QUESTION ONE (Start a new answer booklet)

2 (a) Find the value of A correct to 2 significant figures given $B \approx 6$ -1 and $C \approx 3$ -5 and

$$\frac{1}{A} = \frac{1}{B} + \frac{1}{C}$$

- 21 (b) Solve the equation 4(r 1) 3 2r.
- 2 (c) Factorise fully a 41.
- 2 (d) Find the values of a for which [r + 2] < 3.
- $\{2 \mid -(c) \text{ Express the fraction } rac{1}{\sqrt{5}-1} \text{ with a rational denominator} \}$
- 2 (f) When 46% sales tax is added on, the selling price of an item becomes \$290. What is the selling price to a customer who has a sales tax exemption?

QUESTION TWO (Start a new answer booklet)

A,B and C are the points (-2,2),(-1,-5) and (6,-6) respectively.

- 1 (a) Sketch the tuangle ABC on a number plane.
- [1] (b) Show that the midpoint P of AC has coordinates (2, -2).
- 1 + (e) Find the gradient of BP
- [2] (d) Show that BP is perpendicular to AC
- $\lfloor 1 \rfloor$ (c) Show that the line BP has equation y>x<4.
- $\langle 2 \rangle$ (f) End the coordinates of D if P is the midpoint of the interval BD
- (4) (g) What kind of special quadrilateral is ABCD?
- 1, (b) Show that the diagonal AC has length $8\sqrt{2}$ units.
- (2) (i) Find the area of quadrilateral ABCD.

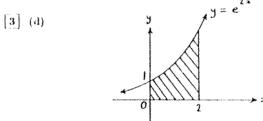
(Exam continues next page ...)

Page 5

QUESTION THREE (Start a new answer booklet)

Marks

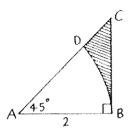
- [2] (a) Find the gradient of the tangent to the curve $y = 2x^3 + 4$ at the point (-5, -246)
- $\begin{bmatrix} 3 \end{bmatrix}$ (b) Find $\frac{dy}{dx}$ given:
 - (i) $y = (3x + 7)^5$,
 - (ii) $y = \log_e(3x + 7)$,
 - (iii) $y = \sin(3x + 7)$.
- $\lfloor 4 \rfloor$ (c) (i) Find $\int (12x^2 + 7) dx$.
 - (ii) Find $\int \frac{1}{x^2} dx$:
 - (iii) Find $\int_0^{\frac{\pi}{3}} \sec^2 x \, dx$.



The diagram shows the region bounded by the curve $y=e^{2x}$, the τ axis, the y axis and the line x=2. Find the exact area of this region

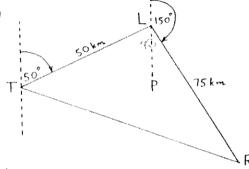
QUESTION FOUR (Start a new answer booklet)

[4] (a)



In the diagram above, triangle ABC has a right-angle at B, angle $BAC=45^{\circ}$ and AB=2 units. A circular arc, centre A and radius AB, cuts the side AC at D. Find the exact area of the shaded portion BCD.

[4] (b)



A motorist drives $50 \,\mathrm{km}$ from town T to landmark L on a bearing of 050° . He then drives $75 \,\mathrm{km}$ to resort R on a bearing of 150° .

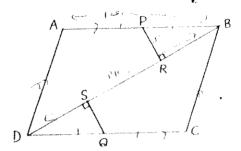
- (i) Explain why /TLR = 80°
- (ii) Use the cosine rule to find the distance between T and R to the nearest kilometre.
- [4] (c) (i) Write down a formula in terms of n, a and d for the sum of the first n terms of an arithmetic series.
 - (ii) The weekly wages of the 100 employees in a certain company add up to \$85,000. If these wages are listed in ascending order from the most junior Office Clerk to the Managing Director, they form an arithmetic sequence with a common difference of \$10. What is the weekly wage of the most junior Office Clerk?

QUESTION FIVE (Start a new answer booklet)

Marks

- [3] (a) (i) Solve $\log_3 x \log_3(x-4) 2$.
 - (ii) Solve $\sin x = \frac{1}{2}$, where $0 < x < 2\pi$

4 (b)



In the diagram above, ABCD is a parallelogram and P, Q are the midpoints of the sides AB, DC respectively. The intervals PR and QS are drawn perpendicular to the diagonal DB.

- (i) Prove that the triangles BPR and DQS are congruent
- (ii) If AB = 10 cm, PR = 3 cm and BD = 14 cm, find the length of SR
- $\begin{bmatrix} 5 \end{bmatrix}$ (c) The equation $(x-2)^2 = -6(y-\frac{3}{2})$ represents a parabola.
 - (i) Write down the coordinates of the vertex.
 - (ii) Find the focal length.
 - (iii) Find the x-intercepts of the parabola.
 - (iv) Sketch the graph of the parabola, and show the focus and directrix on your diagram.

SGS Trial HSC 1996 2/3 Unit Mathematics Form VI...... Page 6

QUESTION SIX (Start a new answer booklet)

The function f(x) is defined by the rule $f(x) = e^{-\frac{1}{2}x^2}$.

