FORM VI

MATHEMATICS

Examination date

Tuesday 5th August 2008

Time allowed

3 hours

Instructions

All ten questions may be attempted.
All ten questions are of equal value.
All necessary working must be shown.
Marks may not be awarded for careless or badly arranged work.
Approved calculators and templates may be used.
A list of standard integrals is provided at the end of the examination paper.

Collection

Write your candidate number clearly on each booklet.
Hand in the ten questions in a single well-ordered pile.
Hand in a booklet for each question, even if it has not been attempted.
If you use a second booklet for a question, place it inside the first.
Keep the printed examination paper and bring it to your next Mathematics lesson.

Checklist

SGS booklets: 10 per boy. A total of 1250 booklets should be sufficient. Candidature: 93 boys.

Examiner

SJE

QUESTION ONE (12 marks) Use a separate writing booklet.
(a) The density of hydrogen in a certain container is $0.00008375 \mathrm{~g} / \mathrm{cm}^{3}$. Write this number in scientific notation, correct to two significant figures.
(b) State the period of the curve $y=2 \cos \frac{x}{2}$.
(c) Differentiate $y=(x+3)^{2}$.
(d) Find $\int\left(e^{2 x}-1\right) d x$.
(e) Solve $|2 x-1|=5$.
(f) (i) Write down the equation of the locus of a point P that is 2 units from the point $A(1,-3)$.
(ii) How many times does this locus cut the x-axis?
(g) Find the values of x for which the geometric series $2+4 x+8 x^{2}+\cdots$ has a limiting sum.

QUESTION TWO (12 marks) Use a separate writing booklet.
(a) Find rational numbers a and b such that $\frac{\sqrt{5}}{1+\sqrt{2}}=\sqrt{a}-\sqrt{b}$.
(b) Differentiate:
(i) $y=\sin 3 x$
(ii) $y=\left(e^{x}+1\right)^{2}$
(c)

The quadrant in the diagram above has an arc length of 8 cm . Find the exact value of the radius r.
(d) (i) Graph the curve $y=x(2-x)$, clearly showing all intercepts with the axes.
(ii) Hence, or otherwise, solve $x(2-x)<0$.
(e) Find:
(i) $\int \frac{1}{\sqrt{x}} d x$
(ii) $\int_{0}^{1} \frac{x^{2}}{x^{3}+1} d x$

QUESTION THREE (12 marks) Use a separate writing booklet.
(a) Differentiate $y=\frac{\log _{e} x}{x^{2}}$.
(b)

In the diagram above, A is $(0,4), B$ is $(1,0)$ and C is $(5,-1)$. The intervals $A B$ and $B C$ are equal in length.
(i) Find the gradient of $A C$.
(ii) Show that the equation of $A C$ is $x+y-4=0$.
(iii) Find the perpendicular distance of B from $A C$.
(iv) Show that $A C=5 \sqrt{2}$ units.
(v) Given that the midpoint of $A C$ is $\left(\frac{5}{2}, \frac{3}{2}\right)$, find the coordinates of D so that $A B C D$ is a rhombus.
(vi) Find the area of the rhombus.
(c)

In the diagram above, $A B=B C$ and $\angle B C A=\angle E C F=\alpha$. Prove that $A D \| C E$.

QUESTION FOUR (12 marks) Use a separate writing booklet.
(a) Find the equation of the tangent to the curve $y=\tan x$ at the point $\left(\frac{\pi}{4}, 1\right)$.
(b)

The diagram of a farmer's land $A B C D$ is drawn above. He wishes to split the land into two paddocks by building a fence from C to some point E on $A B$ so that the triangular area $E B C$ is $3000 \mathrm{~m}^{2}$. He has measured $\angle B$ to be 105° and $B C$ to be 62 metres.
(i) Show that $E B$ is 100 metres, correct to the nearest metre.
(ii) Hence find the length of $C E$, correct to the nearest metre.
(c) Use Simpson's rule with three function values to approximate $\int_{1}^{3} \log _{e} x d x$. Write your approximation to two decimal places.
(d)

The graphs of $y=2 x$ and $y=x^{2}-4 x$ are drawn above. They intersect at the origin and at the point $P(6,12)$. Find the shaded area.

