2 UNIT MATHEMATICS FORM VI

Time allowed: 3 hours (plus 5 minutes reading)
Exam date: 10th August, 1999

Instructions:

All questions may be attempted.
All questions are of equal value.
Part marks are shown in boxes in the left margin.
All necessary working must be shown.
Marks may not be awarded for careless or badly arranged work.
Approved calculators and templates may be used.
A list of standard integrals is provided at the end of the examination paper.

Collection:

Each question will be collected separately.
Start each question in a new answer booklet.
If you use a second booklet for a question, place it inside the first. Don't staple.
Write your candidate number on each answer booklet.

SGS Trial HSC 1999
QUESTION ONE (Start a new answer booklet)
$\sum^{\text {Marks }}$ (a) Evaluate $\frac{2 \cdot 3}{\sqrt[3]{2 \cdot 76-1 \cdot 09^{2}}}$, correct one decimal place. 1,978
2 (b) Find the values of x for which $|2 x-1|<5$.
2 (c) Factorize completely $2 x^{3}-54$.
2 (d) Express $\frac{3}{2 \sqrt{3}-1}$ in the form $a+b \sqrt{3}$.
2 (e) Simplify fully $\frac{1-\cos ^{2} \theta}{\sin \theta \cos \theta}$.
2 (f) Find, to the nearest degree, the acute angle between the line $3 x-2 y+7=0$ and the x-axis.

QUESTION TWO (Start a new answer booklet)

Marks

9 (a)

In the diagram above, $A B$ is the interval joining the points $A(-1,2)$ and $B(4,-1)$. P is the foot of the perpendicular drawn from the point $C(-2,-4)$ to $A B$.
(i) Copy this diagram into your answer booklet.
(ii) Show that the distance from A to B is $\sqrt{34}$ units.
(iii) Find the gradient of the line $A B$ and hence show that its equation is $3 x+5 y-7=0$.
(iv) Find the perpendicular distance from C to $A B$ and hence find the area of $\triangle A B C$.
$h(v)$ Find the coordinates of the midpoint M of $A C$ and show it on your diagram. Use this point to find the coordinates of point D so that $A B C D$ is a parallelogram.

3 (b) For the function $f(x)=\frac{1}{\sqrt{4-x^{2}}}$ find:
(i) the domain of $f(x)$,
(ii) the range of $f(x)$.

SGS Trial HSC 1999
QUESTION THREE (Start a new answer booklet)

Marks

5 (a) Differentiate the following with respect to x :
(i) $x^{2}-\frac{1}{x^{2}}$,
(ii) $x^{2} e^{x}$ (use the product rule),
(iii) $\frac{\log _{e} x}{x}$ (use the quotient rule).

3 (b) The function $y=a x^{3}+b x+4$ has a stationary point at (1,-2). Write down two equations and solve them to find the values of a and b.

4 (c) Find:
(i) $\int \frac{1}{(x-4)^{2}} d x$,
(ii) $\int_{5}^{e+4} \frac{1}{x-4} d x$.

$$
\begin{aligned}
& x^{-2} \\
& -2 x^{-3}
\end{aligned}
$$

4 (a)

In the diagram above, points A and B have coordinates $(0,-3)$ and $(2,5)$ respectively. $P(x, y)$ is a point such that $P A$ is perpendicular to $P B$.
(i) Prove that the locus of P is the circle $x^{2}+y^{2}-2 x-2 y-15=0$.
(ii) Find the centre and the radius of this circle.

4 (b)

The diagram above shows the graph of $y=x \log _{e}\left(\frac{x}{4}\right)$.
(i) Copy and complete the following table, giving your answers correct to three decimal places where necessary.

x	2	3	4	5	6
y		\cdot	\cdot		

(ii) By considering areas above and below the x-axis, use Simpson's rule with these five function values to evaluate the area shaded on the graph. Give your answers correct to two decimal places.

4 (c) Find the equation of the tangent to the curve $y=1+\cos 2 x$ at the point $\left(\frac{\pi}{4}, 1\right)$. Give your answer in general form.

