2009 Trial Examination

FORM VI MATHEMATICS 2 UNIT

Tuesday 11th August 2009

General Instructions

- Reading time - 5 minutes
- Writing time - 3 Hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks - 120
- All ten questions may be attempted.
- All ten questions are of equal value.

Collection

- Write your candidate number clearly on each booklet.
- Hand in the ten questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper insisde your answer booklet for Question 1.

6F: SJE	6G: FMW	6H: BDD
6Q: JMR	6R: LYL	$6 \mathrm{~S}:$ RCF

Checklist

- SGS booklets - 10 per boy

Examiner

- Candidature - 101 boys

QUESTION ONE (12 marks) Use a separate writing booklet.
(a) Solve $2^{x}=\frac{1}{16}$.
(b) Factorise $x^{3}+27$.
(c) Simplify $\frac{x}{2}-\frac{x-1}{3}$.
(d) Find a primitive for \sqrt{x}.
(e) Evaluate $\sum_{k=1}^{3} k^{2}$.
(f) Solve $\sin \alpha=-\frac{1}{2}$, for $0 \leq \alpha \leq 2 \pi$.
(g) Solve $|x-2|<5$.
(h) Given $\frac{2}{\sqrt{5}+2}=p \sqrt{5}-q$, find p and q.

QUESTION TWO (12 marks) Use a separate writing booklet.
(a) Consider the series $32+36+40+\cdots+92$.
(i) Show that the series is arithmetic.
(ii) How many terms are there in the series?
(iii) Find the sum of the series.
(b) Gillian deposits $\$ 12000$ in a fixed term investment account earning 6% p.a. compounded monthly. Calculate the value of her investment after five years. Give your answer correct to the nearest cent.
(c)

The triangle above has vertices $A(0,4), B(3,0)$ and $C(-2,0) . A O$ and $C D$ are the altitudes drawn from vertices A and C respectively.
(i) Find the gradient of the side $A B$.
(ii) Show that the side $A B$ has equation $4 x+3 y-12=0$.
(iii) Calculate the perpendicular distance from the point $C(-2,0)$ to the side $A B$.
(iv) Find the equation of the altitude $C D$.
(v) Hence find the coordinates of the point H, the point of intersection of the altitudes
$A O$ and $C D$.

QUESTION THREE (12 marks) Use a separate writing booklet.
(a)

The diagram shows a sector of a circle. The arc $A B$ is 16 cm , the radius is $r \mathrm{~cm}$ and $\angle A O B=0.8$ radians.
(i) Find the value of r.
(ii) Calculate the area of the sector.
(b)

The diagram above shows $\triangle A B C$ where $A B=4.5 \mathrm{~cm}, A C=8.2 \mathrm{~cm}$ and $\angle C A B=118^{\circ}$.
(i) Find the length of side $B C$, correct to the nearest millimetre.
(ii) Calculate the area of $\triangle A B C$ in cm^{2}, correct to one decimal place.
(c) Differentiate the following functions:
(i) $y=\frac{1}{x}$
(ii) $y=\tan 2 x$
(iii) $y=x e^{x}$
(iv) $y=\frac{\log _{e} x}{x}$
(a) Simplify $2 \log _{3} 6-\log _{3} 4$.
(b) Find:
(i) $\int_{0}^{\ln 3} e^{x} d x$
(ii) $\int_{0}^{1} \frac{x}{x^{2}+1} d x$
(c) Find the equation of the tangent to the curve $y=\cos (\pi-x)$ at the point where $x=\frac{\pi}{3}$.
(d) Consider the parabola $x^{2}-2 x+4 y+9=0$.
(i) Express the equation in the form $(x-h)^{2}=-4 a(y-k)$.
(ii) Find the coordinates of the focus.
(iii) Write down the equation of the directrix.

