Sydney Grammar School

FORM VI

MATHEMATICS

Examination date

Wednesday 4th August 2004

Time allowed

3 hours (plus 5 minutes reading time)

Instructions

All ten questions may be attempted.
All ten questions are of equal value.
All necessary working must be shown.
Marks may not be awarded for careless or badly arranged work.
Approved calculators and templates may be used.
A list of standard integrals is provided at the ead of the examination paper.

Collection

Write your candidate number clearly on each booklet.
Hand in the ten questions in a single well-ordered pile.
Hand in a booklet for each question, even if it has not been attempted.
If you use a second booklet for a question, place it inside the first.
Keep the printed examination paper and bring it to your next Mathematics lesson.

Checklist

SGS booklets: 10 per boy. A total of 1250 booklets should be sufficient.
Candidature: 109 boys.

Examiner
PKH

QUESTION ONE (12 marks) Use a separate writing booklet.
(a) Evaluate $\sqrt{\frac{3.4^{4}}{15 \cdot 6 \times 12.8}}$, correct to three significant figures.
(b) Differentiate $5 x^{2}-\cos x$.
(c) Find a primitive of $x^{3}+5$.
(d) A sector of a circle subtends an angle of 40° at the centre of the circle. If the radius of the circle is 9 units, find the area of the sector.
$\begin{array}{ll}\text { (e) (i) Solve }|x-4| \leq 1 . & 1 \\ & \text { (ii) Graph your solution on a number line. }\end{array}$
(f) Express $\frac{3}{3-\sqrt{5}}$ with a rational denominator.

QUESTION TWO (12 marks) Use a separate writing booklet.
(a) Arthir invests $\$ 20000$ in a term deposit at 6% pa compounded annually. How much will the investment be worth after four years? Give your answer correct to the nearest cent.
(b) Find the equation of the tangent to the curve $y=e^{2 x}$ at the point where $x=0$.
(c)

In the diagram above, $A B C D$ is a quadrilateral:
(i) Find the midpoint of the diagonal $A C$.
(ii) Find the midpoint of the diagonal $B D$.
(iii) Find the gradient of $B D$.
(iv) Show that $A C$ is perpendicular to $B D$.
(v) What shape best describes quadrilateral $A B C D$? Give reasons.
(a) Differentiate the following functions:
(i) $y=\cos (2 x+1)$
(ii) $y=\frac{x}{\log _{e} x}$
(iii) $y=x^{2} \tan x$
(b) Sketch the parabola $x^{2}=-4(y+2)$, showing its vertex and directrix.
(c)

In the diagram above, use the cosine rule to find the possible values of x.

QUESTION FOUR (12 marks) Use a separate writing booklet.
(a) Find:
(i) $\int_{0}^{\ln 2} e^{2 x} d x$
(ii) $\int \frac{2 x}{x^{2}+5} d x$
(b) Consider the arithmetic series

$$
5+12+19+\cdots+292
$$

(i) How many terms in the series?
(ii) Find the sum of the series.
(c) A particle moves in a straight line. At time t seconds, its displacement x metres from the origin is given by

$$
x=8 t-2 t^{2}
$$

(i) Sketch the graph of x as a function of t, showing the vertex.
(ii) Find the distance the particle travels in the first three seconds.

SGS Trial 2004 \qquad
(d)

Find the shaded area in the diagram above.

QUESTION FIVE (12 marks) Use a separate writing booklet.
(a) Sketch the function $y=-2 \sin x$, for $0 \leq x \leq 2 \pi$.
(b)

The sector drawn above has its centre at O. Find the size of angle θ, correct to the nearest degree.
(c)

In the diagram above, $A B \| D C$ and $\angle B=\angle D=\theta$.
(i) Prove that $\triangle A B C \equiv \triangle C D E$
(ii) Prove that the quadrilateral $A B C D$ is a parallelogram.
(d) (i) Make x^{2} the subject of $y=\sqrt{x-1}$.
(ii) Find the volume formed when the region between the curve $y=\sqrt{x-1}$ and the y-axis, from $y=0$ to $y=3$, is rotated about the y-axis.
(a) The derivative of a function is given by $\frac{d y}{d x}=\frac{1}{\sqrt{x}}$. Given that $y=-2$ when $x=4$, find y as a function of x.
(b)

(i) Find the value of x in the diagram above.
(ii) Find θ, correct to the nearest degree.
(c) If $\log _{a} 5=x$ and $\log _{a} 2=y$, find $\log _{a} 400$ in terms of x and y.
(d) (i) Copy and complete the table below for $y=\sqrt{2+e^{x}}$, calculating each value correct to three decimal places.

x	0	1	2
y			

(ii) Use Šimpson's rule with three function values to approximate $\int_{0}^{1} \sqrt{2+e^{x}} d x$. 2 Give your answer correct to two decimal places.