Exam continues next page ..

QUESTION FIVE (Start a new answer booklet)
Marks
6 (a) The nth term of an arithmetic series is given by $T_{n}=9-2 n$.
(i) List the first five terms and hence find the first term and the common difference.
(ii) Show that the sum S_{n} of the first n terms is $8 n-n^{2}$.
(iii) Hence find the least number of terms of the series which need to be taken for this sum to be less than -945 .

6 (b) A quadratic function has equation $f(x)=m x^{2}-4 m x-m+15$, where m is a constant.
Find the values of m for which:
(i) 3 is a zero of $f(x)$,
(ii) $f(x)$ is positive definite,
(iii) $\alpha+\beta=\alpha \beta$, where α and β are the zeroes of $f(x)$.

QUESTION SIX (Start a new answer booklet)
Marks
4 (a)

$$
4 x^{2}-16 x+11
$$

x

In the diagram above, $A B C$ is a right-angled isosceles triangle with $\angle A B C=90^{\circ}$ and $A B=B C=8 \mathrm{~cm}$. Arc $B P$ with centre C and radius $C B$ is drawn to meet $A C$ in P. Find, in exact form:
(i) the area of the shaded region $A B P$,
(ii) the perimeter of the shaded region.

8 (b) The function $y=f(x)$ is given by the equation $y=\frac{1}{3} x^{3}-x^{2}+1$.
(i) Find any stationary points and determine their nature.
(ii) Find any points of inflexion.
(iii) Sketch $y=f(x)$ in the domain $-2 \leq x \leq 3$ giving coordinates of all turning points, points of inflexion and end-points. You need not find the x-intercepts.

QUESTION SEVEN (Start a new answer booklet)

The diagram shows the graph of the parabola $x^{2}=4 a y$. The interval $A B$ is the focal chord that is parallel to the directrix and has equation $y=a$.
(i) Find the coordinates of the points A and B.
(ii) Find the area enclosed by the focal chord $A B$ and the parabola.

4 (b)

In the diagram above, the functions $y=4-x^{2}$ and $y=2-x$ intersect in the points P and Q.
(i) By solving these equations simultaneously, show that the x-values at P and Q are -1 and 2 respectively.
(ii) Find the volume generated when the area enclosed by the two functions is rotated about the x-axis.

4 (c) The population of a small country town is growing at a rate that is proportional to the number of people in the town. The population P after t years is therefore $P=P_{0} e^{k t}$, where k is a constant and P_{0} is the initial population.

If the initial population is 6000 and ten years later the population is 9000 find:
(i) the value of k in exact form,
(ii) how many years (to the nearest whole number) it will take for the population to reach five times its initial value.

QUESTION EIGHT (Start a new answer booklet)
Marks
3 (a)

In the diagram above, $A B, E F$ and $C D$ are parallel lines. $\angle A B C=52^{\circ}$ and $\angle F E C=128^{\circ}$.

Find the size of $\angle B C E$ stating all reasons.
3 (b)

In the diagram above, $E F$ is parallel to $D C$ and $F G$ is parallel to $C B$.
(i) Copy this diagram into your answer booklet.
(ii) If $A G=6 \mathrm{~cm}, A B=9 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, show this information on your diagram and find, stating all reasons, the length of the interval $E D$.
$A G: A B=A F: A C$

6 (c)

In the diagram above, $A B C D$ is a square, and equilateral triangles $A E D$ and $B F C$ have been constructed on the sides $A D$ and $B C$ respectively.
Copy the diagram into your answer booklet and use it to prove that:
(i) $\triangle A B F \equiv \triangle C D E$,
(ii) $A F=E C$,
(iii) $A F C E$ is a parallelogram.

QUESTION NINE (Start a new answer booklet)
Marks
4 (a) (i) Sketch on the same number plane the graphs of $y=3 \sin 2 x$ and $y=1-\cos x$, for $0 \leq x \leq 2 \pi$.
(ii) Hence determine the number of solutions the equation $3 \sin 2 x+\cos x=1$ will have in the given domain.

