

## SYDNEY GIRLS HIGH SCHOOL HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

## Mathematics 2012

## General Instructions

- Reading Time- 5 minutes
- Working Time - 3 hours
- Write using a blue or black pen
- Board approved calculators may be used
- A Standard Integrals Sheet is provided at the back of this paper which may be detached and used throughout the paper.

Name: $\qquad$

[^0]
## Section II

90 marks

- Attempt questions 11-16
- Answer on the blank paper provide.
- Start a new sheet for each question.
- Allow about 2 hours \& 45 minutes for this section
Total Marks 100


## Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.


## Question one (1mark)

Simplify $5 \sqrt{3}+\sqrt{20}-2 \sqrt{12}+\sqrt{45}$
a) $\sqrt{5}-\sqrt{3}$
b) $\sqrt{5}+\sqrt{3}$
c) $5 \sqrt{5}+9 \sqrt{3}$
d) $5 \sqrt{5}+\sqrt{3}$

## Question two (1mark)

Find the length of the arc which subtends angle of $15^{\circ}$ at the centre of a circle of radius 0.1 m . ( answer correct to 3 decimal places)
a) 1.500
b) 0.262
c) 0.026
d) 0.008

## Question three (1mark)

Solve $|2 x-1|=3 x$
a) $x=-1$
b) $x=-1$ or $x=\frac{1}{5}$
c) $x=\frac{1}{5}$
d) $x=1$

## Question four (1mark)

If $\int_{0}^{a}(4-2 x) d x=4$, find the value of $a$.
a) $a=-2$
b) $a=0$
c) $a=4$
d) $a=2$

## Question five (1mark)

The derivative of the function $y=2 x \cos \left(e^{1-5 x}\right)$ is :
a) $y^{\prime}=-10 x \cos \left(e^{1-5 x}\right)$
b) $y^{\prime}=2 \cos \left(e^{1-5 x}\right)+10 x \sin \left(e^{1-5 x}\right)\left(e^{1-5 x}\right)$
c) $y^{\prime}=-10 x \sin \left(e^{1-5 x}\right)$
d) $y^{\prime}=2 \cos \left(e^{1-5 x}\right)-10 x \sin \left(e^{1-5 x}\right)$

## Question six (1mark)

If $\sqrt{7}+\sqrt{28}+\sqrt{63} \ldots \ldots \ldots+p=300 \sqrt{7}$. How many terms are there in the series?
a) 24
b) 300
c) 298
d) 25

## Question seven (1mark)

Given that the curve $y=a x^{2}-8 x-8$ has a stationary point at $x=2$, find the value of $a$.
a) $a=\frac{1}{2}$
b) $a=2$
c) $a=6$
d) $a=-2$

## Question eight (1mark)

The solution to this equation $\frac{3 x-2}{4}-\frac{4-x}{3}=-4 \quad$ is:
a) $x=2$
b) $x=5 \frac{3}{5}$
c) $x=-2$
d) $x=-5 \frac{1}{5}$

## Question nine (1mark)

Find the values of $m$ for which $24+2 m-m^{2} \leq 0$
a) $m \leq-4$ or $m \geq 6$
b) $m \leq-6$ or $m \geq 4$
c) $-4 \leq m \leq 6$
d) $-6 \leq m \leq 4$

## Question ten (1mark)

In a game that Batman invented, two ordinary dice are thrown repeatedly until the sum of the two numbers shown is either 7 or 9 . If the sum is 9 you win. If the sum is 7 you lose. If the sum is any other number, you continue to throw until it is 7 or 9 . The probability that a second throw required is :
a) $\frac{13}{18}$
b) $\frac{1}{9}$
c) $\frac{5}{18}$
d) $\frac{1}{54}$