QUESTION SEVEN (12 marks) Use a separate writing booklet.
(a) Consider the function $y=x^{4}-4 x^{3}+3$.
(i) Find the stationary points and determine their nature.
(ii) The curve has a point of inflexion where the tangent is not horizontal. Find the coordinates of this point.
(iii) Sketch the function, showing all stationary points and points of inflexion.
(b) For what values of k is the quadratic

$$
k x^{2}-2 x \sqrt{6}+k+1
$$

positive definite?

SGS Trial 2004 Form VI Mathematics

QUESTION EIGHT (12 marks) Use a separate writing booklet.
(a)

A particle is moving in a straight line with displacement measured from the origin. The graph drawn above shows the particle's velocity at time t. The particle is initially at the origin.
(i) When does the particle return to the origin?
(ii) Draw a graph of the displacement x against the time t.
(b) The population P of a growing town satisfies the equation

$$
P=P_{0} e^{k t}
$$

where t is time in years.
The initial population is 22000 and five years later the population is 27000 .
(i) Find P_{0} and k.
(ii) When does the population reach 35000 ? Give your answer correct to three significant figures.
(c)

(i) Find the x coordinate of point A in the diagram above.
(ii) Find the volume formed when the shaded area in the diagram above is rotated about the x axis.
(a) A vessel initially contains 100 litres. It is being emptied, and the rate of change of volume is

$$
\frac{d V}{d t}=-\left(2+\frac{20}{t+1}\right)
$$

where V is the volume in the vessel in litres after t minutes.
(i) What is the initial rate $\frac{d V}{d t}$?
(ii) Find how many litres remain in the vessel after five minutes.
(b) A person borrows $\$ 250000$ from a bank at a reducible interest rate of 6% per annum, compounded monthly. The loan is to be repaid in equal monthly installments.
Let $\$ M$ be the monthly payment. Let A_{n} be the amount owing at the end n months when the nth payment has just been made.
The loan must be paid off after twenty years.
(i) Show that the amount owing after three months is given by

$$
A_{3}=250000 \times(1.005)^{3}-M\left(1+1.005+1.005^{2}\right)
$$

(ii) Explain why $A_{240}=0$.
(iii) Find the value of M.
(iv) Suppose now that the person elects to pay $\$ 2000$ per month instead of the amount calculated in part (iii). How much more quickly would the person pay off the loan?
(a) (i) Show that the graph of $y=x^{\frac{2}{3}}$ is concave down for all values of x except for $x=0$.
(ii) Solve $x^{\frac{2}{3}} \leq \frac{x}{2}$.
(b)

The diagram above shows an extension ladder $L M$ of variable length ℓ. The ladder leans against the wall of a building. It also touches the top of the fence $S T$, which is 2 metres high and stands 1 metre from the wall.

Let θ be the angle between the ladder and the horizontal ground.
(i) Show that $\ell=\frac{2}{\sin \theta}+\frac{1}{\cos \theta}$.
(ii) Show that the stationary point of the graph of ℓ occurs when $\tan \theta=\sqrt[3]{2}$.
(iii) For safety reasons, θ must lie between 55° and 70°. Find the minimum length of ℓ. Justify your answer.

SOLUTION TO SGS TRIAL 2004 Mathematics
Onestron one (12 morks)
(a) $\sqrt{\frac{3.4^{4}}{15.6 \times 12.8}}=0.818 \quad \checkmark$ answer $\checkmark \begin{gathered}\text { correct } \\ \text { rounding }\end{gathered}$
(b)

$$
\begin{aligned}
& y=5 x^{2}-\cos x \\
& y^{\prime}=10 x+\sin x \quad \checkmark V \text { one foreach }
\end{aligned}
$$

(c) A primitive of $x^{3}+5$ is $\frac{x^{4}}{4}+5 x \quad \checkmark \checkmark$ one for each
(d) $\frac{40^{\circ}}{360^{\circ}}=\frac{1}{9}$