8 (b)

In the diagram above, the particle P is moving from rest from a fixed point O in the positive direction. The displacement x metres of the particle from O at time t seconds is given by:

$$
x=30 t-150+150 e^{-0 \cdot 2 t} .
$$

(i) Show that its velocity at time t seconds is:

$$
v=30\left(1-e^{-0.2 t}\right)
$$

(ii) Explain why the velocity will never exceed 30 metres per second.
(iii) Find after what time, to the nearest $0 \cdot 1$ second, the particle will attain a velocity of 15 metres per second, and find its displacement, to the nearest metre, at that time.
(iv) Find the acceleration of the particle at O.

QUESTION TEN (Start a new answer booklet)

Marks

4 (a)

The diagram above shows three similar triangles:

$$
\triangle P Q P_{1}| | \triangle Q P_{1} Q_{1}\| \| \triangle P_{1} Q_{1} P_{2}
$$

with $\angle P Q P_{1}=\angle Q P_{1} Q_{1}=\angle P_{1} Q_{1} P_{2}=\theta$. The lengths of the sides $P Q, Q P_{1}, P_{1} Q_{1}$ and $Q_{1} P_{2}$ are a, $a r, a r^{2}$ and $a r^{3}$ respectively and form a geometric sequence where $0<r<1$. Also, sides $P P_{1}, Q Q_{1}$ and $P_{1} P_{2}$ have length $b, b r$ and $b r^{2}$ respectively.
(i) Copy the diagram into your answer booklet and use the fact that the triangles are similar to prove that the points P, P_{1} and P_{2} are collinear.
(ii) Show that the area of $\triangle P Q P_{1}$ is $\frac{1}{2} r a^{2} \sin \theta$, and hence show that the ratio of the area of $\triangle Q P_{1} Q_{1}$ to the area of $\triangle P Q P_{1}$ is r^{2}.
8 (b)

The pattern established in part (a) is continued as shown above to form an infinite sequence of similar triangles $P Q P_{1}, Q P_{1} Q_{1}, P_{1} Q_{1} P_{2} \ldots$. Let the lines $P P_{1} P_{2} \ldots$ and $Q Q_{1} Q_{2} \ldots$ meet at O, and let $\angle Q O P=\alpha$.
(i) Use the sum of an infinite sequence to find the lengths of $O P$ and $O Q$.
(ii) Also using infinite sequences, show that the area of $\triangle Q O P$ is $\frac{r a^{2} \sin \theta}{2\left(1-r^{2}\right)}$.
(iii) Using parts (i) and (ii) above, prove that $\frac{\sin \alpha}{\sin \theta}=\frac{a^{2}\left(1-r^{2}\right)}{b^{2}}$.
(iv) When $\theta=60^{\circ}$ and $r=0 \cdot 9$, it can be shown by the cosine rule that $b=\frac{a \sqrt{91}}{10}$ (you need not prove this). Find the value of α to the nearest minute.

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan -1 \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

QUESTION ONE

(a) $\frac{2.3}{\sqrt[3]{2 \cdot 76-1.09^{2}}}=1.978 \ldots$.

$$
\doteqdot 2.0 \text { (to one decimal place) } \quad \sqrt{ } \sqrt{ }(2 \text { marks correct answer })
$$

(b) $|2 x-1|<5$.

The distance from x to $\frac{1}{2}$ is less than $\frac{5}{2}$.
So $-2<x<3 \quad \sqrt{\sqrt{ }(-1 \text { each error })}$
(c) $2 x^{3}-54=2\left(x^{3}-27\right)$

$$
=2(x-3)\left(x^{2}+3 x+9\right) \quad \sqrt{ } \sqrt{ }(-1 \text { each error })
$$

