 $\sqrt{5} = \frac{\pi}{2} \left[\sqrt{2}a + (n-1)\sqrt{5} \right]$
 $600\sqrt{5} = n \left[\sqrt{2}5 + \sqrt{5}n - \sqrt{5} \right]$
 $600\sqrt{5} = n \left[\sqrt{2}5 + \sqrt{5}n - \sqrt{5} \right]$
 $600\sqrt{5} = n \left[\sqrt{2}5 + \sqrt{5}n - \sqrt{5} \right]$
 $600\sqrt{5} = n \left[\sqrt{2}5 + \sqrt{5}n - \sqrt{5} \right]$
 $600\sqrt{5} = n \left[\sqrt{2}5 + \sqrt{5}n - \sqrt{5} \right]$
 $n = -25 \text{ or } n = 24$
 $\sqrt{7} \text{ only solution } n = 24$
7. $y = ax^2 - 8x - 8$
 $at x = 2, \text{ dy} = 0$
 $a = 2$
8. $\frac{3x-2}{4} - \frac{4-x}{3} = -4$
 $3(3x-2) - 4(4-x) = -4(12)$
 $9x - 6 - 1(6 + Ax = -48)$
 $13x = -26$
 $x = -2$
9. $\frac{24 + 2m - m^2 \le 0}{\sqrt{4}}$
 $(6 - m)(4 + m) \le 0$
 $\sqrt{4}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{5}$
 $\sqrt{7}$
 $\sqrt{7}$

. : e) log 2 = 3c, 911 2 log (2a) a) 4-x2-8x-5 P -20 = (2x - S)(2x + 1)= 3 log 2a b) $3x^{3} - 1 = 2x \cdot 3x^{2}$ = 3 [log 2 + log a] $3x^{3} - 1 - 6x^{3}$ -2203-1=0 = 3 [2(+ 1] = C 3x+3 ST = - 3 / 2 $\frac{F}{x^2+1} \int \frac{3x}{x^2+1} dx$ = - 1 $=\frac{3}{2}\int \frac{2x}{x^{1}+1}dx$ c) i) D: -13 <x < 13 1 R: 05YSJ3 = 3 ln (x2+1) + C ii) even 1 $f(x) = \sqrt{3-x^2}$ $\frac{2}{2} = \frac{f(x) - f(-x)}{1} + \frac{f(-x)}{2} = \frac{f(-x)}{1} + \frac{f(-x)}{2} = \frac{f(-x)}{2} + \frac{f(-x)}{2} = \frac{f(-x)}{2} + \frac{f(-x)}{2} = \frac{f(-x)}{2} + \frac{f(-x)}{2} + \frac{f(-x)}{2} = \frac{f(-x)}{2} + \frac{f(-x)}{2}$ g) Sino = 13 (050 d) if $\int (3x^2 + \frac{1}{x})^2 dx$ sino - 13 630 $= \int \left(9x^{4} + 6x + 1 \right) dx$ tan 0 = 13, $= \frac{9x^{5}+3x^{2}-1}{5}+C$ $\theta = \pi - 4\pi$ ii) § 4 sin (2x -1) dx $\frac{--4 \times 1}{2} (os(2 \times -1) + C)$ $= -2 \cos(2x-1) + C + C$ $\widehat{()}$ Ê)

Q12 $\cdot \in$ $\frac{a)T}{2} \frac{y-3x}{7 \cos x}$ $y' = 3 \left[\frac{c_{0}s_{2}r_{1} + 3r_{1}s_{1}}{r_{1}} + \frac{c_{0}s_{1}r_{2}}{r_{0}s_{1}^{2}r_{1}} \right]$ $\frac{3}{7} \begin{bmatrix} \cos x + \sin x \\ \cos^2 x \end{bmatrix} \frac{y - 4x^{2} \ln(2-x)}{y' - 4x^{2} + 8x \ln(2+x)}$ I) $U_2 4 x^2$ ù = 8x V= h(2-2C) - 1 2-x $\begin{array}{c} (b) & (c) \\ (c)$ the gradient of AC = 2+2 The equation of AC is <u>y-2-2-2(2(-0)</u> $d = \frac{|2x-2+3-2|}{\sqrt{2^2+1^2}}$ <u>'ii)</u> = <u>3</u> 25 35 (3)

