

MATHEMATICS

Monday 6th August 2012

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 80 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

When written in radians, 200° is equal to:
(A) $\pi+20$
(B) $\frac{6 \pi}{5}$
(C) $\frac{9 \pi}{10}$
(D) $\frac{10 \pi}{9}$

QUESTION TWO

At what angle is the line $y=-\sqrt{3} x$ inclined to the positive side of the x-axis?
(A) 30°
(B) 60°
(C) 120°
(D) 150°

QUESTION THREE

Which of the following is the point of intersection of the two lines $3 x-4 y+6=0$ and $x-y-1=0$?
(A) $(0,0)$
(B) $(-2,-3)$
(C) $(10,9)$
(D) $(11,10)$

QUESTION FOUR

Which of the following graphs represents the solution to $|x-2| \leq 4$?
(A)

(B)

(C)

(D)

QUESTION FIVE

The equation of the normal to the curve $y=x^{3}-4 x$ at the point $(1,-3)$ is:
(A) $y=x+4$
(B) $y=x-4$
(C) $y=-x+2$
(D) $y=-x-2$

QUESTION SIX

Suppose that the point $P(a, f(a))$ lies on the curve $y=f(x)$. If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, which of the following statements describes the point P on the graph of $y=f(x)$?
(A) $\quad P$ is a minimum turning point.
(B) $\quad P$ is a maximum turning point.
(C) $\quad P$ is a stationary point of inflexion.
(D) $\quad P$ is a non-stationary point of inflexion.

QUESTION SEVEN

The equation $3 x^{2}+2 x-1=0$ has roots α and β. The value of $2 \alpha+2 \beta$ is:
(A) 10
(B) $-\frac{1}{3}$
(C) $-\frac{2}{3}$
(D) $-\frac{4}{3}$

QUESTION EIGHT

Which of the following statements is true for the geometric sequence $24,12,6, \ldots$?
(A) The fourth term is 0 .
(B) The sum of the first four terms is 44 .
(C) The sum of the series will never exceed 48.
(D) There are infinitely many negative terms.

QUESTION NINE

A parabola has its focus at $(2,-2)$ and the equation of its directrix is $y=2$. Which of the following is the equation of the parabola?
(A) $\quad(x-2)^{2}=8 y$
(B) $(x-2)^{2}=-8 y$
(C) $\quad(x-2)^{2}=8(y+2)$
(D) $(x-2)^{2}=-8(y+2)$

QUESTION TEN

Which of the following graphs could have equation $y=1-2^{x}$?
(A)

(B)

(C)

(D)

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Write $\frac{6}{\sqrt{5}-\sqrt{3}}$ with a rational denominator and simplify.
(b)

The diagram above shows a sector $A O B$ with radius 100 mm and $\angle A O B=\frac{4 \pi}{15}$.
Find the length of arc $A B$ correct to the nearest millimetre.
(c)

The diagram above shows a quadrilateral with vertices $A(0,3), B(1,0), C(-11,-4)$ and $D(-9,0)$.
(i) Show that $A B=\sqrt{10}$ units and $B C=4 \sqrt{10}$ units.
(ii) Show that $A D \| B C$.
(iii) Show that $A B \perp B C$.
(iv) Find $A D$ and hence find the area of the trapezium $A B C D$.
(d)

In the diagram above, $P S=Q R$ and $\angle P S R=\angle Q R S=\beta$.
(i) Prove that $\triangle P R S \equiv \triangle Q S R$.
(ii) Hence prove that $\angle P S Q=\angle Q R P$. Let $\angle P R S=\alpha$.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a)