QUESTION FIVE (12 marks) Use a separate writing booklet.
(a)

In the diagram above, two points A and B are 50 metres apart on the same side of a river. The point C is on the other side. A surveyor wants to determine the width w of the river. He measures $\angle B A C$ to be 38° and $\angle A B C$ to be 73°. Find the width of the river, correct to the nearest metre.
(b) Consider the function $y=3 x^{4}-4 x^{3}-12 x^{2}+10$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Show that the inflexion points occur where $x=\frac{1-\sqrt{7}}{3}$ and $x=\frac{1+\sqrt{7}}{3}$.
(iii) Draw a neat sketch of the graph of the function indicating the above features and the y-intercept. Do not attempt to find the x-intercepts.

QUESTION SIX (12 marks) Use a separate writing booklet.
(a) If α and β are the roots of the quadratic equation $2 x^{2}-5 x+1=0$, find the value of $\alpha^{2}+\beta^{2}$.
(b) A particle is moving on the x-axis. It starts from the origin O, and at time t seconds its velocity $v \mathrm{~ms}^{-1}$ is given by $v=1-2 \sin t$. Let $t=t_{1}$ and $t=t_{2}$ be the first two times that the particle comes to rest.
(i) Find t_{1} and t_{2}.
(ii) Sketch the velocity function for $0 \leq t \leq 2 \pi$.
(iii) Find the acceleration at $t=t_{1}$ and $t=t_{2}$.
(iv) Find the displacement function.
(v) Hence, or otherwise, find the distance travelled between $t=t_{1}$ and $t=t_{2}$.
(a) If a, b and c are consecutive terms of a geometric sequence, show that $\ln a, \ln b$ and $\ln c$ are consecutive terms of an arithmetic sequence.
(b) A parabola in the coordinate plane is represented by the equation

$$
x^{2}-10 x-16 y-7=0
$$

(i) By completing the square, find the coordinates of the vertex.
(ii) Find the focal length.
(iii) Find the equation of the directrix.
(c) The sum of the first 8 terms of an arithmetic series is 88 , and the sum of the first 18 terms is 558 . Find the first three terms of the series.
(d)

Two squares $A B C D$ and $A E F G$ are drawn above. Let $\angle A D G=\alpha$.
It is known that $\triangle A D G \equiv \triangle A B E$. Prove that $E B \perp D G$.

QUESTION EIGHT (12 marks) Use a separate writing booklet.
(a) Show that $1+\cot ^{2} \frac{\pi}{3}=\sec ^{2} \frac{\pi}{6}$.
(b)

The diagram above shows the curve $y=(1-x) e^{x}$. There is a maximum turning point at $(0,1)$.
(i) Show that $y^{\prime \prime}=-e^{x}-x e^{x}$.
(ii) Find the coordinates of any points of inflexion.
(iii) For what values of c does the equation $(1-x) e^{x}=c$ have two solutions?
(c)

A square $A B C D$ of side length 1 unit is shown above. The point F is drawn on $A B$ such that $\angle D C F=60^{\circ}$. The diagonal $D B$ intersects $C F$ at E.
(i) Show that $\triangle D E C\|\| B E F$.
(ii) Show that $F B=\frac{1}{\sqrt{3}}$.
(iii) Hence, or otherwise, find the ratio

$$
\text { area } \triangle D E C: \text { area } \triangle B E F
$$

QUESTION NINE (12 marks) Use a separate writing booklet.
(a) The region between the curve $y=e^{x}+e^{-x}$ and the x-axis from $x=0$ to $x=1$ is rotated about the x-axis. Find the exact volume of the solid of revolution formed.
(b) GenXYZ Home Loans is offering a special package for struggling first home buyers. The main details of this package, extracted from their brochure, are summarised below.