<u>.</u> B(-2,3) c (012) Midport of AC is the same as Midport of BD $\frac{1}{2} \begin{pmatrix} 0+2 & 2-2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} -2+2 & 3+9 \\ 2 & 2 \end{pmatrix}$ (1, 0) = (-2+x 3+y)0 = 3 + Y . x = 4 123 D(4,-3) c) coso + Sino 1-tano $1 - c_0 + O$ SinA Smo Cose x Cose + 1-tane Cose + 1-6+0 SinA Sino 620 Cosp-Sino Sind-Coso Costo SINA $\frac{c_{050-Sim0}}{c_{05}\theta-Sim0}$ Coso-Sino (0012+020) (010+SINO) (Cose-Sin0) = Coso + Sino $d) \quad y = \ln(\frac{2x-3}{x^2-6})$ y = 1x (2x-3) - 1x (x²+6) $\frac{2}{2x-2} = \frac{2x}{2x}$

Suestion 13

$$f(x) = 1 - 3x + x^{3} - 2 \le x \le 3$$

$$f(x) = 1 - 3x + x^{3} - 2 \le x \le 3$$

$$f(x) = 1 - 3x + x^{3} - 2 \le x \le 3$$

$$f(x) = 1 - 3x + x^{3} - 2 \le x \le 3$$

$$f(x) = 1 - 3x + x^{3} - 2 \le x \le 3$$

$$f(x) = 1 - 3x^{2} = 0$$

$$3x^{2} = 3$$

$$yx^{2} = 1$$

$$xx = 1$$

$$f(x) = (-3(1) + 1^{3} = 0 + x = -1 + f(x) = 1 + 3 - 1$$

$$= 1 - 3 + 1 = -3$$

$$f''(x) = 6x$$

$$at x = 1 + f''(1) = 6 > 0 \quad \therefore \text{ Minimum Statenary Point}$$

$$at x = -1 + f''(-1) = -6 < 0 \quad \therefore \text{ Maximum Statenary Point}$$

$$at x = -1 + f''(-1) = -6 < 0 \quad \therefore \text{ Maximum Statenary Point}$$

$$f(x) = 6x$$

$$f(x) = 1 + \frac{x}{(1)} = 0$$

$$6x = 0$$

$$x = 0 \quad \text{Since change in concavity}$$

$$\frac{x}{(1)} = 0 + \frac{x}{(1)} = 0$$

$$f(x) = 1$$

$$f(x) = 0 + \frac{x}{(1)} = 0$$

$$f(x) = 1$$

$$f(x) = 0 + \frac{x}{(1)} = 0$$

$$f(x) = 1$$

$$f(x) = 0$$

$$f($$

$$\frac{2}{1} = \frac{1}{2} + \frac{1}$$

(14 d)
$$2y = 3c^{2} - 4x + 6$$

 $2y = (x - 2)^{2} + 2$
 $2(y - 1) = (x - 2)^{2}$
(ceneral Eqn,
 $(x - b)^{2} = 4a(y - c)$
(a, 1) (2)
(i) Vertex (b, c)
(a, 1) (2)
(i) Focus
Focal kngth = a
 $\therefore 4a = 2$
 $a = \frac{1}{2}$ (1)
(i) Directrix $y = \frac{1}{2}$ (1)
(i) Directrix $y = \frac{1}{2}$ (1)
(i) Directrix $y = \frac{1}{2}$ (1)
(i) $2y = 2xe^{2}$
(c) $y = e^{2} + 2xe^{2}$
(c) $y = 4ex - 3e$
(c) $y = 2e^{x}(1 + x)$
(c) $y = 2e^{x}(1 + x$

