2 UNIT MATHEMATICS FORM VI

Time allowed: 3 hours (plus 5 minutes reading)
Exam date: 8th August 2001

Instructions:

All questions may be attempted
All questions are of equal value.
All necessary working must be shown.
Marks may not be awarded for careless or badly arranged work.
Approved calculators and templates may be used.
A list of standard integrals is provided at the end of the examination paper.

Collection:

Each question will be collected separately.
Start each question in a new 4-leaf answer booklet.
If you use a second booklet for a question, place it inside the first. Don't staple.
Write your candidate number on each answer booklet.

SGS Trial 2001. \qquad . 2 Unit Mathematics Form VI.. \qquad

QUESTION ONE (Start a new answer booklet)

Marks
(a) Convert $\frac{4 \pi}{5}$ to degrees.(b) Write down a primitive of $\sec ^{2} 5 x$.(c) The line $5 x-k y=7$ passes through the point $(1,1)$. Find the value of k.(d) Differentiate $y=5 x^{3}-2 x+9$ with respect to x.(e) Express $\frac{4}{\sqrt{3}-1}$ with a rational denominator in simplest form.(f) Find the exact value of $\tan \frac{\pi}{3}+\tan \frac{\pi}{4}$.(g) Solve $|x-1|=11$

QUESTION TWO (Start a new answer booklet)

(a) Differentiate the following with respect to x :
(i) $x^{2} e^{x}$

2
(ii) $\ln (3 x-2)$,

2
(iii) $\sin ^{2} x$.(b) Find a primitive function of $(3 x-4)^{6}$.
(c) Evaluate the following definite integrals:
(i) $\int_{1}^{2} 6 x^{2} d x$,

2
(ii) $\int_{0}^{\frac{\pi}{2}} \sin 2 x d x$.

SGS Trial 2001. \qquad
\qquad
QUESTION THREE (Start a new answer booklet)
(a)

2 (i) Find the length of $B C$ correct to the nearest centimetre.
$[2$ (ii) Find the area of $\triangle A B C$ correct to the nearest square metre.
(b) Consider the geometric series $1-\frac{1}{3}+\frac{1}{9}-\cdots$.

1 (i) Explain why the series has a limiting sum.
1 (ii) Find the limiting sum.(c) Find the equation of the tangent to the curve $y=\operatorname{In} x$ at the point $(e, 1)$.
(d) If α and β are roots of the equation $x^{2}+8 x+11=0$, find:
(i) $\alpha+\beta$,

1
(ii) $\alpha \beta$,

回
(iii) $\alpha^{2}+\beta^{2}$.

QUESTION FOUR (Start a new answer booklet)
(a)

In the diagram above, the graph of $y=f(x)$ is drawn.
Marks
(i) Sketch the graph of $y=f(x)+2$.

1
(ii) Given that $\int_{-1}^{3} f(x) d x=\frac{15}{2}$, evaluate $\int_{-1}^{3}(f(x)+2) d x$.
\qquad
\qquad
(b) A particle moves in a straight line so that its displacement x metres at time t second is given by $x=2 t^{3}-t^{2}$.
(i) At what times is the particle at rest?
(ii) How far does the particle travel between these times?
(c)

In the diagram above, $\triangle A B C$ is isosceles with $\angle B=\angle C=40^{\circ}$, and $A D=A E$. Let $\angle D A C=\theta$
(i) Explain why $\angle A D B=40^{\circ}+\theta$.
(ii) Find an expression for $\angle D A E$ in terms of θ.

3
(iii) Show that $\angle E D B=\frac{1}{2} \theta$.

QUESTION FIVE (Start a new answer booklet)

(a)

In the diagram above, O is the centre of a circle of radius 4.8 centimetres, and $A O B=75^{\circ}$.