Stage	Term	Special Features	Interest Rate
Introductory Stage	$0-2$ years (2 years)	No monthly repayments	6% p.a. compounded monthly
Secondary Stage	$2-10$ years (8 years)	Monthly repayments commence. At the conclusion of this period, the amount owing must be reduced to the original size of the loan.	9% p.a. compounded monthly
Final Stage	Negotiable (not exceeding 20 years)	The size of the monthly repayment is determined by the borrower, provided that the loan is repaid within 20 years from the commencement of this Stage.	12% p.a. compounded monthly

Bernard and Esther have just borrowed $\$ 500000$ for their first house, and they are willing to accept the terms of the package offered by GenXYZ Home Loans.
(i) Show that the amount owing at the end of the Introductory Stage is $\$ 563580$.
(ii) The size of the monthly repayment M required in the Secondary Stage can be calculated from the formula

$$
A_{n}=P(1+r)^{n}-M\left(1+(1+r)+(1+r)^{2}+\ldots+(1+r)^{n-1}\right)
$$

where A_{n} is the amount owing after the nth repayment, P is the principal, and r is the relevant interest rate. (Do NOT show this.)

The principal for the Secondary Stage will be $\$ 563580$. Find M so that the amount owing at the end of the Secondary Stage is $\$ 500000$.
(iii) At the beginning of the Final Stage, Bernard and Esther calculate that they can now afford to repay $\$ 6500$ per month.
(α) Determine how many repayments of $\$ 6500$ it will take for the loan to be repaid in full.
(β) The last monthly repayment of $\$ 6500$ is more than required. How much should be refunded to Bernard and Esther?

QUESTION TEN (12 marks) Use a separate writing booklet.
(a) Evaluate $\log _{9} 49-\log _{3} 7$.
(b) The rate of decay of radium- 226 is proportional to the mass M present at that time, so that

$$
\frac{d M}{d t}=-k M
$$

Radium- 226 has a half-life of 1590 years. That is, the time taken for half the initial mass to decay is 1590 years. A sample of radium- 226 begins to decay.
(i) Show that $M=M_{0} e^{-k t}$, where k and M_{0} are constants, satisfies the differential equation above.
(ii) Find the value of k.
(iii) How many years will it take for 70% of the sample to decay?
(c)

A right circular cone of height h and base radius r is inscribed in a sphere of radius 3 cm , as shown above.
(i) Show that the volume of the cone is given by $V=\frac{\pi}{3}\left(6 h^{2}-h^{3}\right)$.
(ii) Find the dimensions of the cone so that its volume is maximised.
(iii) What fraction of the sphere is occupied by this cone?

SGS Trial 2008 Form VI Mathematics Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Form VI Mathematics Trial 2008
(c)

Question 1
(a) $0.00008375 \mathrm{~g} / \mathrm{cm}^{3} \doteqdot 8.4 \times 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$
(d)
(b) Period $=4 \pi$
(c) $y^{\prime}=2(x+3)$
(d) $\int\left(e^{2 x}-1\right) d x=\frac{e^{2 x}}{2}-x+c$
(e)

$$
\begin{array}{rlrlrl}
|2 x-1| & =5 & & & \\
2 x-1 & =5 & \text { or } & & 2 x-1 & =-5 \\
x & =3 & \text { or } & & x & =-2
\end{array}
$$

(f) (i) $(x-1)^{2}+(y+3)^{2}=4$
(ii) none
(g)

$$
\begin{aligned}
r & =2 x \\
-1 & <2 x<1 \\
\therefore \quad-\frac{1}{2} & <x<\frac{1}{2}
\end{aligned}
$$

Question 2
(a)

$$
\begin{aligned}
\frac{\sqrt{5}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}} & =\frac{\sqrt{5}-\sqrt{10}}{1-2} \\
& =\sqrt{10}-\sqrt{5} \\
\therefore a & =10, b=5
\end{aligned}
$$

(b)
(i)

$$
y^{\prime}=3 \cos 3 x
$$

(ii)

$$
\begin{aligned}
y^{\prime} & =2\left(e^{x}+1\right) \times e^{x} \\
& =2 e^{x}\left(e^{x}+1\right)
\end{aligned}
$$

Question 3 (cont.)
(b)

$$
\text { (i) } \begin{aligned}
\text { gradient } A C & =\frac{-1-4}{5-0} \\
& =-1
\end{aligned}
$$