QUESTION FIVE (12 marks) Use a separate writing booklet.
(a)

The diagram above shows the curves $y=\sin 2 x$ and $y=\sin x$ for $0 \leq x \leq \pi$, intersecting at $x=0, x=\frac{\pi}{3}$ and $x=\pi$. Find the exact area of the shaded region bounded by the two curves.
(b)

In the diagram above, $\angle B C A=\angle B A H=\alpha, A B=6$ and $B H=4$.
(i) Show that $\triangle A B C \| \triangle H B A$.
(ii) Hence, or otherwise, find the length $H C$.
(c) Consider the quadratic equation $x^{2}-2 k x+(8 k-15)=0$.
(i) Find the discriminant and write it in simplest form.
(ii) For what values of k does the equation have real roots?
(iii) If three times the sum of the roots is equal to twice the product of the roots, find the value of k.

QUESTION SIX (12 marks) Use a separate writing booklet.
(a) Consider the function $h(x)=\sqrt{x^{2}-1}$.
(i) Show that $h(x)$ is an even function.
(ii) Find the domain of $h(x)$.
(b) Consider the function $y=(x+1)^{3}(x-3)$.
(i) Use the product rule to show that $\frac{d y}{d x}=4(x+1)^{2}(x-2)$.
(ii) Find the coordinates of the stationary points and determine their nature.
(iii) The curve has a point of inflexion where the tangent is not horizontal. Find the coordinates of this point.
(iv) Sketch the curve $y=(x+1)^{3}(x-3)$, showing all the important features.

QUESTION SEVEN (12 marks) Use a separate writing booklet.
(a) The population P of mosquitoes in a laundry is growing exponentially according to the equation $P=50 e^{k t}$, where t is the time in days after the insects are first counted. After four days the population has doubled.
(i) Find the exact value of the constant k.
(ii) How many mosquitoes will there be after 10 days?
(iii) At what rate is the population increasing after 10 days?
(b) (i) Copy and complete the table correct to four decimal places where necessary for the function $y=\log _{e}(x+1)$.

x	0	0.5	1	1.5	2
y					

(ii) Use Simpson's rule with 5 function values to find an approximation to $\int_{0}^{2} \log _{e}(x+1) d x$. Write your answer correct to three decimal places.
(iii) Show that $\frac{d}{d x}\left((x+1) \log _{e}(x+1)-x\right)=\log _{e}(x+1)$.
(iv) Hence find the exact value of $\int_{0}^{2} \log _{e}(x+1) d x$, and determine whether or not your approximation in part (ii) is accurate to three decimal places.

QUESTION EIGHT (12 marks) Use a separate writing booklet.
(a) A swimming pool is being emptied. The volume of water L litres in the pool after t minutes is given by the equation

$$
L=1000(20-t)^{3} .
$$

(i) Find the rate at which the pool is emptying after 10 minutes.
(ii) When is the pool emptying at a maximum rate?
(b) (i) Expand $(\sqrt{3} u-1)(u-\sqrt{3})$.
(ii) Hence solve $\sqrt{3} \tan ^{2} \theta-4 \tan \theta+\sqrt{3}=0$, for $0 \leq \theta \leq 2 \pi$.
(c) A particle moves in a straight line so that after t seconds $(t \geq 0)$ its velocity v is given by $v=\left(\frac{2}{1+t}-t\right) \mathrm{m} / \mathrm{s}$. The displacement of the particle from the origin is given by x metres.
(i) Find the acceleration of the particle when $t=0$.
(ii) If the particle is initially at the origin, find the displacement as a function of t.
(iii) When is the particle stationary?
(iv) How far does the particle travel in the first 2 seconds? Give your answer correct to three significant figures.

QUESTION NINE (12 marks) Use a separate writing booklet.
(a)

The diagram above shows the function $y=g(x)$ with domain $0 \leq x \leq 3$. The arc is a semi-circle. Find $\int_{0}^{3} g(x) d x$.