2 (i) Find the exact length of arc $A B$.
2 (ii) Find the exact area of the sector $A O B$.
2 (iii) Find the area of the minor segment that has been shaded. Give your answe correct to three decimal places.
\qquad
\qquad(b) (i) Solve $\tan x=-3$ for $0 \leq x \leq 2 \pi$. Give your answer in radians correct to three decimal places.
2 (ii) On the same diagram, sketch graphs of $y=\tan x$ and $y=-3$ for $0 \leq x \leq 2 \pi$.
2 (iii) How many solutions are there to the equation $\tan x=-3$ in the domain $-2 \pi \leq x \leq 2 \pi ?$

QUESTION SIX (Start a new answer booklet)

In the diagram above, the graph of $y=3 x^{2}+2 x-1$ and the tangent to the curve at the point $A(-1,0)$ are drawn.
(i) Show that the equation of the tangent is $y+4 x+4=0$.
(ii) Show that the tangent meets the y-axis at $B(0,-4)$.
(iii) Find the equation of the line that passes through B and which is perpendicular to the tangent.
(v) Find the area of $\triangle A B C$.(b) The region bounded by the curve $y=\tan x$ and the x-axis from $x=0$ to $x=\frac{\pi}{4}$ is rotated about the x-axis. The volume of the solid formed is given by $V=\pi \int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x$. Use Simpson's rule with the three function values $x=0, \frac{\pi}{8}$ and $\frac{\pi}{4}$ to approximate the volume. Give your answer correct to three decimal places.
\qquad
\qquad

QUESTION SEVEN (Start a new answer booklet)

Marks
(a)

Find the value of x. (Give reasons.)(b)

In the diagram above, $A B C D$ is a parallelogram. The point P lies on $A B$ and it is known that $\angle A D P=\angle C D P=x$ and $\angle B C P=\angle D C P=y$
Prove that $2 A D=A B$. (Give reasons.)(c) (i) Write down the discriminant of $5 x^{2}-2 x+k$.
(ii) For what values of k does $5 x^{2}-2 x+k=0$ have real roots?(d) Solve $\log _{e} 16=2 \log _{e} x$.

SGS Trial 2001 \qquad
\qquad

QUESTION EIGHT (Start a new answer booklet)

(a) Kerry deposits $\$ 1500$ into a superannuation fund on January 1st 2001. He makes further deposits of $\$ 1500$ on the first of each month up to and including December 1st 2010. The fund pays compound interest at a monthly rate of 0.75%. In each of the following questions give your answer to the nearest dollar.
(i) How much is in the fund on January 31st 2001?
(ii) How much is the first $\$ 1500$ deposit worth on December 31st 2010?(iii) Form a geometric series and hence determine the total amount in the fund on December 31st 2010.
(iv) If each deposit was increased to $\$ 1600$, what difference does it make to the total amount in the fund on December 31st 2010?
(b)

In the diagram above, a straight line has been drawn which intersects with $y=e^{x}$ at the points $C(1, e)$ and $D\left(-1, \frac{1}{e}\right)$. The point A has coordinates $(-1,0)$ and B has coordinates $(1,0)$. The area between the curves has been shaded.
(i) Show that the area of the trapezium $A B C D$ is given by $\frac{e^{2}+1}{e}$.

3 (ii) Hence, or otherwise, find the exact area between the curves.
\qquad
QUESTION NINE (Start a new answer booklet)
(a) The value $\$ V$ of a car is given by the formula $V=C e^{-k t}$, where C and k are constants and t is the time measured in years. Michael bought a car on June 30th 2001 which cost $\$ 65000$ and which was worth $\$ 55000$ after one year.
(i) Evaluate the constants C and k.
(ii) Find the value of the car after 5 years. Give your answer correct to the nearest dollar.
(iii) In which year will the value of the car fall below half its cost price for the first time?
(b) Concrete is pumped from a truck into a building foundation. The rate $R \mathrm{~m}^{3} /$ hour at which the concrete is flowing is given by the expression $R=9 t^{2}-t^{4}$ for $0 \leq t \leq 3$, where t is the time measured in hours after the concrete begins to flow.
(i) Find the rate of flow at time $t=2$.
(ii) Explain why t is restricted to $0 \leq t \leq 3$.
(iii) Find the maximum flow rate of concrete.
(iv) When the concrete begins to flow, the foundation has $1000 \mathrm{~m}^{3}$ already in place. Find an expression for the amount of concrete in the foundation at time t.