(d) $\frac{3}{2 \sqrt{3}-1}=\frac{3}{2 \sqrt{3}-1} \times \frac{2 \sqrt{3}+1}{2 \sqrt{3}+1} \quad \checkmark$

$$
\begin{aligned}
& =\frac{3(2 \sqrt{3}+1)}{12-1} \\
& =\frac{3}{11}+\frac{6 \sqrt{3}}{11} \cdot
\end{aligned}
$$

(e) $\frac{1-\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \quad \sqrt{ }$

$$
=\tan \theta \quad \sqrt{ }
$$

(f) $3 x-2 y+7=0$

$$
\begin{aligned}
\tan \theta & =\frac{3}{2} \quad \checkmark \\
\theta & \doteqdot 56^{\circ} \text { (to nearest degree) } \quad \boxed{\checkmark}
\end{aligned}
$$

QUESTION TWO

(a) (i)

(ii) $d=\sqrt{25+9}$

$$
=\sqrt{34} \text { units. } \sqrt{ }
$$

(iii) gradient $=-\frac{3}{5} \quad \sqrt{ }$

$$
\text { so } \begin{aligned}
y-2 & =-\frac{3}{5}(x+1) \\
3 x+5 y-7 & =0 \text {. } \downarrow
\end{aligned}
$$

(iv) $\quad p=\left|\frac{-6-20-7}{\sqrt{9+25}}\right| \quad \sqrt{ }$

$$
=\frac{33}{\sqrt{34}} \text { units. }
$$

$$
\text { Area }=\frac{1}{2} \times \frac{33}{\sqrt{34}} \times \sqrt{34} \quad \sqrt{ }
$$

$$
=33 \text { units }^{2} . \square
$$

(v) Midpoint

$$
M=\left(-\frac{3}{2},-1\right) . \quad \sqrt{ }
$$

From the diagram, $D=(-7,-1)$ since the diagonals bisect eah other. $\sqrt{ }$
The reason must be given.
The alternative is to use the midpoint formula again.
(b) (i) Domain is $-2<x<2 \sqrt{ } \sqrt{ }$
(ii) Range is $y>\frac{1}{2} \triangle$

QUESTION THREE

(a) (i) $y=x^{2}-\frac{1}{x^{2}}$

$$
\begin{aligned}
& =x^{2}-x^{-2} \\
\frac{d y}{d x} & =2 x+2 x^{-3} \\
& =2 x+\frac{2}{x^{3}} \cdot \sqrt{ } \sqrt{ }(-1 \text { each error, accept negative index })
\end{aligned}
$$

(ii) $y=x^{2} e^{x}$

$$
\frac{d y}{d x}=2 x e^{x}+x^{2} e^{x} . \square
$$

(iii) $y=\frac{\log _{e} x}{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x \times \frac{1}{x}-\log _{e} x}{x^{2}} \\
& =\frac{1-\log _{e} x}{x^{2}} \cdot \sqrt{ } \sqrt{ }(-1 \text { each error })
\end{aligned}
$$

(b)
so

$$
\begin{align*}
y & =a x^{3}+b x+4 \\
-2 & =a+b+4 \\
a+b & =-6 . \quad \square \tag{1}
\end{align*}
$$

Also $\quad \frac{d y}{d x}=3 a x^{2}+b$
and

$$
\frac{d y}{d x}=0 \text { at } x=1
$$

so

$$
\begin{equation*}
3 a+b=0 . \tag{2}
\end{equation*}
$$

(2) $-(1) \quad 2 a=6$
so $\quad a=3$
and $\quad b=-9 . \sqrt{ }$
(c) (i) $\int \frac{d x}{(x-4)^{2}}=\int(x-4)^{-2} d x \sqrt{ }$

$$
\frac{-1}{(x-4)}+c, \text { (where } c \text { is a constant) } \sqrt{ }
$$

(ii) $\int_{5}^{e+4} \frac{d x}{x-4}=\left[\log _{e}(x-4)\right]_{5}^{e+4} \quad \sqrt{ }$

$$
\begin{aligned}
& =\log _{e} e-\log _{e} 1 \\
& =1 \square \sqrt{ }
\end{aligned}
$$