QUESTION NINE (Continued)

(b)

The diagram above shows the curve $y=\frac{1}{x+2}$ for $x>-2$.
(i) Show that $x^{2}=\frac{1}{y^{2}}-\frac{4}{y}+4$.
(ii) Calculate the exact volume of the solid of revolution formed when the shaded region bounded by the y-axis, the line $y=2$ and the curve is rotated about the y-axis.
(c)

The diagram above shows the graph of the gradient function $y=f^{\prime}(x)$ of the function $y=f(x)$.
(i) For which values of x is the curve $y=f(x)$ increasing?
(ii) For which values of x is the curve $y=f(x)$ concave up?
(iii) Given $f(0)=f(2)=f(4)=0$, sketch the curve $y=f(x)$ for $0 \leq x \leq 4$.

QUESTION TEN (12 marks) Use a separate writing booklet.
(a) Katherine borrows $\$ 200000$ from the bank. The loan plus the interest is to be repaid in equal monthly instalments of $\$ M$ over 25 years. Reducible interest is charged at 6% p.a. and is calculated monthly. Let A_{n} be the amount owing after n months.
(i) Write down expressions for A_{1} and A_{2}, and show that the amount owing after 3 months is given by $A_{3}=200000(1 \cdot 005)^{3}-M\left(1+1.005+1 \cdot 005^{2}\right)$.
(ii) Hence write an expression for A_{n}.
(iii) Calculate the monthly instalment $\$ M$ correct to the nearest cent.
(b)

A right circular cone of radius r and height h has a total surface area S and volume V. Note that $S=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}$ and $V=\frac{1}{3} \pi r^{2} h$.
(i) Show that $9 V^{2}=r^{2}\left(S^{2}-2 \pi r^{2} S\right)$.
(ii) For a fixed surface area S, find $\frac{d}{d r}\left(9 V^{2}\right)$.
(iii) Hence find the semi-vertical angle θ that gives the maximum volume of the cone for a fixed surface area S. Write your answer correct to the nearest minute.

END OF EXAMINATION

SGS Trial 2009 Form VI Mathematics 2 Unit Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$

QVESTROM 1
(a)

$$
\begin{aligned}
2^{x} & =\frac{1}{16} \\
x & =-4^{16}
\end{aligned}
$$

(b) $x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)$
(c)

$$
\begin{aligned}
\frac{x}{2}-\left(\frac{x-1)}{3}\right. & =\frac{3 x-2(x-1)}{6} \\
& =\frac{3 x-2 x+2}{6} \\
& =\frac{x+2}{6}
\end{aligned}
$$

d)

$$
f(x)=x^{1 / 2}
$$

$$
\begin{aligned}
& f(x)=x^{2} \\
& F(x)=\frac{2}{3} x^{3 / 2}+c
\end{aligned}
$$

$\begin{aligned} \text { (e) } \sum_{k=1}^{3} k^{2} & = \\ \text { (f) } \sin \alpha & =-\frac{1}{2}\end{aligned}$

$$
\begin{aligned}
& \alpha=\pi+\frac{\pi}{6} \text { or } \alpha=2 \pi-\frac{\pi}{6} \\
& \alpha=\frac{7 \pi}{6} \text { or } \alpha=\frac{11 \pi}{6}
\end{aligned}
$$

(g) $|x-2|<5$

$$
\begin{array}{rlrlrl}
x-2 & <5 & \text { or } & x-2 & >-5 \\
x & <7 & \text { or } & & x & >-3
\end{array}
$$

$\begin{aligned} & f(x)=x^{1 / 2} \\ & F(x)=\frac{2}{3} x^{3 / 2}+c \\ & 3 \\ & \sum_{k=1}^{3} k^{2}=1^{2}+2^{2}+3^{2} \\ &=14\end{aligned}$