A rea of a sector $=\frac{1}{9} \pi T^{2} \quad \checkmark$
one for

$$
=\frac{1}{9} \pi \times 9^{2}
$$

$$
40^{\circ}=\frac{\pi}{9}
$$

$=9 \pi$ unuts
(e) (i) $|x-4| \leqslant 1$

$$
3 \leqslant x \leqslant 5
$$

(ii)

$$
\begin{aligned}
& \text { (f) } \frac{3}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\
& =\quad 9+3 \sqrt{5}
\end{aligned}
$$

Onestion Two (12 marks)
(a)

$$
\begin{aligned}
P_{n} & =P\left(1+\frac{r}{100}\right)^{n} \\
P_{4} & =20000 \times(1.06)^{4} \\
& =\$ 25249.54
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=e^{2 x} \\
& y^{\prime}=2 e^{2 x}
\end{aligned}
$$

(b)

When $x^{\prime}=0$, grovkent $=2 e^{0}=2 \mathrm{~V}$

$$
y=e^{0}=1
$$

equ of tangent is $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=2(x-0) \\
& y=2 x+1
\end{aligned}
$$

(c)
(ii)

$$
\text { (1) midpoint of } \begin{aligned}
A C & =\left(\frac{9+6}{2}, \frac{6+-3}{2}\right) \\
& =\left(7 \frac{1}{2}, 1 \frac{1}{2}\right)
\end{aligned}
$$

(ii) mid point of $B D=\left(\frac{0+15}{2}, \frac{4+-1}{2}\right)$

$$
=\left(7 \frac{1}{2}, 1 \frac{1}{2}\right)
$$

$$
\begin{gathered}
\text { (iii) } \quad \begin{array}{c}
m_{B D}=\frac{4--1}{0-15}=-\frac{1}{3} \\
\text { (iv) } \quad m_{A C}=\frac{6-3}{9-6}=3 \\
m_{A C X} m_{B D}=3 \times-\frac{1}{3}=-1 \\
\therefore \quad A C \perp B D
\end{array}, \$ 1 .
\end{gathered}
$$

3
\$) When $x=0,0 \quad 0 \quad \checkmark$
(v) $A B C D$ is rhombus

Ouestion Three (12 morks)
(a) (i)

$$
\begin{aligned}
y & =\cos (2 x+i) \\
y^{\prime} & =-\sin (2 x+1) \times 2 \\
& =-2 \sin (2 x+1)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\frac{x}{\log _{e} x} \\
y^{\prime} & =\frac{\log _{e} x \times 1-x \times \frac{1}{x}}{\left(\log _{e} x\right)^{2}} \\
& =\frac{\log _{e} x-1}{\left(\log _{e} x\right)^{2}}
\end{aligned}
$$

(iii)

2

$$
\begin{aligned}
y & =x^{2} \tan x \\
y^{\prime} & =x^{2} \sec ^{2} x+2 x \tan x
\end{aligned}
$$

(b) $x^{2}=-4(1)(y+2)$

$$
V=(0,-2)
$$

(c)

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 31=36+x^{2}-2 \times 6 \times x \times \cos 60^{\circ} \vee \\
& 31=36+x^{2}-2 \times 6 x \times \frac{1}{2} \\
& 31=36+x^{2}-6 x \\
& x^{2}-6 x+5=0
\end{aligned}
$$

$$
(x-5)(x-1)=0
$$

Onestion 4 (12 marks)

$$
\text { (ii) } \int \frac{2 x}{x^{2}+5} d x
$$

(a)

$$
\text { (1) } \begin{aligned}
& \int_{0}^{\ln 2} e^{2 x} d x \\
= & {\left[\frac{1}{2} e^{2 x}\right]_{0}^{\ln 2} } \\
= & \frac{1}{2} e^{2 \ln 2}-\frac{1}{2} e^{0} \\
= & \frac{1}{2} e^{\ln 4}-\frac{1}{2} \\
= & 2-\frac{1}{2}=1 \frac{1}{2}
\end{aligned}
$$

$$
=\ln \left(x^{2}+5\right)+1
$$

$$
(\alpha) A=\int_{0}^{\pi} 1+\cos x \alpha
$$

$$
=[x+\sin x]_{0}^{\bar{u}} v
$$

$$
=\pi+\sin \pi
$$

(b) $\quad 5+12+19+\cdots 292$

$$
=\pi u^{2} \pi^{2}
$$

(i) \# terms $=\frac{292-5}{7}+1=42$
(ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
S_{42} & =21(5+292) \\
& =6237
\end{aligned}
$$