(a) (i)

$$
\begin{align*}
\frac{y-5}{x-2} \times \frac{y+3}{x} & =-1 \quad, ~ \\
x(x-2)+(y-5)(y+3) & =0 \\
x^{2}-2 x+y^{2}-2 y-15 & =0 \\
x^{2}+y^{2}-2 x-2 y-15 & =0 \tag{}
\end{align*}
$$

(ii) $x^{2}-2 x+1+y^{2}-2 y+1=17$

$$
(x-1)^{2}+(y-1)^{2}=17
$$

The centre is $(1,1)$ and the radius is $\sqrt{17}$ units. $\sqrt{ } \sqrt{ }$
(b)

x	2	3	4	5	6
y	-1.386	-0.863	0	1.116	2.433
	$\boxed{ } 1$				

$$
\begin{align*}
& \text { Area } \doteqdot\left|\frac{4-2}{6}(-1.386+4 \times-0.863)\right|+\frac{6-4}{6}(4 \times 1.116+2.433) \tag{}\\
&\doteqdot 3.91 \text { square units (to } 2 \text { decimal places }) \\
&
\end{align*}
$$

(c)

$$
\begin{aligned}
y & =1+\cos 2 x \\
\frac{d y}{d x} & =-2 \sin 2 x \quad \boxed{\checkmark} \\
\text { gradient } & =-2 \sin \frac{\pi}{2} \quad \bigvee \\
y-1 & =-2\left(x-\frac{\pi}{4}\right) \quad \boxed{ } \\
y-1 & =-2 x+\frac{\pi}{2} \\
4 x+2 y-2-\pi & =0 \quad \checkmark
\end{aligned}
$$

QUESTION FIVE

(a) (i) $\quad T_{n}=9-2 n$

$$
T_{1}=7, T_{2}=5, T_{3}=3, T_{4}=1, T_{5}=-1
$$

$$
\text { so } \quad a=7 \boxed{\boxed{ }}
$$

$$
\text { and } d=-2
$$

(ii) $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
& =\frac{n}{2}[14+(n-1) \times-2) \\
& =\frac{n}{2}(16-2 n) \\
& =n(8-n) \\
& =8 n-n^{2} . \\
&
\end{aligned}
$$

(iii) Put $S_{n}<-945$

$$
\begin{aligned}
8 n-n^{2} & <-945 \\
n^{2}-8 n-945 & >0 \\
(n-35)(n+27) & >0
\end{aligned}
$$

so
$n<-27$ or $n>35$. $\sqrt{ }$
Since $n>0$ the least number of terms required is 36 . \triangle
(b) (i) $f(x)=m x^{2}-4 m x-m+15$
$f(3)=0$
$0=9 m-12 m-m+15$
$4 m=15$
$m=\frac{15}{4} . \square$
(ii) We require $m>0$ and $\Delta<0, \sqrt{ }$

$$
\begin{aligned}
\Delta & =16 m^{2}-4 m(-m+15) \\
& =16 m^{2}+4 m^{2}-60 m \\
& =20 m^{2}-60 m \\
& =20 m(m-3) .
\end{aligned}
$$

Now $20 m(m-3)<0 \quad \square$
so

$$
0<m<3 .
$$

(iii) Put $-\frac{b}{a}=\frac{c}{a} \quad \backslash$
so $\quad-b=c$

$$
4 m=-m+15
$$

$$
5 m=5
$$

$$
m=3 . \quad \sqrt{ }
$$

QUESTION SIX

(a) (i) Area $\triangle \mathrm{ABC}=\frac{1}{2} \times 8 \times 8$

$$
=32 \mathrm{~cm}^{2}
$$

Area sector $=\frac{1}{2} \times 64 \times \frac{\pi}{4}$

$$
=\frac{32 \pi}{4} \mathrm{~cm}^{2} \text {. }
$$

Shaded area $=32-\frac{32 \pi}{4}$

$$
=8(4-\pi) \mathrm{cm}^{2} . \sqrt{ } \sqrt{ }(-1 \text { each error })
$$

SGS Trial HSC 1999 Solutions
(ii) Length $A C=8 \sqrt{2} \mathrm{~cm}$.