(ii) Eq $A C$ is $y=-x+4$
$x+y-4=0$ as required.
(iii)

$$
\begin{aligned}
d & =\frac{|1(1)+1(0)-4|}{\sqrt{1^{2}+1^{2}}} \\
& =\frac{3}{\sqrt{2}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
A C^{2} & =(5-0)^{2}+(-1-4)^{2} \\
& =25+25 \\
& =50 \\
\therefore A C & =\sqrt{50} \\
& =5 \sqrt{2} \text { as required }
\end{aligned}
$$

(v) Let D have coorchintes (p, q)

$$
\begin{aligned}
\frac{p+1}{2} & =\frac{5}{2} \\
\therefore \quad p & =4
\end{aligned} \quad \therefore \quad \frac{q}{2}=\frac{3}{2}
$$

So coordinates of D are $(4,3)$
(vi)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} A C \times B D \\
& =\frac{1}{2} 5 \sqrt{2} \times \frac{2 \times 3}{\sqrt{2}} \\
& =15 u^{2}
\end{aligned}
$$

(c) $\quad \angle B A C=\alpha$ (angles opposite equal sides of a triangle)
$A D \| C E$ (equal wiresponding angles

$$
\angle B A C=\angle E C F=\alpha)
$$

Question 4
(a)

$$
\begin{aligned}
y & =\tan x \\
y^{\prime} & =\sec ^{2} x \\
\text { At }\left(\frac{\pi}{4}, 1\right) \quad y^{\prime} & =\sec ^{2} \frac{\pi}{4} \\
& =\frac{1}{\cos ^{2} \frac{\pi}{4}} \\
& =2
\end{aligned}
$$

Engin of tangent:

$$
\begin{aligned}
y-1 & =2\left(x-\frac{\pi}{4}\right) \\
y & =2 x-\frac{\pi}{2}+1
\end{aligned}
$$

(b) (i) Area $\triangle E B C=3000$

$$
\begin{aligned}
\therefore 3000 & =\frac{1}{2} E B \times 62 \times \sin 105^{\circ} \\
E B & =\frac{6000}{62 \sin 105^{\circ}} \\
& =100.188 . \text {. } \\
& \doteqdot 100 \mathrm{~m} \quad \text { (nearest mature) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
C E^{2} & =E B^{2}+B C^{2}-2 \cdot E B \cdot B C \cdot \cos 105^{\circ} \\
& =17097.028 \ldots
\end{aligned}
$$

$\therefore C E=131 \mathrm{~m}$ (rarest metre)

Question 4 (cont.)
(b)

$$
\begin{aligned}
\int_{1}^{3} \log _{e} x d x & \doteq \frac{3-1}{6}\left[\log _{e} 1+4 \log _{e} 2+\log _{e} 3\right] \\
& \doteq \frac{1}{3}\left(0+4 \log _{e} 2+\log _{e} 3\right) \\
& \doteqdot 1.29 \quad(2 \text { decimal places })
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{6}\left(2 x-\left(x^{2}-4 x\right)\right) d x \\
& =\int_{0}^{6}\left(6 x-x^{2}\right) d x \\
& =\left[3 x^{2}-\frac{x^{3}}{3}\right]_{0}^{6} \\
& =108-\frac{216}{3} \\
& =36 \mathrm{u}^{2}
\end{aligned}
$$

Question 5
(a) $\quad \angle A C B=69^{\circ}$

Using Sine Rule (in $\triangle A B C$)

$$
\begin{aligned}
\frac{B C}{\sin 38^{\circ}} & =\frac{50}{\sin 69^{\circ}} \\
B C & =\frac{50 \sin 38^{\circ}}{\sin 69^{\circ}} \\
& =32.973 \ldots \\
\therefore \omega & =B C \sin 73^{\circ} \\
& =31.532 \ldots \\
& =32 \mathrm{~m} \text { (nearest metre) }
\end{aligned}
$$

$$
\begin{aligned}
y & =3 x^{4}-4 x^{3}-12 x^{2}+10 \\
y^{\prime} & =12 x^{3}-12 x^{2}-24 x \\
& =12 x\left(x^{2}-x-2\right) \\
& =12 x(x-2)(x+1) \\
y^{\prime \prime} & =36 x^{2}-24 x-24 \\
& =12\left(3 x^{2}-2 x-2\right)
\end{aligned}
$$