QUESTION 10 IS ON THE NEXT PAGE.

QUESTION TEN (Start a new answer booklet)
(a)

In the diagram above, P is a point on the circle with diamater $A B=\ell$. The point Q is on the diameter such that $A P=A Q$. Let $\angle P A Q=\theta$ and let S be the area of $\triangle P A Q$.
3 (i) Show that $S=\frac{\ell^{2}}{2} \cos ^{2} \theta \sin \theta$.
(ii) Find the maximum area of $\triangle A P Q$ as P moves along the circumference of the circle.(b) (i) Find A and B such that $\frac{1}{(x-1) x}=\frac{A}{x-1}+\frac{B}{x}$.
(ii) Let $S_{n}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{(n-1) n}$.

Show that $S_{n}=1-\frac{1}{n}$.
2 (iii) Hence or otherwise evalute $\sum_{n=2}^{\infty} \frac{1}{(n-1) n}$.
\because QUESTION 1
a) 144°
b) $\frac{1}{5} \tan 5 x+c$
$\sqrt{ }$
c) $5-k=7 \quad \sqrt{ }$

$$
\therefore k=-2
$$

d) $\frac{d y}{d x}=15 x^{2}-2 \quad \sqrt{ }$ (1 each)
e) $\frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{4(\sqrt{3}+1)}{2}$

$$
=2(\sqrt{3}+1)
$$

f) $\sqrt{3}+1 \quad \sqrt{ } \quad(1$ each $)$
g) $|x-1|=11$

$$
x-1=11 \text { or } x-1=-11
$$

$\therefore x=12$ or -10

$$
\sqrt{ }
$$

QUESTION 2
a) (i) $\frac{d y}{d x}=2 x \cdot e^{x}+x^{2} e^{x}$
$=x e^{x}(2+x)$ (not necessary)
(ii) $\frac{d y}{d x}=\frac{3}{3 x-2}$
(iii) $d y=2 \sin x \cdot \cos x \quad \sqrt{ }$
b) $\frac{(3 x-4)^{7}}{21}$
c) (1) $\int_{1}^{2} 6 x^{2} d x=\left[2 x^{3}\right]_{1}^{2}$

$$
=2 \times 8-2 \times 1
$$

(ii) $\begin{aligned} \int_{0}^{\frac{\pi}{2}} \sin 2 x d x & =-\frac{1}{2}[\cos 2 x]_{0}^{\frac{\pi}{2}}\end{aligned}$

$$
\begin{aligned}
& =-\frac{1}{2}[\cos \pi-\cos 0] \\
& =-\frac{1}{2}[-1-1] \\
& =1
\end{aligned}
$$

Question 3
(a) (i)

$$
B C^{2}=9.81^{2}+15.24^{2}-2 \times 9.81 \times 15.24 \times \cos 31^{\circ} 20^{\prime}
$$

$$
=73.089 \ldots \mathrm{~m}
$$

$\therefore B C \doteq 8.55 \mathrm{~m}$ (nearest cm) \quad (Penalise incorrect
(ii)

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \cdot 9 \cdot 81 \cdot 15-24 \cdot \sin 31^{\circ} 20^{\prime} \sqrt{n o ~ r o u n d i n g ~ t o ~} \\
& =38.87 \ldots \mathrm{~m}^{2} \\
& \doteq 39 \mathrm{~m}^{2}
\end{aligned}
$$

(b) (i) $r=-\frac{1}{3}$. Since $|r|<1, S_{\infty}$ exists

$$
|r|<1, S_{\infty} \text { exists }
$$

(ii)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{1}{\frac{4}{3}} \\
& =\frac{3}{4}
\end{aligned}
$$