## Question eleven (15 marks)

a) Factorise $4 x^{2}-8 x-5$
b) Solve $3 x^{3}-1=2 x .3 x^{2}$
c) Find the domain and the range of :

$$
\begin{equation*}
\text { i) } f(x)=\sqrt{3-x^{2}} \tag{2}
\end{equation*}
$$

ii) State whether $f(x)$ is odd or even, giving reasons.
d) Integrate the following:

$$
\begin{equation*}
\text { i) } \int\left(3 x^{2}+\frac{1}{x}\right)^{2} d x \tag{2}
\end{equation*}
$$

ii) $\int 4 \sin (2 x-1) d x$
e) Given $\log _{a} 2=x$, find $\log _{a}(2 a)^{3}$ in terms of $x$.
f) Find the primitive function of $\frac{3 x}{x^{2}+1}$.
g) Solve $\sin \theta=\sqrt{3} \cos \theta$ for $0 \leq \theta \leq 2 \pi$

## Question Twelve (15 marks)

a) Differentiate

$$
\begin{equation*}
\text { i) } y=\frac{3 x}{7 \cos x} \tag{2}
\end{equation*}
$$

ii) $y=4 x^{2} \ln (2-x)$
b) $A(2,-2), B(-2,3)$ and $C(0,2)$ are the vertices of a triangle $A B C$. Plot the points to form triangle $A B C$
i) Find the equation of the line $A C$ in general form
ii) Calculate the perpendicular distance of $B$ from the side $A C$
iii) Find the coordinates of $D$ such that $A B C D$ is a parallelogram
c) Prove $\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=\sin \theta+\cos \theta$
d) Differentiate $y=\ln \left(\frac{2 x-3}{x^{2}+6}\right)$

## Question thirteen (15 marks)

a) Consider the function $f(x)=1-3 x+x^{3}$ in the domain $-2 \leq x \leq 3$
i) Find the stationary points and determine their nature.
ii) Find the point of inflexion.
iii) Draw a sketch of the curve $y=f(x)$ in the domain $-2 \leq x \leq 3$, clearly showing all important features.
iv) What is the maximum value of the function in the given domain?
b) $\int 1+\sec ^{2} \pi x d x$
c) The line $y=3 x-p+2$ is tangent to the parabola $y=x^{2}+1$. Find the value of $p$.
d) The diagram shows the graph of the function $y=f(x)$, copy the diagram on your answer sheet, and draw the graph of $f^{\prime}(x)$.

e) Solve the equation $5^{2 x}-4.5^{x}-5=0$.

## Question Fourteen (15 marks)

a) Consider the curve $y=3 \cos 2 x$ in the domain $-\pi \leq x \leq \pi$
i) State the amplitude and the period of the curve
ii) Sketch the curve in the given domain
b) The bearing of $B$ from $A$ is $036^{\circ} T$ and the bearing of $C$ from $B$ is $156^{\circ} T$.


Copy the diagram on to your answer sheet.
i) Find the value of $\angle A B C$.
ii) Find the distance $A C$.
iii) Find the bearing of $A$ from $C$.
c) The equation of a parabola is given by $2 y=x^{2}-4 x+6$. Find
i) the coordinates of the vertex
ii) the coordinates of the focus
iii) the equation of the directrix.
d) Find the equation of the tangent to the curve $y=2 x e^{x}$ at the point $(1, e)$.

## Question Fifteen (15 marks)

a) Solve $\log _{e}(2 x+2)+\log _{e} x-\log _{e} 12=0$
b)

(Figure not to scale)
i) Prove that $\triangle S A B$ is similar to $\triangle S U T$.
ii) Hence find the length of $A B$
c) Use the Simpson's rule with 4 subintervals to find an approximation for the area of the following figure. All measurements are in metres.


Figure not to scale
d) Find the exact area bounded by the curve $y=\log _{e} x$, the line $x=8$, and the axis.
e) For what values of $k$ does the equation $x^{2}+(k+2) x+4=0$, have distinct real roots.