(i) Stationary Points at $x=0, x=-1, x=2$

x	-1	0	2
$y^{\prime \prime}$	36	-24	
conc.		\frown	

$$
\begin{aligned}
& \therefore \quad \min \text { at }(-1,5) \\
& \max \text { at }(0,10) \\
& \min \text { at }(2,-22)
\end{aligned}
$$

(ii) $y^{\prime \prime}=0$ when $3 x^{2}-2 x-2=0$

$$
\begin{aligned}
x & =\frac{2 \pm \sqrt{4--24}}{6} \\
& =\frac{2 \pm 2 \sqrt{7}}{6} \\
& =\frac{1 \pm \sqrt{7}}{3} \text { as required. }
\end{aligned}
$$

Now $x=\frac{1-\sqrt{7}}{3}$

$$
x=\frac{1+\sqrt{7}}{3}
$$

$$
\doteqdot-0.82
$$

$$
\doteqdot 1.22
$$

We can use the table above to cu-firn that there is a change of sign of $y^{\prime \prime}$ thrash these two points.
Hence than are points of inllexi.a

Question 5 (cont.)
(b)
(iii)

Question 6
(a)

$$
\begin{aligned}
2 x^{2}-5 x & +1=0 \\
\alpha+\beta & =-\frac{5}{2} \\
& =\frac{5}{2} \\
\alpha \beta & =\frac{1}{2} \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\left(\frac{5}{2}\right)^{2}-2\left(\frac{1}{2}\right) \\
& =\frac{25}{4}-1 \\
& =\frac{21}{4}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
v & =1-2 \sin t \\
0 & =1-2 \sin t \\
\frac{1}{2} & =\sin t \\
\therefore \quad t & =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

(ii)

(iii)

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
& =-2 \cos t
\end{aligned}
$$

At $t_{1}=\frac{\pi}{6}, \quad a=-2 \cos \frac{\pi}{6}$

$$
=-\sqrt{3} \mathrm{~ms}^{-2}
$$

$$
\begin{aligned}
t_{2}=\frac{5 \pi}{6} \quad a & =-2 \cos \frac{5 \pi}{6} \\
& =\sqrt{3} \mathrm{~ms}^{-2}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
x & =\int v d t \\
& =t+2 \cos t+c \\
t & =0, x=0 \\
0 & =0+2+c \\
\therefore c & =-2
\end{aligned}
$$

So $x=t+2 \cos t-2$
(v)

$$
\begin{aligned}
t=\frac{\pi}{6}, x & =\frac{\pi}{6}+\sqrt{3}-2 \\
t=\frac{5 \pi}{6}, x & =\frac{5 \pi}{6}-\sqrt{3}-2 \\
\text { So distance } & =\left|\left(\frac{5 \pi}{6}-\sqrt{3}-2\right)-\left(\frac{\pi}{6}+\sqrt{3}-2\right)\right| \\
& =\left|\frac{2 \pi}{3}-2 \sqrt{3}\right| \\
& =2\left(\sqrt{3}-\frac{\pi}{3}\right) \mathrm{m}
\end{aligned}
$$

Question 7
(a) a, b, c are in $G P \therefore \frac{b}{a}=\frac{c}{b}$

Takly logs of b.th sides

$$
\begin{aligned}
\ln \frac{b}{a} & =\ln \frac{c}{b} \\
\ln b-\ln a & =\ln c-\ln b
\end{aligned}
$$

which is the condation for on AP
\therefore In $a, \ln b, \ln c$ are in AP and form an arithmetic seqwence.
(b)
(i)

$$
\begin{aligned}
x^{2}-10 x-16 y-7 & =0 \\
x^{2}-10 x & =16 y+7 \\
x^{2}-10 x+25 & =16 y+32 \\
(x-5)^{2} & =16(y+2)
\end{aligned}
$$