(c) $\frac{d y}{d x}=\frac{1}{x}$
$\left.A x t x=e, \frac{d y}{d x}=\frac{1}{e}\right\} \sqrt{ }$ (for either or both)
Equation of tangent is:

$$
y-1=\frac{1}{e}(x-e)
$$

$$
y-1=\frac{x}{e}-1
$$

$$
\therefore x=2 y
$$

(d) (i) $\alpha+\beta=-8$
(ii) $\alpha \beta=11$
(iii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
\begin{aligned}
& =(-8)^{2}-2 \times 11 \\
& =42 .
\end{aligned}
$$

QUESTION 4

b) $x=2 t^{3}-t^{2}$
(i) $\dot{x}=6 t^{2}-2 t$

At rest when $\dot{x}=0$

$$
\text { (ie) } 2 t(3 t-1)=0
$$

$$
\therefore t=0 \text { or } \frac{1}{3}
$$

(ii)

$$
\text { At } \begin{aligned}
t=0, \quad x & =0 \\
t=\frac{1}{3}, & x
\end{aligned}=2 \cdot \frac{1}{27}-\frac{1}{9}, ~=-\frac{1}{27} .
$$

\therefore Distance travelled is $\frac{1}{27} \mathrm{~m}$.
(c) (i) $\angle A D B=40+\theta$ (exterior angle of \triangle)
(ii)

$$
\angle D B E=40 \quad \text { (isosceles } 8)
$$

$$
\begin{aligned}
\angle D A E+40+\theta+40 & =180 \quad(\text { angle sum }) \\
\angle D A F & =100-\theta
\end{aligned}
$$

$\therefore \angle D A E=100-\theta$ equal,
(iii) $\angle A D E=\frac{1}{2}(180-(100-\theta))$ (base L_{A}, isosceles $\triangle A D E$)

$$
=40+\frac{\theta}{2}
$$

$$
\begin{aligned}
\therefore L E D B & =(40+\theta)-\left(40+\frac{\theta}{2}\right) \\
& =\frac{\theta}{2}
\end{aligned}
$$

QUESTION 5
a) (i)

$$
\begin{aligned}
75^{\circ} & =75 \times \frac{\pi}{180} \\
& =\frac{5 \pi}{12} \\
\therefore l & =\frac{5 \pi}{12} \times 4.8 \\
& =2 \pi \mathrm{~cm}
\end{aligned}
$$

(subtract I mark if either answer has been approx inated: $: \begin{gathered}\text { i } 6.283 \ldots \\ \\ 15.0796 \ldots\end{gathered}$
(ii)

$$
\begin{aligned}
& =2 \pi \\
\text { Area of sector } & =\frac{1}{2} \cdot(4 \cdot 8)^{2} \cdot \frac{5 \pi}{12} \\
& \left.=\frac{24 \pi}{5} . \text { (or } 4 \cdot 8 \pi\right) \mathrm{cm}^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Area of segment } & =\text { Area of sector }- \text { Area of } \triangle \\
& =\frac{24 \pi}{5}-\frac{1}{2} \cdot(4.8)^{2} \cdot \sin \frac{5 \pi}{12} \\
& =3.952 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \tan x=-3 \\
& \text { Related angle }=1.249 \\
& \therefore \quad x=\pi-1.249 \text { or } 2 \pi-1.249 \\
&=1.893 \text { or } 5.034
\end{aligned}
$$

(need both for this mark. No marks for

Question 6
a)

$$
\begin{gathered}
\text { (i) } y=3 x^{2}+2 x-1 \\
\frac{d y}{d y}=6 x+2 \\
\text { At } x=-1, \frac{d y}{d x}=-4
\end{gathered}
$$