In the diagram above, $T V=7.5 \mathrm{~m}, U V=9 \mathrm{~m}$ and $\angle V=100^{\circ}$.
(i) Find the length of $T U$ correct to 1 decimal place.
(ii) Find the area of $\triangle T U V$ correct to 1 decimal place.
(b) Differentiate:
(i) $y=\frac{3}{x^{2}}$
(ii) $y=\left(x^{3}-2\right)^{10}$
(iii) $y=\frac{x}{\cos x}$
(c) Evaluate:
(i) $\int_{1}^{e} \frac{6}{x} d x$
(ii) $\int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x$
(d) Solve $\cos x(2 \sin x-1)=0$, for $0 \leq x \leq 2 \pi$.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.
(a) The line ℓ has equation $3 x+4 y-2=0$. The point $(2,-1)$ lies on ℓ. Find the perpendicular distance from the line ℓ to the line with equation $3 x+4 y+5=0$.
(b) For what values of x is the curve $y=2 x^{3}-9 x^{2}+5$ increasing?
(c) A particle is moving along a straight line. Its displacement, x metres, from a fixed point O after t seconds is given by $x=2+2 \sin 2 t$.
(i) What is the particle's initial position?
(ii) Sketch the particle's displacement-time graph for the first 2π seconds of motion.
(iii) Find when and where the particle first comes to rest.
(iv) Find the maximum speed of the particle and write down a time when this maximum speed occurs.
(d)

In the diagram above $A B \| X Y$.
(i) Prove that $\triangle A B C \| \triangle X Y C$.
(ii) Given that $A B=X C=18 \mathrm{~cm}$ and $X Y=8 \mathrm{~cm}$, find $A X$ giving a reason.
(a) (i) Copy and complete the following table for $f(x)=\left(\log _{e} x\right)^{2}$. Write the function values correct to 3 decimal places.

x	1	1.5	2
$f(x)$			

(ii) Use Simpson's rule with three function values to find an approximation of

$$
\int_{1}^{2}\left(\log _{e} x\right)^{2} d x
$$

Give your answer correct to 2 decimal places.
(b) (i) Evaluate $1+2+3+\cdots+300$.
(ii) Find the sum of all integers from 1 to 300 which are not divisible by 3 .
(c) The function $f(x)$ has derivative $f^{\prime}(x)=12 x-k x^{2}$. The curve $y=f(x)$ has a point of inflexion at $(1,-4)$.
(i) Show that $k=6$.
(ii) Find the equation of the curve $y=f(x)$.
(d) Consider the function $y=x \log _{e} x$.
(i) Find $\frac{d y}{d x}$.
(ii) Hence find the minimum value of $x \log _{e} x$ and justify your answer.
(e)

The diagram above shows a particle's acceleration-time graph. Draw a possible sketch of the particle's velocity-time graph, given that initially the particle is stationary.
(a) A certain grasshopper plague is following the law of natural growth. The grasshopper population G satisfies the equation

$$
G=G_{o} e^{k t} .
$$

Time t is measured in months and G_{o} and k are constants.
Initially there were 10000 grasshoppers in the plague and after 8 months there were 40000.
(i) Show that $k=\frac{1}{4} \ln 2$.
(ii) Find the number of grasshoppers in the plague after 2 years.
(iii) After how many whole months would the population exceed 10 million?
(b)

The diagram above shows the region bounded by the curve $y=e^{x}-1$ and the x-axis from $x=-2$ to $x=1$. Find the exact area of the shaded region.
(c) Atticus makes a deposit of $\$ 5000$ at the start of each year into a savings account. He earns monthly compound interest on his savings account at $4 \cdot 8 \%$ per annum.
Let A_{n} be the value of the account at the end of n years.
(i) Show that $A_{1}=\$ 5245 \cdot 35$.
(ii) Show that $A_{2}=\$ 5000\left(1 \cdot 004^{12}+1 \cdot 004^{24}\right)$.
(iii) Show that $A_{n}=\frac{\$ 5000 \times 1 \cdot 004^{12} \times\left(1 \cdot 004^{12 n}-1\right)}{1 \cdot 004^{12}-1}$.
(iv) Find the amount of interest Atticus earns on his savings account over 10 years.