(h)

$$
\begin{aligned}
& \frac{2}{\sqrt{5}+2}=p \sqrt{5}-q \\
& \frac{2}{\sqrt{5}+2} \times \frac{\sqrt{5}-2}{\sqrt{5}-2}=p \sqrt{5}-q
\end{aligned}
$$

$$
\frac{2 \sqrt{5}-4 \sqrt{5-4}}{5-4 \sqrt{5}-q}
$$

$$
2 \sqrt{5}-4=p \sqrt{5}-q
$$

Hence $p=2$ and $q=4$

Qvestion 2
(a) $32+36+40+\cdots+92$.
(i) $36-32=40-36=4$
$\therefore a n$ AP.
$(a=32$ and $d=4)$
(ii)

$$
\begin{aligned}
a+(n-1) d & =92 \\
32+(n-1) 4 & =92 \\
4 n+28 & =92 \\
4 n & =64 . \\
n & =16
\end{aligned}
$$

There are 16 terms.
(iir)

$$
\begin{aligned}
& \delta_{n}=\frac{n}{2}(a+e) \\
& \delta_{16}=8(32+92) \\
& S_{16}=992
\end{aligned}
$$

(b)

$$
\begin{aligned}
R & =1.005 \\
P & =12000 \\
n & =60 \\
A & =P R^{n} \\
& =12000(1.005)^{60} \\
& =816,186.20 .
\end{aligned}
$$

(e) $A(0,4), B(3,0)$
(i) grodent $A B=\frac{-4}{3} V$
(ii) $(0,4), \quad m=-\frac{4}{3}$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}^{3}\right) \\
y-4=-\frac{4}{3}(x-0) \\
3 y-12=4 x \\
4 x+3 y-12=0 \\
\text { (as required). }
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& e(-2,0) \\
& d=\frac{|-8+0-12|}{\sqrt{16+9}} \\
& d=\frac{20}{5} \\
& d=4 \text { units. }
\end{aligned}
$$

(iv) grodert $c \Delta=\frac{3}{4} r c(-2,0)$

$$
\begin{gathered}
y-y_{0}=m\left(x-x_{1}\right) \\
y=\frac{3}{4}(x+2) \\
4 y=3 x+6 \\
3 x-4 y+6=0
\end{gathered}
$$

(v) puet $x=0$.

$$
\begin{aligned}
3 x-4 y+6 & =0 \\
-4 y+6 & =0 \\
4 y & =6 \\
y & =\frac{3}{2}
\end{aligned}
$$

$A\left(0, \frac{3}{2}\right)$

QVESTION 3
(a) (i)

$$
\begin{aligned}
1 & =r \theta \\
16 & =0.8 \times r \\
r & =20 \mathrm{~cm} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 400 \times 0.8 \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& \overline{B C}^{2}=8.2^{2}+4.5^{2}-2 \times 8.2 \times 4.5 \cos 2118 \\
& B C \doteqdot 11.1 \mathrm{~cm}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} a b \sin c \\
& =\frac{1}{2} \times 8.2 \times 4.5 \sin 118^{\circ} \\
& \doteqdot 16.3 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
& y=x^{-1} \\
& \frac{d y}{d x}=-\frac{1}{x^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=\tan 2 x \\
& \frac{d y}{d x}=2 \sec ^{2} 2 x
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =x e^{x} \\
\frac{d y}{d x} & =e^{x}+x e^{x} \\
& =e^{x}(1+x)
\end{aligned}
$$

(iv)

$$
\begin{aligned}
y & =\frac{-\ln x}{x} \\
\frac{d y}{d x} & =\frac{x \times 1 / x-\ln x \times 1}{x^{2}}
\end{aligned}
$$

$$
\text { (a) } \begin{aligned}
& \text { QVESTION } 4 \\
& 2 \log _{3} 6-\log _{3} 4 \\
& = \\
& =\log _{3} 36-\log _{3} 4 \\
& = \\
& =2
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
\int_{0}^{\ln 3} e^{x} d x & =\left[e^{x}\right]_{0}^{\ln 3} \\
& =e^{\ln 3}-e^{0} \\
& =3-1 \\
& =22
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}+1} d x & =\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]^{\prime} \\
& \left.=\frac{1}{2}\{\ln 2-\ln 1]^{\prime}\right\} \\
& =\frac{1}{2} \ln 2 \\
& =\ln \sqrt{2} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y=\cos (\pi-x) \\
& \left(\frac{\pi}{3},-\frac{1}{2}\right) \sqrt{d} \\
& \frac{d y}{d x}=\sin (\pi-x)
\end{aligned}
$$