Length $A P=8 \sqrt{2}-8 \mathrm{~cm}$.
Length arc $P B=8 \times \frac{\pi}{4}$

$$
\begin{aligned}
& =2 \pi \mathrm{~cm} . \\
\text { Perimeter } & =8 \sqrt{2}-8+8+2 \pi \\
& =8 \sqrt{2}+2 \pi \mathrm{~cm} . \quad \sqrt{ } \sqrt{ }(-1 \text { each error })
\end{aligned}
$$

(b) (i) $y=\frac{1}{3} x^{3}-x^{2}+1$

$$
\frac{d y}{d x}=x^{2}-2 x
$$

Put $x^{2}-2 x=0$ for stationary points

$$
x(x-2)=0
$$

so

$$
x=0 \text { or } 2 .
$$

The stationary points are $(0,1)$ and $\left(2,-\frac{1}{3}\right) . \triangle$
When $x=0 \frac{d^{2} y}{d x^{2}}=-2$, so $(0,1)$ is a maximum turning point.
When $x=2 \frac{d^{2} y}{d x^{2}}=2$, so $\left(2,-\frac{1}{3}\right)$ is a minimum turning point. $\sqrt{ }$
(ii) $\frac{d^{2} y}{d x^{2}}=0$ for points of inflexion
so $2 x-2=0$
$x=1$. $\sqrt{ }$

x	0	1	2
$\frac{d^{2} y}{d x^{2}}$	-2	0	2
	\frown	\cdot	\smile

So the point of inflexion is verified at ($1, \frac{1}{3}$).

$$
\checkmark
$$

(iii) When $x=-2, y=-5 \frac{2}{3}$,
and when $x=2, y=1 . \quad \checkmark$

(a) (i) $x^{2}=4 a y$

$$
\begin{align*}
y & =a \tag{2}\\
\text { so } x^{2} & =4 a^{2} \\
x & =-2 a \text { or } 2 a .
\end{align*}
$$

(ii) $y=\frac{x^{2}}{4 a}$,

$$
\begin{aligned}
\text { so area } & =\int_{-2 a}^{2 a}\left(a-\frac{x^{2}}{4 a}\right) d x \\
& =2 \int_{0}^{2 a}\left(a-\frac{x^{2}}{4 a}\right) d x \\
& =2\left[a x-\frac{x^{3}}{12 a}\right]_{0}^{2 a} \\
& =2\left(2 a^{2}-\frac{8 a^{2}}{12 a}\right) \\
& =\frac{8 a^{2}}{3} \text { units }^{2} . ~ \bigvee
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& y=4-x^{2} \\
& y=2-x \\
& 0=2-x^{2}+x \\
&(1)-(2) \begin{aligned}
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0
\end{aligned}
\end{aligned}
$$

$$
x=-1 \text { or } 2
$$

$$
\text { At } P, x=-1 \text { and at } Q, x=2
$$

(ii) $V=\pi \int_{-1}^{2}\left(4-x^{2}\right)^{2}+(2-x)^{2} d x \quad \square$

$$
\begin{aligned}
& =\pi \int_{-1}^{2}\left(x^{4}-9 x^{2}+4 x+12\right) d x \\
& =\pi\left[\frac{x^{5}}{5}-3 x^{3}+2 x^{2}+12 x\right]_{-1}^{2} \\
& =\pi\left[\frac{32}{5}-24+8+24\right]-\pi\left[-\frac{1}{5}+3+2-12\right] \\
& =\frac{108 \pi}{5} \text { units }^{3} .
\end{aligned}
$$

(c) (i) $P=P_{0} e^{k t}$

$$
\begin{aligned}
9000 & =6000 e^{10 k} \\
k & =\frac{1}{10} \log _{e} \frac{3}{2} . \quad \sqrt{ }
\end{aligned}
$$