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.
(a) Consider the quadratic equation $2 x^{2}+(m+1) x+(m-1)=0$.
(i) Find the discriminant in terms of m.
(ii) For what values of m will the quadratic have real roots?
(b) The rate at which fuel is being pumped from a full tank is given by

$$
\frac{d F}{d t}=1+\frac{5}{1+3 t} \mathrm{~kL} / \mathrm{min}
$$

where F kilolitres is the amount of fuel pumped out in the first t minutes.
(i) Find the rate at which the fuel is being pumped out after 8 minutes.
(ii) Draw a sketch of $\frac{d F}{d t}$ as a function of time.
(iii) Find the amount of fuel pumped out after 8 minutes, correct to the nearest litre.
(c)

The diagram above shows the region bounded by $y=x$ and $y=x^{3}$ from $x=0$ to $x=1$.
(i) Find the volume generated when the shaded region is rotated about the x-axis.
(ii) Show that $y=x^{2 n-1}$ and $y=x^{2 n+1}$ intersect at the origin and the point $(1,1)$ for $x \geq 0$.
(iii) Suppose that n is a positive integer. Consider the volume V_{n} of the solid generated when the closed region bounded by the curves $y=x^{2 n-1}$ and $y=x^{2 n+1}$ is rotated about the x-axis. Show that

$$
V_{n}=\pi\left(\frac{1}{4 n-1}-\frac{1}{4 n+3}\right)
$$

(iv) Give a geometric description and the dimensions of a single solid with volume

$$
V_{1}+V_{2}+V_{3}+\cdots .
$$

(v) Hence find the sum of the infinite series

$$
\frac{1}{3 \times 7}+\frac{1}{7 \times 11}+\frac{1}{11 \times 15}+\cdots
$$

SGS Trial 2012 Form VI Mathematics Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$

2012
Trial Examination
FORM VI
MATHEMATICS
Monday 6th August 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

Question One

A
B
C

D \bigcirc

Question Two

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six
A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A
B

D \bigcirc

Question Eight

A \bigcirc
B
C
D \bigcirc

Question Nine

A \bigcirc
B
\bigcirc
C

D

Question Ten

ABD \bigcirc

VI Mathematics Trial 2012 - Solutions

SECTION 1 - MULTIPLE CHOICE
(D) $1 . \quad 200^{\circ}=200^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{10 \pi}{9}$
(c)
2.

$$
\begin{aligned}
\tan \alpha & =-\sqrt{3} \\
\alpha & =120^{\circ}
\end{aligned}
$$

(c)
3.

$$
\begin{align*}
3 x-4 y+6 & =0 \\
x-y-1 & =0 \\
y & =x-1 \tag{24}
\end{align*}
$$

ant (2A) info (1):

$$
\begin{aligned}
3 x-4(x-1)+6 & =0 \\
3 x-4 x+4+6 & =0 \\
x & =10 \\
y & =9
\end{aligned}
$$

The point of intervection is $(10,9)$
(B) 4.

$$
\begin{gathered}
|x-2| \leqslant 4 \\
-4 \leqslant x-2 \leqslant 4 \\
-2 \leqslant x \leqslant 6
\end{gathered}
$$

(B) 5 .

$$
\begin{aligned}
& y=x^{3}-4 x \\
& y^{\prime}=3 x^{2}-4
\end{aligned}
$$

At $(1,-3) \quad y^{\prime}=3-4=-1$
Equation of norual : $\quad y+3=1(x-1)$

$$
y=x-4
$$

(B) 6. $\quad f^{\prime}(a)=0$, so P is a stationary porint.
$f^{\prime \prime}(a)<0$, so the curve is concave doun at P.
$\therefore P$ is a matiomm turning point.
(D)

$$
\begin{aligned}
3 x^{2}+2 x-1 & =0 \\
2 \alpha+2 \beta & =2(\alpha+\beta) \\
& =2 x-\frac{2}{3} \\
& =-\frac{4}{3}
\end{aligned}
$$

$$
\text { or } \begin{array}{r}
(3 x-1)(x+1)=0 \\
x=\frac{1}{3} \text { or }-1 \\
2(\alpha+\beta)=2\left(\frac{1}{3}-1\right) \\
= \\
-\frac{4}{3}
\end{array}
$$