15)/n/2x+2)x - 10ge 12=0 c) × f(m) W Wfm 1n (2x2+2x) = 102,12 10 110 0 27 4 108 19 2 38 8 4 32 2n + 2n - 12 = 0 14 $\frac{1}{21}$ 28 x2+x-6=0 0 (x+3)(x-2)=0 $A \doteq \frac{7}{2} (188)$ = 438 - 12 15-3 or x5+2 ·) $\chi \neq -3$ d) x=2 Lysloen yslog g In AS BABESUT) b) 25 is connon $\frac{SB}{2} = \frac{6}{9} = \frac{2}{3}$ 758 3 ST 1 e) (k+2)²-16 70____ SA $\frac{8}{12} = \frac{2}{3}$ SIL - k+4k+4-1670-108 e Y dy A= 8x h8. . A SABINA SVT (equianular) k-44h-1270 eyjing (k+6)(k-2)70- 8/n8-AB = 22 = P/n 8 = e AB= 30) k > 23 10 5 8/18 8 + K (-6-= 81n8-7 w2

ŝ

$$Y = 5 - x^{2}$$

$$Y_{1} = \pi \int_{0}^{2} (5 - x^{2})^{2} dx$$

$$= \pi \int_{0}^{2} (25 - 10x^{2} + x^{4}) dx$$

$$= \pi \left[25x - \frac{10x^{3}}{3} + \frac{x^{5}}{5} \right]_{0}^{2}$$

$$= \pi \left[25x 2 - \frac{10x^{2}}{3} + \frac{x^{5}}{5} \right]_{0}^{2}$$

$$= \frac{446\pi}{15} u^{3}$$

$$V_{2} = \pi x^{12} x^{2}$$

$$= 2\pi u^{3}$$

$$= \frac{446\pi}{15} u^{3}$$

Area =
$$\frac{1}{2}r^2\theta$$

 $8 = \frac{1}{2}r^2\theta$
 $r^2\theta = 16$
 $r^2 = \frac{16}{\theta}$
 $r = \frac{4}{\sqrt{\theta}}(a \le r > 0)$

(ii)
$$\lambda_{gc} = r\theta$$

 $= \frac{4}{\sqrt{\theta}} \times \theta$
 $= 4\sqrt{\theta} \text{ cm}$
 $P = 2r + \ell_{gc}$
 $= 2 \times \frac{4}{\sqrt{\theta}} + 4\sqrt{\theta}$
 $= \frac{9}{\sqrt{\theta}} + 4\sqrt{\theta}$
(iii) $P = 8\theta^{-\frac{1}{2}} + 4\theta^{\frac{1}{2}}$
 $p' = -4\theta^{-\frac{3}{2}} + 2\theta^{-\frac{1}{2}}$
 $= -\frac{4}{\theta\sqrt{\theta}} + \frac{2}{\sqrt{\theta}}$
For min perimeter, $P' = 0$ and $P'' > 0$
 $-\frac{4}{\theta\sqrt{\theta}} + \frac{2}{\sqrt{\theta}} = 0$
 $-\frac{4}{\theta\sqrt{\theta}} + \frac{2}{\sqrt{\theta}} = 0$
 $2\theta = 4$
 $\theta = 2 \text{ radians}$
 $P'' = 6\theta^{-\frac{5}{2}} - \theta^{-\frac{3}{2}}$
 $= \frac{6}{\theta^{2}\sqrt{\theta}} - \frac{1}{\theta\sqrt{\theta}}$
when $\theta = 2$
 $p'' = 70$

i min perimeter when

.

Q=2 radians

$$\begin{aligned} S_{11}^{(1)} = M \times 1.005 - 1800 \\ & A_{2} = (A_{1} + 10) \cdot 005 - 1800 \\ & = (1 + 1005^{2} - 1800 + 1800 (1 + 1005 + 1800) \\ & = (1 + 1005^{2} - 1800 (1 + 1005 + 1800) (1 + 1005 + 1800) \\ & = (1 + 1005^{2} + 1005^{2} + 1005 + 1005 + 1005 + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005 + 1005 + 1005 + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} + 1005^{2} \\ & = (1 + 1005^{2} + 10$$

-1 , (.ų

u v

-1