at $x=\frac{\pi}{3}$, gradeat $=\sin \frac{2 \pi}{3}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+\frac{1}{2}=\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 y+1=\sqrt{3} x-\frac{\sqrt{3}}{3} \pi \\
& \sqrt{3} x-2 y-1-\frac{\sqrt{3}}{3} \pi=0
\end{aligned}
$$

(d)

$$
x^{2}-2 x+4 y+9=0
$$

(i)

$$
\begin{aligned}
(x-1)^{2}-1 & +4 y+9=0 \\
(x-1)^{2} & =-4 y-8 \\
(x-1)^{2} & =-4(y+2)
\end{aligned}
$$

vartex $(1,-2), a=1$.
(ii)

focus $(1,-3)$
(iii) $y=-1$.

QVESTION 5
(a)

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{3}} \sin x-\sin 2 x d x \\
& =\left[-\cos x+\frac{1}{2} \cos 2 x\right]_{\frac{\pi}{3}}^{\pi} \\
& =\left(1+\frac{1}{2}\right)-\left(-\frac{1}{2}+\frac{1}{2} x-\frac{1}{2}\right) \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}
\end{aligned}
$$

$$
A=2^{1 / 4} \text { sq. units. }
$$

(b)

(i)

$$
\begin{aligned}
& \text { (i) } \quad \angle A C B=\angle H A B=\alpha \quad \text { (given) } \\
& \angle A B C=\angle H B A \quad(\text { common }) \\
& \therefore \quad \triangle A B C \| \triangle H B A \quad(A . A)
\end{aligned}
$$

(ii)

$$
\frac{B C}{6}=\frac{6}{4} \text { (matehing sicles) } \text { in the taveratio.) }
$$

$$
\begin{aligned}
B C & =\frac{36}{4} \\
B C & =9 \\
H C & =B C-4 \\
& =9-4 \\
H C & =5 \text { units }
\end{aligned}
$$

(c)
(i)

$$
\begin{aligned}
& x^{2}-2 k x+(8 k-15)=0 \\
& \Delta=b^{2}-4 a c \\
& \Delta=4 k^{2}-4(8 k-15) \\
& \Delta=4 k^{2}-32 k+60
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\alpha+\beta & =-\frac{b}{a} \\
& =2 k \\
\alpha \beta & =\frac{c}{a} 8 K-15 \\
& =2(8 k-15) \\
6 K & =216 K-30 \\
6 k & =1 \\
-10 k & =-30 \\
k & =3
\end{aligned}
$$

QUESTION 6
(a)
(i)

$$
\begin{aligned}
h(x) & =\sqrt{x^{2}-1} \\
h(-x) & =\sqrt{(-x)^{2}-1} \\
& =\sqrt{x^{2}-1} \\
& =h(x)
\end{aligned}
$$

$\therefore h(x)$ is even.
(ii).

$$
\begin{gathered}
\text { Domain } \quad x^{2}-1 \geqslant 0 \\
(x-1)(x+1) \geqslant 0 \\
x \leq-1, \quad x \geqslant 1
\end{gathered}
$$

(b) $\quad y=(x+1)^{3}(x-3)$
i)

$$
\begin{aligned}
y^{\prime} & =3(x+1)^{2}(x-3)+(x+1)^{3} \\
& =(x+1)^{2}\{3 x-9+x+1\}^{2} \\
& =(x+1)^{2}(4 x-8) \\
& =4(x+1)^{2}(x-2) \\
& \text { (as required.) }
\end{aligned}
$$

(ii) $4(x+1)^{2}(x-2)=0$

$$
x=-1 \quad \text { or } \quad x=2
$$

stationary points.
$(-1,0)$ and $(2,-27)$ - nature.