(ii) $30000=6000 e^{t\left(\frac{1}{10} \log _{e} \frac{3}{2}\right)} \sqrt{ }$

$$
\log _{e} 5=t\left(\frac{1}{10} \log _{e} \frac{3}{2}\right)
$$

$$
t=\frac{10 \log _{e} 5}{\log _{e} \frac{3}{2}}
$$

$\doteqdot 37$ years, (to the nearest whole number). $\sqrt{ }$

QUESTION EIGHT

(a) (i) $\angle D C E=52^{\circ}$ (cointerior angles, $F E \| D C$) $\sqrt{ }$
$\angle D C E=128^{\circ}$ (cointerior angles, $A B \| D C$) \checkmark
$\angle B C E=\angle B C D-\angle D C E$
$=128^{\circ}-52^{\circ}$
$=76^{\circ}$. \checkmark
(b) (i)

(ii) $\frac{A G}{G B}=\frac{A F}{F C}$
$\frac{A F}{F C}=\frac{A E}{E D}$ (intercept properties on transversals) $\sqrt{ }$
so $\frac{A G}{G B}=\frac{A E}{E D} \quad \checkmark$
$\frac{6}{3}=\frac{8}{x}$

$$
\begin{equation*}
x=4 . \tag{}
\end{equation*}
$$

So $E D=4 \mathrm{~cm}$.
(c) (i)

In square $A B C D$:
$A B=B C=C D=D A$ (equal sides). $\sqrt{ }$
In equilateral triangles $B F C$ and $A D E$:
$B C=C F=F B=A D=A E=E D$ (equal sides of equilateral triangles and $A D=B C)$.
So $B F=E D$ and $A B=C D . \sqrt{ }$
Also $\quad \angle A B F=\angle A B C+\angle C B F$
$=90^{\circ}+60^{\circ}$ (sum interior angle of a square and an equilateral triangle)
$=150 .^{\circ}$

Similarly $\angle E D C=150^{\circ} . \sqrt{ }$
Join $E C$ and $A F$.
In $\triangle A B F$ and $\triangle E D C$,

1. $B F=E D$ from above
2. $A B=C D$ from above
3. $\angle A B F=\angle E D C$ from above
so $\triangle A B F \equiv \triangle E D C(S A S)$. \square
(ii) $A F=E C$ (matching sides of congruent triangles). $\sqrt{ }$
(iii) Now $A F=E C$ and $A E=F C$ so $A F C E$ is a parallelogram (opposite sides equal). \checkmark

QUESTION NINE

(a) (i)

$\sqrt{ }$ for sine curve
$\sqrt{ } \sqrt{ }$ for cosine curve
(ii) There are five solutions. $\sqrt{ }$
(b) (i) $x=30 t-150+150 e^{-0.2 t}$
$v=30-30 e^{-0.2 t}$
$v=30\left(1-e^{-0.2 t}\right) \quad \sqrt{ }$
(ii) As $t \rightarrow \infty, e^{-0 \cdot 2 t} \rightarrow 0$ so $v \rightarrow 30$ from below.

The velocity does not exceed 30 metres per second. \qquad
(iii) Let $\quad v=15$
so $\quad 15=30\left(1-e^{-0.2 t}\right) ~ \checkmark$
$e^{-0.2 t}=\frac{1}{2}$
$t=-\frac{1}{0.2} \log _{e} \frac{1}{2}$
$\doteqdot 3.5$ seconds (to the nearest 0.1 second). \checkmark

$$
\begin{equation*}
x=30 \times 3 \cdot 5-150+150 e^{-0 \cdot 2 \times 3 \cdot 5} \tag{}
\end{equation*}
$$

$\doteqdot 29$ metres (to the nearest metre).
(iv) $\frac{d^{2} y}{d x^{2}}=6 e^{-0.2 t} \quad \sqrt{ }$

$$
=6 \text { when } t=0 .
$$

So the initial acceleration is $6 \mathrm{~m} / \mathrm{sec}^{2}$. \square

QUESTION TEN

(a) (i)