\therefore Vertex is $(5,-2)$
(ii) Focal hargh is 4 unts
(iii) Eqho of direchix is $\quad y=-6$
(C)

$$
\begin{align*}
S_{8}=88 \quad \therefore \quad \frac{8}{2}(2 a+7 d) & =88 \\
2 a+7 d & =22 \tag{1}\\
S_{18}=558 \quad \therefore \quad \frac{18}{2}(2 a+17 d) & =558 \\
2 a+17 d & =62 \tag{2}
\end{align*}
$$

Now (2) -(1) $10 d=40$

$$
d=4
$$

sub. $d=4$ into (1)

$$
\begin{aligned}
2 a+28 & =22 \\
a & =-3
\end{aligned}
$$

(d)

$$
\triangle A D G \equiv \triangle A S E
$$

$$
\angle A B E=\angle A D G=\alpha
$$

(matching augles of congrvent triangles
$\angle H A D=90^{\circ}$ (angle of a square)

$$
\begin{aligned}
\angle A H J= & 90^{\circ}+\alpha \text { (esterior angle of } \triangle A H D \text {) } \\
\angle H J B+\alpha & =\angle A H J \text { (esterior angle of } \triangle H J B \text {) } \\
& =90^{\circ}+\alpha
\end{aligned}
$$

$$
\therefore \angle H J B=90^{\circ}
$$

Hece $E B \perp D G$
Question 8
(a) $1+\cot ^{2} \frac{\pi}{3}=\sec ^{2} \frac{\pi}{6}$

$$
\begin{aligned}
\text { LHS } & =1+\frac{1}{\tan ^{2} \frac{\pi}{3}} \\
& =1+\frac{1}{\left(\frac{\sqrt{3}}{1}\right)^{2}} \\
& =\frac{4}{3}
\end{aligned}
$$

RHS $=\frac{1}{\cos ^{2} \frac{\pi}{6}}$

$$
=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}
$$

$$
=\frac{4}{3}
$$

$=L H S$

Question γ
(cont.)
(b) (i)

$$
\begin{aligned}
y & =(1-x) e^{x} \\
y^{\prime} & =-e^{x}+(1-x) e^{x} \\
& =-x e^{x} \\
y^{\prime \prime} & =-e^{x}+-x e^{x} \\
& =-e^{x}-x e^{x} \quad \text { as required }
\end{aligned}
$$

(ii) Point of inflexion when

$$
\left. \right\rvert\,-1
$$

\therefore Coordinates re $\left(-1, \frac{2}{e}\right)$
(iii) $\quad 0<c<1$
(c)
(i) In $\triangle^{\prime} S D E C$ and $B E F$

$$
\angle D C E=\angle B F E
$$

(alternate angles, $A B \| D C$)

$$
\angle \quad=\angle
$$

(vertically opposite)
$\therefore \triangle D E C \| \triangle B E F$ (AAA.)

(ii)

$$
\text { In } \quad \triangle F B C \quad \frac{F B}{1}=\tan 30^{\circ}
$$

(iii) Area $\triangle D E C$: Area $\triangle B E F$

$$
1^{2} \quad: \quad\left(\frac{1}{\sqrt{3}}\right)^{2}
$$

(ratio of matching sides square)

$$
1: \frac{1}{3}
$$

$$
3: 1
$$

Question 9
(a)

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(e^{x}+e^{-x}\right)^{2} d x \\
& =\pi \int_{0}^{1}\left(e^{2 x}+2+e^{-2 x}\right) d x \\
& =\pi\left[\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{2 x}\right]_{0}^{1} \\
& =\pi\left[\left(\frac{1}{2} e^{2}+2-\frac{1}{2} e^{-2}\right)-\left(\frac{1}{2}-0-\frac{1}{2}\right)\right]_{V} \\
& =\frac{\pi}{2}\left(e^{2}+4-e^{-2}\right) \quad \text { cubic units }
\end{aligned}
$$

(b)
(i) 6% pa $=0.5 \%$ per month.