x	-2	-1	0	0	2	3
y^{\prime}	-16	0	-8	-8	0	64

$(-1,0)$ is a horizontal pt. of infer:
$(2,-27)$ is a minimum stationery point.
(iii)

$$
\begin{aligned}
& \text { (iii) } y^{\prime \prime}=8(x+1)(x-2)+4(x+1)^{2} \\
&=4(x+1)\{2(x-2)+(x+1)\} \\
&=4(x+1)(3 x-3) \\
& \\
&{ }^{12}(x+1)(x-1)=0 \\
& x=-1 \quad \text { or } x=1 \\
&(-1,0) \quad(1,-16) \text { is the }
\end{aligned}
$$ other pt. of inflexion.

QUESTION 7
(a) $P=50 e^{k t}$
(i) when $t=4, P=100$.

$$
\begin{aligned}
100 & =50 e^{4 K} \\
2 & =e^{4 K} \\
4 K & =\ln 2 \\
K & =\frac{1}{4} \ln 2
\end{aligned}
$$

(ii) put $t=10$.

$$
\begin{aligned}
& P=50 e^{\frac{t}{4} \ln 2} \\
& P=50 e^{\frac{10}{4} \ln 2} \\
& P=50\left(e^{\ln 2}\right)^{\frac{5}{2}} \\
& P=50 \times 2 \frac{5 / 2}{}=282.8(200 \sqrt{2}) \\
& P=283
\end{aligned}
$$

approximately 283
mosquitoes.
(iii)

$$
\begin{aligned}
& \frac{d P}{d t}=K P \\
&=\frac{1}{4} \ln 2 \times 282.8 \\
& \frac{d P}{d t} \div 49 \text { mosquito } / d a q \\
&(50 \sqrt{2} \ln 2)
\end{aligned}
$$

(b) (i)

x	0	0.5	1	1.5	2
y	0	0.4055	0.6931	0.9163	1.0986

$$
f(x)=\ln (x+1)
$$

i) $\quad h=\frac{1}{2}$.

$$
\begin{aligned}
& \int_{0}^{2} \ln (x+1) d x \doteqdot \\
& \frac{1}{6}\{0+4 \times 0.4055+0.6931\} \\
& +\frac{1}{6}\{0.6931+4 \times 0.9163+1.0986\} \\
& =1.295 \sqrt{(3 \text { dee. ploce })}
\end{aligned}
$$

(iii)

$$
\frac{d}{d x}((x+1) \ln (x+1)-x)
$$

$$
=1 x \ln (x+1)+(x+1) \times \frac{1}{(x+1)}
$$

$$
=\ln (x+1)+1-1
$$

$$
=\ln (x+1) \quad \text { (as required). }
$$

$$
\begin{aligned}
& \text { (iv) } \int_{0}^{2} \ln (x+1) d x=[(x+1) \ln (x+1)-x]_{0}^{2} \\
& =(3 \ln 3-2)-(\ln 1-0) \\
& =3 \ln 3-2 \\
& \vdots 1.296
\end{aligned}
$$

The approximation is not accurate to 3 decimal places.

QVESTION 8
(a) $L=1000(20-t)^{3}$
(i) $\frac{d L}{d t}=-3000(20-t)^{2}$ at $t=10 . \quad \frac{d L}{d t}=-300000$
after 10 mimutes the pool is theing emptied at
$300000 \mathrm{~L} /$ minvte .
 at a maximum rate initially.
(b)

$$
\begin{aligned}
& \text { (i) }(\sqrt{3} \mu-1)(\mu-\sqrt{3}) \\
& =\sqrt{3} \mu^{2}-3 \mu-\mu+\sqrt{3} \\
& =\sqrt{3} \mu^{2}-4 \mu+\sqrt{3}
\end{aligned}
$$