\checkmark shape
$\sqrt{ }$ wertex

$$
\begin{equation*}
V: \quad t=2, x=8 \tag{0}
\end{equation*}
$$

(ii) When $t=3, x=24-18=.6 \checkmark$ (2metr from

$$
\begin{aligned}
\text { Distance coverned } & =8+2 \\
& =10 \text { maethes }
\end{aligned}
$$

Question 5 (12 marks)
(a)

$$
y=-2 \sin x \text { for } 0 \leqslant x \leqslant 2 \pi
$$

\checkmark shape and amplitude \checkmark period.
(b)

$$
\begin{aligned}
& l=r \theta \\
& \frac{7}{12}=\theta \\
& \theta=\left(\frac{7}{12} \times \frac{180}{\pi}\right) \text { degrees } \\
& \theta=33^{\circ}
\end{aligned}
$$

(c) (i)
b)

$$
\begin{aligned}
& A C \text { is common } \\
& \left.\left.\angle B A C=\angle A C D \text { (alt } L_{s}^{\prime}, A B \| C D\right)\right\} \\
& \angle A B C=\angle A D C \text { (given) } \\
& \therefore \quad \triangle A B C \equiv \triangle C D A(A A S \text { test) }
\end{aligned}
$$

(ii) $\angle B C A=\angle D A C\binom{$ matching sidles of }{ congruent $\Delta^{\prime} s}$

But these are alternate angles

$$
\therefore \quad B C \| A D
$$

$\therefore A B C D$ is a poralleloyram since
two pans of opposite sides are parallel
(d) (1)

$$
\begin{array}{ll}
y=\sqrt{x-1} & V=\pi \int_{0}^{3} y^{4}+2 y^{2}+1 d y \\
y^{2}=x-1 \\
\left(y^{2}+1\right)^{2}=x^{2} \sqrt{2} & =\pi\left[\frac{y^{5}}{5}+\frac{2 y^{3}}{3}+y\right]_{0}^{3}
\end{array}
$$

Question 6 (12 marks)
(a)

$$
\begin{aligned}
& \frac{d y}{d x}=x^{-\frac{1}{2}} \\
& y=2 x^{\frac{1}{2}}+C
\end{aligned}
$$

when $x=4$

$$
\begin{gathered}
-2=2 \sqrt{4}+c \\
c=-16 \\
y=2 \sqrt{x}-6
\end{gathered}
$$

(b) (i)

$$
\begin{aligned}
& \frac{x}{3}=\frac{8}{5} \\
& x=\frac{24}{5} \\
& x=4.8
\end{aligned}
$$

$$
\begin{aligned}
& \angle A F G=37^{\circ}\left(\text { aitch's, } \times y / 1 F_{1}^{\prime}\right. \\
& \frac{\sin \theta}{4 \cdot 8}={\frac{5 i n}{3} 7^{\circ}}_{3} \\
& \theta=74^{\circ}
\end{aligned}
$$

(c)

0

$$
\begin{aligned}
& \log _{a} 400 \\
= & \log _{a} 25+\log _{a} 16 \\
= & 2 \log _{a} 5+4 \log _{a} 2 \\
= & 2 x+4 y
\end{aligned}
$$

\checkmark 'splitting logs s^{\prime}
\checkmark correct answer
(d).
(i)

x	0	1	2
y	1.732	2.172	3.064

\checkmark one correct
$\checkmark \checkmark$ three correct

3
3
(ii)

$$
\begin{aligned}
& A \doteq \frac{h}{6}\left[f(a)+4 \times f\left(\frac{a+b}{2}\right)+f(b)\right] \\
&=\frac{2-0}{6}[1.732+4 \times 2.172+3.064] \\
& \quad \text { (Follow Henong, }
\end{aligned}
$$

Question 7 (12 marks)
(a) (i)

$$
\begin{aligned}
& y=x^{4}-4 x^{3}+3 \\
& y^{\prime}=4 x^{3}-12 x^{2} \\
& y^{\prime \prime}=12 x^{2}-24 x=12 x(x-2)
\end{aligned}
$$

Stat ρ ts where $y^{\prime}=0$

$$
\begin{aligned}
& 4 x^{3}-12 x^{2}=0 \\
& 4 x^{2}(x-3)=0 \\
& x=0 \text { or } x=3
\end{aligned}
$$