Mark

- 1 (a) State the domain of f(x).
- 2 (b) Show that f(x) is an even function. About which line is an even function symmetrical?
- 1 (c) Explain why $f'(x) = -xe^{-\frac{1}{2}x^2}$.
- (d) Find the stationary point of y = f(x) and determine its nature.
- 1 (e) Use the product rule to show that $f''(x) = (x^2 1)e^{-\frac{1}{2}x^2}$.
- [2] (f) Find the two points at which f''(x) = 0 and show that they are both points of inflexion.
- 1 (g) What value does f(x) approach as x becomes large?
- [2] (h) Use the information found in the parts above to sketch the graph of y = f(x).

QUESTION SEVEN (Start a new answer booklet)

Marks

- [5] (a) (i) Sketch the graph of the function $y = \cos 2x$ for $-\pi \le x \le \pi$
 - (ii) On the same diagram, sketch the line x + 2y = 1.
 - (iii) Hence determine the number of solutions of the equation $2\cos 2x = 1 x$
 - (iv) Let the negative solution be x = N. Indicate N on your diagram
- [7] (b) James had a full drink bottle containing 500 ml of Gatorade. He drauk from it so that the volume, V millilitres, of Gatorade in the bottle changed at a rate given by:

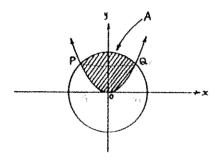
$$\frac{dV}{dt} = (\frac{2}{5}t - 20)$$
 millilitres per second.

- (i) Find a formula for V
- (ii) Show that it took James 50 seconds to drink the contents of the bottle.
- (iii) How long, to the nearest second, did it take James to drink half the contents of the bottle?

QUESTION EIGHT (Start a new answer booklet)

- [3] (a) (i) Show that $\int_{1}^{2} \frac{1}{1+x} dx = \ln 3$.
 - (ii) Use Simpson's rule with five function values to find an approximation to In 3.

5 (b)

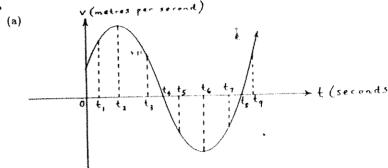


The region A is bounded by the curve $y = x^2$ and a minor arc of the circle $x^2 + y^2 = 12$.

- (i) By solving the two equations simultaneously, show that points P and O both have y-coordinate 3.
- (ii) Prove that the volume generated when the region A is rotated about the y-axis is $\pi(16\sqrt{3}-\frac{45}{2})$ units². (CARE: The rotation is about the y-axis, not the x-axis.)
- (c) The population W of Williamtown is increasing exponentially according to the equation $W = W_0 e^{0.02t}$, while the population H of Hectorville is decreasing exponentially according to the equation $H = H_0 e^{-0.01t}$. If the current populations of Williamtown and Hectorville are 8000 and 12000 respectively, how long, to the nearest year, will it be before their populations are the same?

QUESTION NINE (Start a new answer booklet)

Marks 4



The velocity-time graph of a particle moving in a straight line is shown above

- (i) At which of the times from t = 0 up to $t = t_9$ is:
 - (a) the velocity zero,
 - (β) the acceleration zero?
- (ii) At which time is the acceleration greatest in magnitude?
- (iii) What is the physical significance of the area between the graph and the t axis from t=0 to $t=t_4$?
- (b) Steve won the New Year Jackpot Lottery on 1st January 1970. The prize was I million dollars. He decided to deposit the entire amount into an account which paid interest at the rate of 8% per annum. The interest was calculated quarterly and compounded quarterly. Steve then made an annual withdrawal of \$50,000, starting on 1st January 1971.
 - (i) Write down an expression for the amount in Steve's account immediately after his first withdrawal.
 - (ii) Show that the amount in Steve's account immediately after his third withdrawal is given by the expression:

$$10^6 \times 1.02^{12} - 50\,000(1 + 1.02^4 + 1.02^8).$$

(iii) How much, to the nearest dollar, was left in Steve's account immediately after his twentieth withdrawal?

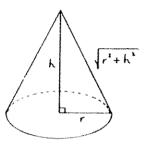
SGS Trial HSC 1996 2/3 Unit Mathematics Form VI Page 10

QUESTION TEN (Start a new answer booklet)

Macha

- [4] (a) (i) Show that $5p^2 + 6p + 5 = 5(p + \frac{3}{6})^2 + \frac{16}{6}$, for all p.
 - (ii) Hence or otherwise, show that the equation $(p-1)x^2 + (3p+1)x + (p+1) = 0$ has two real solutions for all real values of p except p=1.

[8] (b)



A right circular cone has base radius r and height h. As r and h vary, its curved surface area $\pi r \sqrt{r^2 + h^2}$ is kept constant. Let $\pi r \sqrt{r^2 + h^2} = K$, where K is a constant.

- (i) Show that $V^2 = \frac{1}{9}r^2(K^2 \pi^2r^4)$, where V is the volume of the cone. (Note that $V = \frac{1}{4}\pi r^2 h$.)
- (ii) Let $Q = V^2$. Show that $\frac{dQ}{dr} = 0$ when $r^4 = \frac{K^2}{3\pi^2}$
- (iii) Show that the maximum value of Q (and hence the maximum value of V) occurs when $h = \sqrt{2} r$.

DS

SGS Trial HSC 1996 2/3 Unit Mathematics Form VI Page 11

The following list of standard integrals may be used:

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0,$$

$$\int \frac{1}{x} dx = \ln|x|, \ x \neq 0,$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0,$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0,$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0,$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan ax, \ a \neq 0,$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0,$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a,$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln|x + \sqrt{x^{2} - a^{2}}|, \ |x| > |a|,$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}}).$$