Eqtn is $y-0=-4(x+1)$
wi) $y+4 x+4=0$
(ii) When $x=0, y+4=0$

$$
\text { so } B=(0,-4)
$$

(iii) $M=\frac{1}{4}$

$$
y+4=\frac{1}{4}(x-0)
$$

(ie) $4 y+16=x$
(iv) When $y=0, x=16$

$$
\therefore \quad c=(16,0)
$$

(v) Area $\triangle A B C=\frac{1}{2} \times 4 \times 17$ degree equivalent)
$\int^{(\text {(iii) })}$
 are 4 solutions in the range $-2 \pi \leq x \leq 2 \pi \sqrt{ } \sqrt{ }$
$\sqrt{ }$ (Do not penalise if they draw graphs outside domain)

Question 7

a) $\angle B W A=80^{\circ}$ (external \angle of $\left.\triangle A W D\right) \quad V$
$\angle B X C=56^{\circ}$ (external \angle of $\left.\triangle C \times E\right) \quad \sqrt{ }$
$x=180-(80+56)$ (Lsum of \triangle)
$\therefore x=44$
b) $\angle D P A=x$ (alternate L on $\|$ lines) $\therefore \triangle A D P$ is iso steles $\Rightarrow A D=A P$
$\angle B P C=y \quad$ (alternate L on $\|$ lines)
$\therefore \triangle B C P$ is is osceles $\Rightarrow B C=B P$
since $A B C D$ in a 2

$$
\begin{aligned}
& \text { By } 1,2 \neq A D=A \cdot P=B C=B P \text {. } \\
& \therefore \quad A B=A P+B P \\
& =A D+A D \\
& =2 A D \text {, as required. } \\
& \sqrt{ } \text { (There are other } \\
& \text { acceptable methods. } \\
& \text { Allocate marks } \\
& \text { similarly if possible) }
\end{aligned}
$$

c) (i) $\Delta=2-4.5 . k$

$$
\left.\begin{array}{rl}
\text { (ii) For real roots, } \Delta \geqslant 0 \\
\text { ai y } 4-20 k \geqslant 0 \\
\therefore k \geqslant \frac{1}{5}
\end{array}\right\} \text { (ether) }
$$

d) $\begin{aligned} \ln 16 & =2 \ln x \\ \text { i) } 2 \ln 4 & =2 \ln x \\ \therefore x & =4\end{aligned}$

$$
\begin{aligned}
{[\text { or } \ln 16} & =\ln x^{2} \\
\therefore x^{2} & =16 \\
x & = \pm 4 \\
\text { but } x>0 & \therefore x=4 \text { only }]
\end{aligned}
$$

QUESTION 8
a) (i) $A_{1}=1500(1.0075)$
(ii) $\begin{aligned} A & =1500(1.0075)^{120} \\ & =\$ 3677.04\end{aligned}$
$=\$ 3677.04$
(iii) Total A mount $=1500\left[1.0075^{120}+1.0075^{119}+1.0075^{118}+\ldots+1.0075\right]$

$$
=1500\left[1.0075 \frac{\left(1.0075^{120}-1\right)}{(1.0075-1)}\right]
$$

$$
\begin{aligned}
& =1500 \times 194.9656342 \\
& =\$ 292448
\end{aligned}
$$

$$
=\$ 292448
$$

(iv) New Total $\left.\begin{array}{rl} & =1600 \times 194.9656342 \\ & =\$ 311945\end{array}\right\}$
b) (i) A ira $A B C D=\frac{1}{2} \cdot 2\left(e+\frac{1}{e}\right) \sqrt{2}$
\therefore Difference $=\$ 19497$

$$
=\frac{e^{2}+1}{e} \quad\left(u^{2}\right)
$$

(ii) Area under the curve $=\int_{-1}^{1} e^{x} d x$

$$
\begin{aligned}
& =\left[e^{x}\right]_{-1}^{1} \\
& =e-e^{-1} \\
& =e-\frac{1}{e} \\
& =\frac{e^{2}-1}{e}\left(u^{2}\right)
\end{aligned}
$$