(C) 8. GP: $24,12,6, \ldots$

$$
T_{4}=3
$$

$$
\begin{aligned}
a & =24, r=\frac{1}{2} \\
& =\frac{24}{1-\frac{1}{2}} \\
& =48
\end{aligned}
$$

$$
S_{4}=45 \quad S_{\infty}=\frac{24}{1-\frac{1}{2}}
$$

(B)

$$
\begin{aligned}
& (x-h)^{2}=-4 a(y-k) \\
& (x-2)^{2}=-8 y
\end{aligned}
$$

(A) 10 .

$$
y=1-2^{x}
$$

This is the curve $y=2^{x}$ reflected in the x-axis and then shifted up $/$ unit.

Note:

$$
\text { as } x \rightarrow-\infty, 2^{x} \rightarrow 0
$$

$$
1-2^{x} \rightarrow 1
$$

Question 11

$$
\text { (a) } \begin{aligned}
\frac{6}{\sqrt{5}-\sqrt{3}} & =\frac{6}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \\
& =\frac{6(\sqrt{5}+\sqrt{3})}{5-3} \\
& =3(\sqrt{5}+\sqrt{3})
\end{aligned}
$$

(b)

$$
\begin{aligned}
l & =r \theta \\
\text { arc } A B & =100 \mathrm{~mm} \times \frac{4 \pi}{15} \\
& =\frac{80 \pi}{3} \mathrm{~mm} \\
& \doteq 84 \mathrm{~mm}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& A B^{2}=3^{2}+1^{2} \\
& A B^{2}=10 \\
& A B=\sqrt{10} \text { unis } \\
& B C^{2}=(1+11)^{2}+(0+4)^{2} \\
& B C^{2}=160 \\
& B C=\sqrt{160} \\
& B C=4 \sqrt{10} \text { unis }
\end{aligned}
$$

$$
=35 \text { square unit }
$$

(ii)

$$
\begin{aligned}
& m_{A D}=\frac{3-0}{0+9} \\
&=\frac{1}{3} \\
& m_{B C}=\frac{0+4}{1+11} \\
&=\frac{1}{3} \\
& \therefore \quad A D \| B C
\end{aligned}
$$

(i)
(d)

$$
\begin{aligned}
& A D^{2}=9^{2}+3^{2} \\
& A D^{2}=90 \\
& A D=3 \sqrt{10} \text { unit }
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} h(a+b) \\
& =\frac{A B}{2}(A D+B C) \\
& =\frac{\sqrt{10}}{2}(3 \sqrt{10}+4 \sqrt{10}) \\
& =\frac{\sqrt{10}}{2} \times 7 \sqrt{10}
\end{aligned}
$$

(i) In $\triangle S$ PRS and $Q S R$

$$
\left.\begin{array}{c}
P S=Q R \text { (given) } \\
S R \overline{\overline{1}} \text { common } \\
P S R=\angle R R S=\beta \text { (given) }
\end{array}\right\} v_{0}
$$

(ii) Let $P R S=\alpha$.
$\angle Q S R=\alpha$ (matching $<s$ of congruent Δ_{s})

$$
\begin{aligned}
\angle P S Q & =L P S R-\angle Q S R \quad \text { (adj: } \angle S) \\
& =\beta-\alpha \\
& =\angle Q R S-\angle P R S=\angle Q R P
\end{aligned}
$$

Question 12
(a) (i)

$$
\begin{aligned}
& T U^{2}=7.5^{2}+9^{2}-2 \times 7.5 \times \\
& T U=12.7 \mathrm{~m} \quad(1 d p)
\end{aligned}
$$