## Question sixteen (15 marks)

a) Find the volume of the solid formed when the area bounded by the curve $y=5-x^{2}$, for $x \geq 0$, the $y$-axis and the line $y=1$ is rotated about the $x$-axis.
b)


The diagram above shows a sector of a circle with centre $O$ and radius $r \mathrm{~cm}$.
The $\operatorname{arc} B C$ subtends an angle $\theta$ radians at $O$ and the area of the sector is $8 \mathrm{~cm}^{2}$.
i) Find an expression for $r$ in terms of $\theta$
ii) Show that the perimeter of the sector is given by $P=\frac{8}{\sqrt{\theta}}+4 \sqrt{\theta}$
iii) If $0 \leq \theta \leq \pi$, find the value of $\theta$ for a minimum perimeter.
c) Spiderman worked out that he could save $\$ 80000$ in 5 years by depositing his salary of $\$ M$ at the beginning of each month into a savings account and withdrawing $\$ 1800$ at the end of each month for living expenses. The savings account paid interest at the rate of $6 \%$ p.a compounding monthly. Let $A_{n}$ represent the balance in his savings account at the end of each month.
i) show that at the end of the second month the balance in his savings account, immediately after making his $\$ 1800$ withdrawal would be given by : $A_{2}=\left(1.005^{2}+1.005\right) M-1800(1.005+1)$
ii) Hence calculate his salary.
iii) How many years will it take him to save $\$ 120000$, if he has the same salary and monthly expenses?

## STANDARD INTEGRALS

$$
\text { NOTE: } \quad \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Muniple Choice - Trial -
i. $5 \sqrt{3}+\sqrt{20}-2 \sqrt{12}+\sqrt{45}$

$$
\begin{aligned}
& 5 \sqrt{3}+2 \sqrt{5}-4 \sqrt{3}+3 \sqrt{5} \\
& \sqrt{3}+5 \sqrt{5}
\end{aligned}
$$

(D)

$$
\text { 2. } \begin{array}{rlr}
l & =r \theta & \pi=180^{\circ} \\
l & =0.1 \times 15 \times \frac{\pi}{180} & 1^{\circ}=\frac{\pi}{180} \\
l & =0.026 &
\end{array}
$$

(c)
3. $|2 x-1|=3 x$

$$
\begin{array}{rlrlrl}
2 x-1 & =3 x & \text { or } & 2 x-1 & =-3 x \\
-1 & =x & & -1 & =-5 x \\
\text { check } & \text { solutions } & & x & =\frac{1}{5} \\
x & =\frac{1}{5} \text { only solution }
\end{array}
$$

$\int_{0}^{a}(4-2 x) d x=4$
$\left.4 x-\frac{2 x^{2}}{2}\right]_{0}^{a}=4$
$4 a-a^{2}=4$
$a^{2}-4 a+4=0$
$(a-2)(a-2)=0$
$\therefore a=2$
5. $y=2 x^{u} \cdot \cos \left(e^{1-5 x}\right)$
$\frac{d y}{d x}=\frac{u d v}{d x}+v \frac{d u}{d x}$
$=2 x-\sin \left(e^{1-5 x}\right) \times-5 \times e^{1-5 x}+2 \cos e^{1-5 x}$
$=2 \cos e^{1-5 x}+10 x \sin \left(e^{1-5 x}\right) \cdot e^{1-5 x}$
(B)
6. $\sqrt{7}+\sqrt{28}+\sqrt{63}+\cdots+p=300 \sqrt{7}$

$$
\begin{aligned}
& \sqrt{7}+2 \sqrt{7}+3 \sqrt{7}+\cdots+p=300 \sqrt{7} \\
& a=\sqrt{7} \quad \therefore S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& d=\sqrt{7} \quad \therefore
\end{aligned}
$$

$$
\begin{array}{ll}
S_{n}=300 \sqrt{7} & 300 \sqrt{7}=\frac{n}{2}[2 \sqrt{7}+(n-1) \sqrt{7}] \\
& 600 \sqrt{7}=n[2 \sqrt{7}+\sqrt{7} n-\sqrt{7} .
\end{array}
$$