$$
\begin{aligned}
A & =P(1+r)^{n} \\
& =500000(1+0.005)^{24} \\
& =563579.888 \\
& =\$ 563579 \quad \text { (nearest dollar) }
\end{aligned}
$$

Question 9 (cont.)
(b) (ii) 9% p.a. $=0.75 \%$ per mouth

$$
\begin{aligned}
A_{n} & =P(1+r)^{n}-M\left(1+(1+r)+(1+r)^{2}+\ldots+(1+r)^{n-1}\right) \\
& =P(1+r)^{n}-M\left(\frac{(1+r)^{n}-1}{r}\right)
\end{aligned}
$$

So $500000=563580(1.0075)^{96}-M\left(\frac{1.0075^{96}-1}{0.0075}\right)$

$$
\begin{aligned}
\therefore M & =\frac{\left(563580(1.0075)^{96}-500000\right)(0.0075)}{1.0075^{96}-1} \\
& =4681.4599 \cdots \\
& =\$ 4681
\end{aligned}
$$

(iii) (α) 12% p.a. $=1 \%$ permoth

$$
\begin{array}{rl}
0=500000(1.01)^{n}-6500\left(\frac{1.01^{n}-1}{0.01}\right) \\
5000(1.01)^{n} & =6500(1.01)^{n}-6500 \\
(1.01)^{n} & =\frac{6500}{1500} \\
& =\frac{13}{3} \\
\therefore \quad \log _{e}(13 / 3) \\
\log _{e} 1.01 & 147.3656 \ldots
\end{array}
$$

$\therefore 148$ repaynits are regined
(b)

$$
\begin{align*}
A_{148} & =500000(1.01)^{148}-6500\left(\frac{1.01^{148}-1}{0.01}\right) \\
& =-4115.706 \cdots
\end{align*}
$$

So they shold be Nef-and $\$ 4116$ (appn..)

Question 10

$$
\begin{aligned}
\log _{9} 49-\log _{3} 7 & =\frac{\log _{3} 49}{\log _{3} 9}-\log _{3} 7 \\
& =\frac{2 \log _{3} 7}{2 \log _{3} 3}-\log _{3} 7 \\
& =\log _{3} 7-\log _{3} 7 \\
& =0
\end{aligned}
$$

(a)

$$
\begin{aligned}
M & =M_{0} e^{-k t} \\
\frac{d M}{d t} & =-k H_{0} e^{-k t} \\
& =-k M
\end{aligned}
$$

(ii)

$$
\begin{aligned}
M & =\frac{M_{0}}{2}, t=1590 \\
\frac{M_{0}}{2} & =M_{0} e^{-k(1590)} \\
\frac{1}{2} & =e^{-k(1590)} \\
-1590 k & =\ln \left(\frac{1}{2}\right) \\
& =-\ln 2
\end{aligned}
$$

$$
k=\frac{\ln 2}{1590}
$$

Question 10 (cont.)
(b) (iii)

$$
\begin{aligned}
M & =\frac{3}{10} M_{0} \\
\therefore \frac{3}{10} & =e^{-k t} \\
\ln \left(\frac{3}{10}\right) & =-k t \\
t & =\frac{\ln \left(\frac{3}{10}\right)}{-k} \\
& =\frac{\ln \left(\frac{10}{3}\right)}{\frac{\ln 2}{1590}} \\
& =2761.775 \ldots \text { years }
\end{aligned}
$$

$\therefore 1 t$ will take 2762 years
(c) ${ }_{\text {(i) }} V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$

Now $r^{2}=3^{2}-(h-3)^{2}$

$$
=6 h-h^{2}
$$

$$
\therefore V=\frac{1}{3} \pi\left(6 h-h^{2}\right) h
$$

$=\frac{1}{3} \pi\left(6 h^{2}-h^{3}\right)$ as required.
(ii)

$$
\begin{aligned}
\frac{d V}{d h} & =\frac{1}{3} \pi\left(12 h-3 h^{2}\right) \\
& =\frac{1}{3} h(12-3 h)
\end{aligned}
$$

For $\frac{d V}{d h}=0, h=4 \quad$ (ignore $h=0$)