(ii) $\sqrt{3} \tan ^{2} \theta-4 \tan \theta+\sqrt{3}=0$

$$
(\sqrt{3} \tan \theta-1)(\tan \theta-\sqrt{3})=0
$$

$$
\tan \theta=\frac{1}{\sqrt{3}} \text { or } \sqrt{\tan \theta}=\sqrt{3}
$$

$$
\theta=\frac{\pi}{6}, \frac{7 \pi}{6} \text { or } \theta=\frac{\pi}{3}, \frac{4 \pi}{3}
$$

(c)

$$
r=\frac{2}{1+t}-t \mathrm{~m} / \mathrm{s}
$$

(i)

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{-2}{(1+t)^{2}}-1 \\
a & =\frac{-2}{(1+t)^{2}}-1
\end{aligned}
$$

wlen $t=0$.

$$
\begin{aligned}
& a=-2-1 \\
& a=-3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(ii) $\frac{d x}{d t}=\frac{2}{1+t}-t$

$$
x=2 \ln (1+t)-\frac{t^{2}}{2}+c
$$

when $t=0, x=0, \therefore c=0$

$$
x=2 \ln (1+t)-\frac{t^{2}}{2}
$$

(iii) $v=0$.

$$
\begin{aligned}
\frac{2}{1+t}-t & =0 \\
2-t(1+t) & =0 \\
2-t-t^{2} & =0 \\
t^{2}+t-2 & =0 \\
(t-1)(t+2) & =0
\end{aligned}
$$

$$
t=1 \text { or } t=-2 \text { (omit) }
$$

The perticle is stationery at $t=1 \mathrm{~s}$
(iv)

$$
\begin{array}{cccc}
x & 0 & 0.8863 & 0.1972 \\
t & 0 & 1 & 2 \\
x= & 2 \ln (1+t)-\frac{t^{2}}{2}
\end{array}
$$

distence trarelled $=$

$$
\begin{aligned}
& 0.8863+(0.8863-0.1972) \\
& =1.5754 \\
& =1.58 \mathrm{~m}(3 \operatorname{sig}-f g .)
\end{aligned}
$$

QVESTION 9
(a)

$$
\begin{aligned}
\int_{0}^{3} g(x) d x & =\frac{1}{2} b h-\frac{1}{2} \pi r^{2} \\
& =\frac{1}{2}-\frac{1}{2} \pi \\
& =\frac{1}{2}(1-\pi)
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
y & =\frac{1}{x+2} \\
x+2 & =\frac{1}{y} \\
x & =\frac{1}{y}-2 \\
x^{2} & =\frac{1}{y^{2}}-\frac{4}{y}+4
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& V= \pi \int_{\frac{1}{2}}^{2} \frac{1}{y^{2}}-\frac{4}{y}+4 d y \\
&= \pi\left[-\frac{1}{y}-4 \ln y+4 y\right]_{-\frac{1}{2}}^{2} \\
&=\left\{\left(-\frac{1}{2}-4 \ln 2+8\right)\right. \\
&=\pi\left\{-\frac{1}{2}-4 \ln 2+8+2-4 \ln 2-2\right\} \\
&= \pi\left(7 \ln \frac{1}{2}+2\right) \\
&= \frac{\pi}{2}(15-16 \ln 2) \text { cubic vnits }
\end{aligned}
$$

(c)
(i) $1<x<3$
(ii)

$$
x<2
$$

(iii)

QUESTION 10
(a)

$$
R=1.005
$$

(i) $A_{1}=200000(1.005)-m /$

$$
A_{2}=(200.000(1.005)-m) 1.005-m
$$

$$
A_{2}=200000(1.005)^{2}-M(1.005) \leq M
$$

$$
\left.\begin{array}{rl}
A_{3}= & A_{2} \times 1.005-m \\
= & 200000(1.005)^{3}-m(1.005)^{2}-m(1.005) \\
& -m \\
=200000(1.005)^{3}-m\left\{1+(1.005)+(1.005)^{2}\right\}
\end{array}\right\} \begin{aligned}
& \text { (iii) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{n}= & \left.200000(1.005)^{n}-m\left\{\begin{array}{l}
1+(1.005) \\
\\
\end{array}+(1-005)^{2}+\cdots+1.005\right)^{n-1}\right\}
\end{aligned}
$$