$$
600 \sqrt{7}=n[2 \sqrt{7}+\sqrt{7} n-\sqrt{7}]
$$

$$
600 \sqrt{7}=\sqrt{7} n+\sqrt{7} n^{2}
$$

$$
n^{2}+n-600=0
$$

$$
(n+25)(n-24)=0
$$

$$
\begin{equation*}
n=-25 \text { or } n=24 \tag{A}
\end{equation*}
$$

$$
\therefore \text { only solution } n=24
$$

7. $y=a x^{2}-8 x-8$

$$
\begin{array}{ll}
\frac{d y}{d x}=2 a x-8 & 4 a-8=0  \tag{B}\\
& 4 a=8
\end{array}
$$

$$
\text { at } x=2, \frac{d y}{d x}=0
$$

$$
a=2
$$

8. $\quad \frac{3 x-2}{4}-\frac{4-x}{3}=-4$

$$
\begin{gathered}
3(3 x-2)-4(4-x)=-4(12) \\
9 x-6-16+4 x=-48 \\
13 x=-26 \\
x=-2
\end{gathered}
$$

9. $24+2 m-m^{2} \leq 0$

$$
\begin{equation*}
(6-m)(4+m) \leq 0 \tag{A}
\end{equation*}
$$


$m \leq-4$ or $m \geq 6$
10. 1,1 2i
$P(7)=\frac{6}{36}$
$P(9)=\frac{4}{36}$
$P($ other $)=\frac{26}{36}=\frac{13}{1 x}$ for a second
throw.
$Q_{11}$

$$
\begin{aligned}
& \text { a) } 4 x^{2}-8 x-5 \\
& 2=(2 x-5)(2 x+1)
\end{aligned}
$$

$$
P-20
$$

$$
S=-8
$$

b)

$$
\begin{aligned}
& 3 x^{3}-1=2 x \cdot 3 x^{2} \\
& 3 x^{3}-1=6-x^{3} \\
& -3 x^{3}-1=0 \\
& -3 x^{3}=1 \\
& x^{3}=\frac{-1}{3} \\
& x=-\sqrt[3]{\frac{1}{3}} \\
& =-\frac{1}{\sqrt[3]{3}}
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& \text { i) } D:-\sqrt{3} \leqslant x \leqslant \sqrt{3}, \\
& R: \quad 0 \leqslant y \leqslant \sqrt{3}
\end{aligned}
$$

ii) even 1 $f(x)=\sqrt{3-x^{2}}$

$$
2 f(x)=f(-x)+\quad f(-x)=\sqrt{3-(-x)^{2}}
$$

$$
\begin{aligned}
\text { 2) } & \text { if } \int\left(3 x^{2}+\frac{1}{x}\right)^{2} d x \\
& =\int\left(9 x^{4}+6 x+\frac{1}{x^{2}}\right) d x, \\
& =\frac{9 x^{5}}{5}+3 x^{2}-\frac{1}{x}+c,
\end{aligned}
$$

ii) $\int 4 \sin (2 x-1) d x$

$$
\begin{aligned}
& =-4 \times \frac{1}{2} \cos (2 x-1)+C \\
& =-2 \cos (2 x-1)+c-1
\end{aligned}
$$

e)

$$
2
$$

$$
\log _{a}(2 a)^{3}
$$

$$
=-3 \log _{a} 2 a
$$

$$
=3\left[\log _{a} 2+\log _{a} a\right]
$$

$$
=3[x+1] \text { or }
$$

$$
3 x+3
$$

$$
\text { f) } \begin{aligned}
& \int \frac{3 x}{x^{2}+1} d x \\
&= \frac{3}{2} \int \frac{2 x}{x^{2}+1} d x \\
&= \frac{3}{2} \ln \left(x^{2}+1\right)+c
\end{aligned}
$$

g) $\sin \theta=\sqrt{3} \cos \theta$

$$
\begin{aligned}
& \frac{\sin \theta}{\cos \theta}=\sqrt{3} \\
& \tan \theta=\sqrt{3}, \\
& \theta=\frac{\pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

$Q 12$
a) $\frac{y}{2}=\frac{3 x}{7 \cos x}$

$$
\begin{aligned}
& y^{\prime}=\frac{3}{7}\left[\frac{\cos x x 1+x \sin x}{\cos ^{2} x}\right] \\
& =\frac{3}{7}\left[\frac{\cos x+\sin x}{\cos ^{2} x}\right]
\end{aligned}
$$