When $x=3, y^{\prime \prime}=108-72>0$
\therefore Local minimum at $(3,-24)$.
When $x=0, y^{\prime \prime}=0$ (test inconclusive)
When $x=-1, \quad y^{\prime}=-16<0$

$$
x=1 \quad y^{\prime}=-8<0
$$

\therefore Horizontal point of inflexion at $(0,0)$
(ii) Possible e^{t} s of inflexion where $y^{\prime \prime}=0$

$$
\begin{aligned}
& 12 x^{2}-24 x=0 \\
& 12 x(x-2)=0 \\
& x=0 \text { or } x=2
\end{aligned}
$$

At $x=0$ there is a horizontal pt of inflexion
Consider $x=1.9, \quad y^{\prime \prime}=12(1.9)(-0.1)<0$

$$
x=2.1, \quad y^{\prime \prime}=12(2.1)(0.1)>0
$$

\cdots Change in concaunty
3 There is a point of inflexam at ($2,-16$)
(iii)

(b) Consider the quadratic

$$
k x^{2}-2 x \sqrt{6}+(k+1)
$$

\square This is positive definite when $a>0$ and $b^{2}-4 a c<0$
se. $k>0$ and $(2 \sqrt{6})^{2}-4 k(k+1)<0$ $24-4 k^{2}-4 k<0$
$k^{2}+k-6>0$

$$
(k+3)(k-2)>0
$$

$k>0$ and $k<-3$ or $k \quad 2$
The quadratic is positive definite when $k>2$

Question 8. (12 marks)
(a)
(i) $t=4$
(ii)

(b)

$$
\begin{aligned}
& \text { (i) } \quad P_{0}=22000 \\
& \begin{aligned}
& t=5=P_{0} \\
& 27000=22000 e^{5 K} \\
& P=27000
\end{aligned} \\
& \quad k
\end{aligned}
$$

(ii)

$$
\left.\begin{array}{rl}
P=35000 \\
t=?
\end{array}\right] \begin{aligned}
35000 & =22000 e^{k t} v \\
\frac{35}{22} & =e^{k t} \\
t & =\frac{1}{k} \ln \frac{35}{2} \\
& =11.3 \text { years }
\end{aligned}
$$

(C) (1) Pts of intersection
where $\sec x=2$

$$
\begin{gathered}
\cos x=\frac{1}{2} \\
x=\frac{\pi}{3}
\end{gathered}
$$

(ii)

$$
\begin{array}{rl}
V=\frac{\pi}{3} V \\
V & 2\left\{\int_{0}^{\frac{\pi}{3}} 2^{2} d x-\int_{0}^{\frac{\pi}{3}} \sec ^{2} x d x\right\} \\
& =2\left\{[4 x]_{0}^{\frac{\pi}{3}}-[\tan x]_{0}^{\frac{\pi}{3}}\right\} \\
& -18 \pi=\sqrt{2}\}-2 \sqrt{3}) \text { units } 3
\end{array}
$$

Question 9 (12 marks
(a)

$$
\frac{d V}{d t}=-2-\frac{20}{t+1}
$$

(i) When $t=0, \frac{d v}{d t}=-2-\frac{20}{1}$

$$
=-22 \mathrm{l} / \mathrm{mm} .
$$

(ii) $\frac{d v}{d t}=-2-\frac{20}{t+1}$

$$
V=-2 t-20 \ln (t+1)+C
$$

When $\left.\begin{array}{l}t=0 \\ t=100\end{array}\right\} \quad 100=0-20 \ln 0+c$

$$
\begin{aligned}
& V=100\} \quad c=100 \\
& V=-2 t-20 \ln (t+1)+100
\end{aligned}
$$

When $t=5, \quad V=-10-20 \ln 6+100$

$$
\doteqdot 54.2 \text { litres }
$$

(b)

$$
\text { (i) } \begin{aligned}
& A_{1}=250000 \times 1.005-M \\
A_{2}= & ((250000 \times 1.005)-M) 1.005-M \\
= & 250000 \times(1.005)^{2}-1.005 M-M \\
= & 250000 \times(1.005)^{2}-M(1+1.005) \\
A_{3}= & 250000 \times(1.005)^{3}-M(1+1.005+1.00
\end{aligned}
$$

(ii) Loan is pond of over 240 month $=20 y$

3 (iii)

$$
\begin{aligned}
& \text { (iii) } 0=250000 \times(1.005)^{240}-M(1+1.005 \\
& 250000 \times(1.005)^{240}=M\left[\frac{a\left(r^{n}-1\right)}{r-1}\right]
\end{aligned}
$$