$V \sin g \quad S_{n}=\frac{\left(r^{n}-1\right)}{r-1}$,

$$
A_{n}=200000(1.005)^{n-1}-\frac{m\left(1.005^{n}-1\right)}{0.005}
$$

ii) Put $A_{n}=0$. and $n=300$.

$$
\begin{aligned}
& M=\frac{200000(1.005)^{300}(0.005)}{(1.005)^{300}-1} \\
& M=\$ 1288.60 .
\end{aligned}
$$

$(b)(i)$

$$
\text { (b) (i) } \quad \begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h \\
9 V^{2} & =\pi^{2} r^{4} h^{2} \\
\text { now } \quad S & =\pi r^{2}+\pi r\left(r^{2}+h^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
S-\pi r^{2}=\pi r\left(r^{2}+h^{2}\right)^{1 / 2}
$$

square tooth sides.

$$
S^{2}-2 S \pi r^{2}+\pi^{2} r^{4}=\pi^{2} r^{2}\left(r^{2}+h^{2}\right)
$$

$$
S^{2}-2 S \pi r^{2}+\pi^{2} r^{4}=\pi^{2} r^{4}+\pi^{2} r^{2} h^{2}
$$

$$
\begin{aligned}
s^{2}-2 S \pi r^{2} & =\pi^{2} r^{2} h^{2} \\
S^{2}-2 S \pi r^{2} & =\frac{\pi^{2} r^{4} h^{2}}{r^{2}} \\
s^{2}-2 S \pi r^{2} & =\frac{9 r^{2}}{r^{2}} \\
q r^{2} & =r^{2}\left(s^{2}-2 s \pi r^{2}\right)
\end{aligned}
$$

as required.
(ii)

$$
\begin{gathered}
9 r^{2}=r^{2} s^{2}-25 \pi r^{4} \\
\frac{d}{d r}\left(9 r^{2}\right)=2 r s^{2}-85 \pi r^{3}
\end{gathered}
$$

(iii) The maximum value of $9 r^{2}$ will gore the radius required for the maximum value of V.

$$
2 r s^{2}-8 s \pi r^{3}=0
$$

$$
2 r s\left(s-4 \pi r^{2}\right)=0
$$

$$
S=0 \quad \text { or } \quad S=4 \pi r^{2}
$$

(omit)
Now $\quad S=\pi r^{2}+\pi r\left(r^{2}+h^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
4 \pi r^{2} & =\pi r^{2}+\pi r\left(r^{2}+L^{2}\right)^{1 / 2} \\
3 \pi r^{2} & =\pi r\left(r^{2}+h^{2}\right)^{1 / 2} \\
9 \pi^{2} r^{4} & \left.=\pi^{2} r^{2} / r^{2}+L^{2}\right) \\
9 \pi^{2} r^{4} & =\pi^{2} r^{4}+\pi^{2} r^{2} h^{2} \\
9 r^{2} & =r^{2}+h^{2} \\
8 r^{2} & =h^{2} \\
\frac{r^{2}}{h^{2}} & =\frac{1}{8} h \theta \\
\frac{r}{l} & =\frac{1}{2 \sqrt{2}} \frac{h}{r} \\
\tan \theta & =\frac{1}{2 \sqrt{2}} \\
\theta & =19028 .
\end{aligned}
$$

(12)

$$
\frac{d^{2}}{d r^{2}}\left(9 r^{2}\right)=2 s^{2}-24 \pi r^{2} s
$$

$$
\text { (waler } S=4 \pi r^{2} \text {) }
$$

$$
=-64 \pi^{2} r^{2}<0
$$

\therefore a max. exists at $S=4 \pi r^{2}$