II)

$$
\begin{array}{ll}
y=4 x^{2} \ln (2-x) & \\
y^{\prime}=\frac{-4 x^{2}}{2-x}+8 x \ln (2+x) \quad u=4 x^{2} \\
& u^{\prime} \\
& =8 x \\
& v=\ln (2 x) \\
& v^{\prime}
\end{array}=\frac{-1}{2-x} .
$$

b) i] $A(2,-2), C(0,2)$
the gradient of $A C=\frac{2+2}{0-2}$

$$
=-2
$$

The equation of $A C$ is

$$
\begin{gathered}
y-2=-(x-0) \\
y-2=-2 x \\
\therefore 1-2 x+y-2=0
\end{gathered}
$$

ii) $d=\frac{|2 x-2+3-2|}{\sqrt{2^{2}+1^{2}}}$

$$
=\frac{3}{\sqrt{5}} \text { or } \frac{3 \sqrt{5}}{5}
$$

Question 13

$$
f(x)=1-3 x+x^{3} \quad-2 \leq x \leq 3
$$

i) $f^{\prime}(x)=-3+3 x^{2}$

For stationary pt $f^{\prime}(x)=0$

$$
\begin{gathered}
-3+3 x^{2}=0 \\
3 x^{2}=3 \\
x^{2}=1 \\
x= \pm 1
\end{gathered}
$$

at $x=1 \quad f(1)=1-3(1)+1^{3} \quad$ at $x=-1 \quad f(-1)=1+3-1$

$$
=1-3+1
$$

$$
=3
$$

$$
\therefore P_{1}(1-1)
$$

$$
=-1
$$

$$
\therefore P_{2}(-1,3)
$$

$$
f^{\prime \prime}(x)=6 x
$$

at $x=1 \quad f^{\prime \prime}(1)=6>0 \therefore$ Minimum stationary Point at $x=-1 \quad f^{\prime \prime}(-1)=-6<0 \therefore$ Maximum Stationary Point
$\therefore P_{1}(1,-1)$ Min Value
$P_{2}(-1,3)$ Max Value
ii) Pointor inflexion $f^{\prime \prime}(x)=0$

$$
\begin{aligned}
6 x & =0 \\
x & =0
\end{aligned}
$$

| $x$ | $0^{-}$ | 0 | $0^{+}$ |
| :---: | :---: | :---: | :---: |
| $F^{\prime \prime}(x)$ | - | 0 | + |

Since change in concavity

$$
\begin{aligned}
& \therefore \text { P.O.I of } x=0 \\
& f(0)=1 \\
& \therefore \text { P.O.I }(0,1)
\end{aligned}
$$

Question 13
a) iii)

$$
\begin{array}{rlrl}
f(x) & =1-3 x+x^{3} & f(3) & =1-3(3)+3^{3} \\
f(-2) & =1+6+-8 & & =1-9+27 \\
& =-1 & & =19
\end{array}
$$

iv) Max Value $=19$
b) $\int 1+\sec ^{2} \pi x d x=x+\frac{1}{\pi} \tan \pi x+c$
c)

$$
\begin{aligned}
& y=3 x-p+2 \\
& y=x^{2}+1 \\
& x^{2}+1=3 x-p+2 \\
& x^{2}-3 x+p-1=0 \\
& \Delta=b^{2}-4 a c \\
& \Delta=0 \\
& (-3)^{2}-4(1)(p-1)=0 \\
& 9-4 p+4=0 \\
& \quad-4 p+13=0
\end{aligned}
$$

13 di)


e)

$$
5^{2 x}-4.5^{x}-5=0
$$

let $m=5^{x}$

$$
\begin{aligned}
& m^{2}-4 m-5=0 \\
& (m-5)(m+1)=0 \\
& m=5 \text { or } \quad m=-1 \\
& 5^{x}=5 \quad 5^{x}=-1 \\
& x=1 \quad \text { No solution }
\end{aligned}
$$