(11)

$$
\begin{gathered}
250000 \times(1.005)^{240}=M\left(\frac{(1.005)^{240}-1}{1-005-1}\right) \sqrt{M}=\$ 1791.08
\end{gathered}
$$

(IV) Suppose $M=\$ 2000$ we need to find n so that

0

$$
\begin{gathered}
250000 \times(1.005)^{n}=2000\left(\frac{\left.(1.005)^{n}-1\right)}{0.005}\right) \\
250000 \times 0.005 \times(1.005)^{n}=2000 \times 1.005^{n}-2000 \\
1250 \times(1.005)^{n}=2000 \times 1.005^{n}-2000 \\
(1.005)^{n}(2000-1250)=2000
\end{gathered}
$$

$$
(l .005)^{n}=\frac{8}{3}
$$

$$
n \ln (1.005)=\ln \frac{8}{3}
$$

$$
n=\frac{\ln \frac{8}{3}}{\ln 1.005}
$$

$$
=196.65 \text { months }
$$

Lo un is pond off approximately 43 months carter.

Chestion 10
(a) (a)

$$
\begin{aligned}
& y=x^{\frac{2}{3}} \\
& y^{\prime}=\frac{2}{3} x^{-\frac{1}{3}} \\
& y^{\prime \prime}=-\frac{2}{9} x^{-\frac{4}{3}} \\
& y^{\prime \prime}=-\frac{2}{9} \sqrt[3]{\frac{1}{x^{4}}} \\
& x^{4}>0 \quad \text { for } \quad x \neq 0 \\
& \therefore y^{\prime \prime}<0 \text { for } x \neq 0
\end{aligned}
$$

(ii) Solve $x^{\frac{2}{3}}=\frac{x}{2}$

Cube both stows

$$
\begin{gathered}
x^{2}=\frac{x^{3}}{8} \\
x^{3}-8 x^{2}=0 \\
x^{2}(x-8)=0 \\
x=0 \text { or } x=8
\end{gathered}
$$

Give one mark
for sketch OR

Solution to $x^{\frac{2}{3}} \leqslant \frac{x}{2}$
is $x \geqslant 8$ or $x=0$

OLestion 10 (12 marks) cont't
(b)

(i) Driw $\times T$ porablel to $N M$ so
*
that $\angle L T X=\theta$. $\quad Q$

$$
\begin{aligned}
& \frac{T L}{T X}=\operatorname{sen} \theta \\
& T L=\sec \theta
\end{aligned} \quad \frac{T M}{2}=\operatorname{cosec} \theta
$$

$\therefore \quad \angle M=\sec \theta+2 \operatorname{cosec} \theta$
(ii)

0

$$
\begin{aligned}
& l=(\cos \theta)^{-1}+2(\sin \theta)^{-1} \\
& l^{\prime}=-\frac{-\sin \theta}{\cos ^{2} \theta}-\frac{2 \cos \theta}{\sin ^{2} \theta}
\end{aligned}
$$

Stut pts where $\ell^{\prime}=0$

$$
\begin{aligned}
& \frac{\sin \theta}{\cos ^{2} \theta}=\frac{2 \cos \theta}{\sin ^{2} \theta} \\
& \frac{\sin ^{3} \theta}{\cos ^{3} \theta}=2 \\
& \tan ^{3} \theta=2 \\
& \tan \theta=\sqrt[3]{2}
\end{aligned}
$$

(iii) Munsmum L at $\theta=\tan ^{-1} \sqrt[3]{2}$ or end points $\theta=55^{\circ}$ or $\theta=70^{\circ}$

$$
\begin{aligned}
\theta & =\tan ^{-1} \sqrt[3]{2} \\
& \div 51^{\circ} 34^{\prime}
\end{aligned}
$$

which is outsiole the sufety comstrame.
Test, $\theta=55^{\circ} \quad l=\frac{2}{\sin 56^{\circ}}+\frac{1}{\cos 55^{\circ}}=4.18$
$\theta=10^{\circ}$

$$
l=\frac{2}{\sin 20^{\circ}}+\frac{1}{\cos 70^{\circ}} \doteqdot 5.05
$$

So minimum l when $\theta=55^{\circ}$ ond the leng this is 4.18 m
(DR) You can show that ℓ is increarnic for $\theta>\tan ^{-1} \sqrt[3]{2}$

θ	50°	$\tan ^{-1} 3 \sqrt{2}$	52°
L^{\prime}	-0	0	

So thie cunve lowhs whe

C Clearly minamum at $\theta=55^{\circ}$