Area between the curves $=\frac{e^{2}+1}{e}-\frac{e^{2}-1}{e}$

$$
=\frac{2}{e} \cdot\left(\mu^{2}\right)
$$

Question 9

a) (i) $V=C e^{-k t}$
when $t=0, v=65000$

$$
c=65000
$$

When t $=1, V=55000$
$\therefore 55000=65000 e^{-h}$

$$
\begin{aligned}
& e^{-k}=\frac{11}{13} \\
& -k=\ln \left(\frac{11}{13}\right) \\
& \left.\begin{array}{rl}
k & =-\ln \left(\frac{11}{13}\right) \\
& \doteqdot 0.16705 \ldots
\end{array}\right\} \sqrt{ }(\text { either })
\end{aligned}
$$

b) (i) $R=9 t^{2}-t^{4}$
when $t=2 ; R=9.4-2^{4}$
(ii) When $t=3, R=0$ and when $t>3, R<0$ which suggests that concrete is going back into the truck! since $t \geqslant 0$ we have

$$
0 \leq t \leq 3
$$

(i) $\begin{aligned} \frac{d R}{d t} & =18 t-4 t^{3} \quad \text { and } \frac{d^{2} R}{d t^{2}}=18-12 t \\ & =2 t\left(9-2 t^{2}\right)\end{aligned}$
(ii) When $t=5, \quad-5 k$

$$
\begin{aligned}
V & =65000 e^{-5 k} \\
& =\$ 28194
\end{aligned}
$$

(iii) We need t such that

$$
v<\frac{65000}{2}
$$

$\frac{d R}{d t}=0$ when $t=0$ or $\frac{3}{\sqrt{2}}$ or $-\frac{3}{\sqrt{2}}$ Since $t \geqslant 0$, ignore $t=-\frac{3}{\sqrt{2}}$. When $t=1$ $\frac{d^{2} R}{d t^{2}}>0$ and when $t=\frac{3}{\sqrt{2}}, \frac{d^{2} R}{d t^{2}}<0$.
Te) $65000 e^{-k t}<\frac{65000}{2}$

$$
\begin{aligned}
& \text { So maximum flow rate occurs when } \\
& t=\frac{3}{1} \text {. ie) } R=9.9-\frac{81}{1}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
e^{-k t} & <\frac{1}{2} \\
-k t & <\ln \frac{1}{2} \\
t & >4.149 \ldots
\end{array}\right\} \begin{aligned}
& \text { any })
\end{aligned}
$$

- Car falls below half its cost price in 2005 V
a)

$s=\frac{l^{2}}{2} \cdot\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{3}}\right)$
$=\frac{\ell^{2}}{2} \cdot \frac{(3-1)}{3 \sqrt{3}}$
$=\frac{l^{2}}{3 \sqrt{3}}$
$=\frac{\sqrt{3} l^{2}}{9}$. is the maximum area.
b) (i)

$$
\text { (i) } \begin{aligned}
\frac{1}{(x-1) x} & =\frac{A x+B(x-1)}{(x-1) \cdot x} \\
\therefore \quad 1 & =A x+B x-B \\
B=-1 & \text { and } A+B=0 \\
\therefore \frac{1}{(x-1) x} & =\frac{1}{x-1}-\frac{1}{x}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{n} & =\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{(n-1) \times n} \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& \left.=\frac{1}{1}+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\cdots+\left(\frac{-1}{n-1}+\frac{1}{n-1}\right)-\frac{1}{n}\right\} \\
& =1-\frac{1}{n}, \text { as required. }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{1}{(n-1)^{n}} & =\frac{1}{1 x^{2}}+\frac{1}{2 x^{3}}+\frac{1}{3 \times 4}+\cdots \\
& =\lim _{n \rightarrow \infty} s_{n} \quad(\text { from (ii) }) \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \\
& =1 .
\end{aligned}
$$