Question 14
a) $y=3 \cos 2 x$
i) Amplitude $=3$

Period $=\frac{2 \pi}{2}$
(2) $=\pi$
b)

i)

$$
\begin{align*}
\angle A B C & =36+(180-156) \\
& =36+24 \\
& =60^{\circ} \tag{2}
\end{align*}
$$

ii)

$$
\text { ii) } \begin{align*}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
b^{2} & =(48)^{2}+(35)^{2}-2(48)(35) \\
b^{2} & =1849 \\
b & =\sqrt{1849} 60^{\circ} \\
b & =43
\end{align*}
$$

iii)

$$
\begin{align*}
& \operatorname{Cos} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
& \cos C=\frac{48^{2}+43^{2}-35^{2}}{2(48)(43)} \\
& \cos C=0.709 \\
& C
\end{align*}
$$

$(4 d)$

$$
\begin{aligned}
& 2 y=x^{2}-4 x+6 \\
& 2 y=(x-2)^{2}+2 \\
& 2(y-1)=(x-2)^{2}
\end{aligned}
$$

Cieneral Eqn,

$$
(x-b)^{2}=4 a(y-c)
$$

$\therefore$ i) Vertex $(b, c)$

$$
\begin{equation*}
(2,1) \tag{2}
\end{equation*}
$$

ii) Focus

Focal length $=a$

$$
\begin{align*}
& \therefore 4 a=2 \\
& a=\frac{1}{2} \\
& \therefore \text { Focus }\left(2,1 \frac{1}{2}\right) \tag{1}
\end{align*}
$$

ii) Directrix $y=\frac{1}{2}$
e)

$$
\begin{aligned}
& y=2 x e^{x} \\
& \text { let } u=2 x, v=e^{x} \\
& \frac{d u}{d x}=2 \quad \frac{d v}{d x}=e^{x} \\
& \therefore \frac{d y}{d x}= \\
& =v \frac{d u}{d x}+u \frac{d u}{d x} \\
& = \\
& =2 e^{x}+2 x e^{x} \\
& \frac{d y}{d x}=2 e^{x}(1+x) \\
& \text { at } x=1 \\
& \frac{d y}{d x}
\end{aligned}=2 e(2) .
$$

$\therefore$ Eqn of tangent

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-e=4 e(x-1) \\
& y-e=4 e x-4 e \\
& y=4 e x-3 e \\
& \text { OR } \\
& 4 e x-y-3 e=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { 15) } \ln (2 x+2) x-\log _{e} 12=0 \\
& \ln \left(2 x^{2}+2 x\right)=\log _{e} 12 \\
& 2 x^{2}+2 x-12=0 \\
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 \\
& x=-3 \text { or } x=+2 \\
& x \neq-3 \\
& \therefore
\end{aligned}
$$

$\ln \triangle 5$ SAB \& $S U T$
b) $\angle S$ is conmin.

$$
\begin{aligned}
& \frac{S B}{S T}=\frac{6}{9}=\frac{2}{3} \\
& \frac{S A}{S u}=\frac{8}{12}=\frac{2}{3} \\
& \therefore \triangle S_{A B M 1} \triangle S V T \text { lequiangular) } \\
& \frac{A B}{15}=\frac{2}{3} \\
& A B=\frac{30}{3} \\
& =10
\end{aligned}
$$

c)

| $x$ | $f(x)$ | $w$ | $w n$ |
| :---: | :---: | :---: | :---: |
| 0 | 10 | 1 | 10 |
| 7 | 27 | 4 | 108 |
| 14 | 19 | 2 | 38 |
| 21 | 8 | 4 | 32 |
| 28 | 0 | 1 | 0 |

$$
\begin{aligned}
A & \doteq \frac{7}{3}(188) \\
& \doteq 438 \frac{2}{3} u^{2}
\end{aligned}
$$