Let $\quad \angle Q P P_{1}=\alpha$ and $\angle Q P_{1} P=\beta$
so $\theta+\alpha+\beta=180^{\circ}$ (angle sum of triangle). $\sqrt{ }$
Now $\quad \triangle P P_{1} Q\| \| P_{1} P_{2} Q_{1}$
so $\quad \angle Q P P_{1}=\angle Q_{1} P_{1} P_{2}=\alpha$,
so $\angle P P_{1} Q+\angle Q P_{1} Q_{1}+\angle Q_{1} P_{1} P_{2}=\alpha+\theta+\beta$
So P, P_{1} and P_{2} are collinear. $\quad=180^{\circ}$.
(ii) Area $\triangle P Q P_{1}=\frac{1}{2} \times a \times a r \times \sin \theta$

$$
=\frac{1}{2} a^{2} r \sin \theta \cdot \sqrt{ }
$$

Area $\triangle Q P_{1} Q_{1}=\frac{1}{2} \times a r \times a r^{2} \times \sin \theta$

$$
=\frac{1}{2} a^{2} r^{3} \sin \theta
$$

so $\frac{\text { Area } \triangle Q P_{1} Q_{1}}{\text { Area } \triangle P Q P_{1}}=\frac{\frac{1}{2} a^{2} r^{3} \sin \theta}{\frac{1}{2} a^{2} r \sin \theta}$

$$
=r^{2} \cdot \boxed{\downarrow}
$$

(b) (i) Length of $O P$ is the limiting sum of the lengths $P P_{1}, P_{1} P_{2}, P_{2} P_{3}, \ldots$

First term $=b$,

$$
\text { common ratio }=r^{2}
$$

so

$$
O P=\frac{b}{1-r^{2}} \cdot \sqrt{ }
$$

Similarly,

$$
O Q=\frac{b r}{1-r^{2}} \cdot \checkmark
$$

(ii) Area of $\triangle Q O P$ is the limiting sum of the areas of the triangles $P Q P_{1}, Q P_{1} Q_{1}, P_{1} Q_{1} P_{2}, \ldots$.

First term $=\frac{1}{2} r a^{2} \sin \theta$,
common ratio $=r^{2}$.

$$
\text { Area } \begin{aligned}
\triangle Q O P & =\frac{\frac{1}{2} r a^{2} \sin \theta}{1-r^{2}} \\
& =\frac{r a^{2} \sin \theta}{2\left(1-r^{2}\right)}
\end{aligned}
$$

(iii) Also, area $\triangle Q O P=\frac{1}{2} \times \frac{b}{1-r^{2}} \times \frac{b r}{1-r^{2}} \times \sin \alpha$

$$
=\frac{b^{2} r \sin \alpha}{2\left(1-r^{2}\right)^{2}}
$$

so

$$
\frac{b^{2} r \sin \alpha}{2\left(1-r^{2}\right)^{2}}=\frac{r a^{2} \sin \theta}{2\left(1-r^{2}\right)} \square
$$

so $\quad \frac{\sin \alpha}{\sin \theta}=\frac{a^{2}\left(1-r^{2}\right)}{b^{2}} \sqrt{ }$

SGS Trial HSC 1999 Solutions...........2 Unit Mathematics Form VI........... Page 12

$$
\begin{aligned}
& \text { (iv) } \begin{aligned}
b & =\frac{a \sqrt{91}}{10} \\
\text { so } \quad b^{2} & =\frac{91 a^{2}}{100} . \\
\text { Now } \sin \alpha & =\frac{a^{2}\left(1-r^{2}\right) \sin \alpha}{b^{2}} \\
\text { so } \quad \sin \alpha & =\frac{100(1-0 \cdot 81) \sin 60^{\circ}}{91} \\
& =\frac{19 \sqrt{3}}{182} . ~ \bigvee \\
\text { So } \quad \alpha & \doteq 10^{\circ} 25^{\prime} \text { (to the nearest minute) } \quad \checkmark
\end{aligned}
\end{aligned}
$$