$$
\begin{aligned}
& \quad \begin{aligned}
v_{1} & =\pi \int_{0}^{2}\left(5-x^{2}\right)^{2} d x \\
& =\pi \int_{0}^{2}\left(25-10 x^{2}+x^{2}\right.
\end{aligned} \\
&=\pi\left[25 x-\frac{10 x^{3}}{3}+\right. \\
&=\pi\left(25 \times 2-\frac{10 \times x^{3}}{3}\right. \\
&=\frac{446 \pi}{15} u^{3} \\
& \\
& \begin{aligned}
v_{2} & =\pi \times 1^{2} \times 2 \\
& =2 \pi u^{3}
\end{aligned} \\
&=\frac{416 \pi}{5} u^{3}
\end{aligned}
$$

$$
\text { .ii) } x=-\theta
$$

ii) $\ell_{B C}=-\theta$

$$
=\frac{4}{\sqrt{\theta}} \times \theta
$$

$$
=4 \sqrt{\theta} \mathrm{~cm}
$$

$$
P=2 r+l_{B C}
$$

$$
=2 \times \frac{4}{\sqrt{\theta}}+4 \sqrt{\theta}
$$

$$
=\frac{8}{\sqrt{\theta}}+4 \sqrt{\theta}
$$

$\Rightarrow A_{1}=M \times 1.005-1800$
. $A_{2}=\left(A_{1}+M\right) 1.005-1800$
$=([M \times 1.005-1800]+M) 1.005-1500$
$=M \times 1.005^{2}-1800 \times 1.005+1.005 M-1800$
$=\left(1.005^{2}+1.005\right) \mathrm{M}-1800(1.005+1)$
) $A_{3}=\left(A_{2}+M\right) 1.005-1800$
$=\left(\left[M \times 1.005^{2}-1600 \times 1.005+1.005 \mathrm{M}-1800\right]\right) 1.005-1800$
$=M \times 1.005^{3}-1800 \times 1.005^{2}+1.005^{2} \mathrm{M}-1800 \times 1.005-1800$
$=\left(1.005^{3}+1.005^{2}\right) M-1800\left(1.005^{2}+1.005+1\right)$
$A_{n}=\left(1.005^{n}+1.005^{n-1}+\ldots+1.005\right) M-1800\left(1+1.005+1.005^{2}\right.$
$\left.+\cdots+1.005^{n-1}\right)$
$\begin{aligned} & A_{n}=\left(1.005^{2}+1.005^{60}\right) M-1800(1+1.005+\ldots+1.005) \mid \\ & A_{60}=\left(1.005+1.005^{2}+\cdots+1.005^{59}\right) \\ & \text { but } A_{60}=80000 \\ &\left(1.005+1.005^{2}+\cdots+1.005^{60}\right) M-1800(1+1.005+\cdots+1.005)\end{aligned}$

$$
\begin{aligned}
\text { but } A_{60} & =0.1 .005) M-1.005^{2}+\cdots \\
& =\left[\frac{1.005\left(1.005^{60}-1\right)}{1.005-1}\right] M-1800\left[\frac{1\left(1.005^{60}-1\right)}{1.005-1}\right]
\end{aligned}
$$

$$
M\left[\frac{1.005\left(1.005^{60}-1\right)}{0.005}\right]=80000+1800\left[\frac{1.005^{60}-1}{0.005}\right]
$$

$$
M=\$ 2931.96 \text { (nearest cent) }
$$

(iii) $2931.96\left[\frac{1.00311 .005}{0.005}\right]=120000+1800\left[\frac{1.005-1}{0.005}\right]$
$2931.96\left[201\left(1.005^{n}-1\right)\right]=120000+360000\left[1.005^{n}-1\right]$
$2931.96\left[201\left(1.005^{n}-1\right)\right]-360000\left[1.005^{n}-1\right]=120000$ $\left(1.005^{n}-1\right)[2931.96 \times 201-360000]=120000$
$1.005^{n}-1=\frac{120000}{2931.96 \times 201-360000}$
$1.005^{n}=\frac{120000}{2931.96 \times 201-360000}+1$

$$
n=84 \cdot 38 \text { months }
$$

-. 7 years I month


[^0]:    This is a trial paper ONLY.
    It does not necessarily reflect the format or the contents of the 2012 HSC Examination Paper in this subject.