(cosince)
(no praxity for incorrect rounding)
(ii) Area of $\triangle T U V=\frac{1}{2} \times 7.5 \times 9 \times \sin 100^{\circ}$

$$
=33.2 \mathrm{~m}^{2} \quad(1 d p)
$$

(b)
(i)

$$
\begin{array}{rlrl}
y & =3 x^{-2} & \text { (ii) } y=\left(x^{3}-2\right)^{10} \\
\frac{d y}{d x} & =-6 x^{-3} \\
& =-\frac{6}{x^{3}} & \frac{d y}{d x}=30 x^{2}\left(x^{3}-2\right)^{9}
\end{array}
$$

(iii) $\quad y=\frac{x}{\cos x}$

$$
\frac{d y}{d x}=\frac{\cos x+x \sin x}{\cos ^{2} x} / \text { (mumerator) }
$$

(c) (i)

$$
\begin{aligned}
\int_{1}^{e} \frac{6}{x} d x & =\left[6 \log _{e} x\right]_{1}^{e} \\
& =6 \log _{e} e-6 \log _{e} 1 \\
& =6-0 \\
& =6
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x & =\left[\begin{array}{c}
\frac{1}{2} \tan 2 x \\
\\
\end{array}\right) \quad \frac{1}{2} \tan \frac{\pi}{4}-\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \cos x(2 \sin x-1)=0 \quad, \quad 0 \leqslant x \sqrt{2 \pi} \pi
\end{aligned}
$$

$$
x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6} \text { on } \frac{3 \pi}{2}
$$

Question 13
(a) $(2,-1)$ his on $l: 3 x+4 y-2=0$ Distance from $(2,-1)$ to $3 x+4 y+5=0:$
Distance $=\frac{|3(2)+4(-1)+5|}{\sqrt{9+16}}$

$$
=\frac{|7|}{5}
$$

$$
=\quad 1 \frac{2}{5} \text { unit }
$$

(b)

$$
\begin{aligned}
& y=2 x^{3}-9 x^{2}+5 \\
& y^{\prime}=6 x^{2}-18 x
\end{aligned}
$$

the curve is increasing even

$$
\begin{aligned}
y^{\prime} & >0 \\
6 \times(x-3) & >0
\end{aligned}
$$

$x<0$ OR $x>3$

(c)
(i) $x=2+2 \sin 2 t$
when $t=0, x=2+2 \sin 0$ $x=2 \mathrm{~m}$
ie $2 m$ to the night of 0
(ii)

$$
\text { Period }=\frac{2 \pi}{2}=\pi
$$

1 period

15
(iii) From the graph, $\frac{d x}{d t}=0$ when $t=\frac{\pi}{4} s$ for the font time.
when $t=\frac{\pi}{4}, x=2+2 \sin \frac{\pi}{2}$

$$
x=2+2
$$

$$
x=4 \mathrm{~m}
$$

(or solve

$$
\left.\begin{array}{rl}
2 & v=0 \\
4 \cos 2 t & =0
\end{array}\right)
$$

(iv) $\quad v=4 \cos 2 t$
$\max / \mathrm{v} /=4 \mathrm{~m} / \mathrm{s}$
when $t=0, \frac{\pi}{2}, \pi$, OR \ldots
(one time required)
(d)

(i) $\angle C$ is common
$\angle A B C=\mathrm{XYC}$ (corresp. $\angle s$, $A B / \| x y)$
$\therefore \triangle A B C I I I \triangle X Y C$ (AA)
(ii) $\frac{4 x+18}{18}=\frac{18}{8}$
(matching sides of simitar Δs in the same ratio)

$$
\begin{aligned}
A X+18 & =\frac{9}{4} \times 18 \\
A X & =\frac{81}{2}-18 \\
A X & =22 \frac{1}{2} \mathrm{~cm}
\end{aligned}
$$

Question 14
(a)
(i)

	x	1	1.5
	$f(x)$	0	0.164
$f(x)=\left(\log _{e} x\right)^{2}$			

(ii)

$$
\begin{aligned}
\int_{1}^{2}\left(\log _{e} x\right)^{2} d x & \doteq \frac{2-1}{6}\left(0+4\left(\log _{e} 1.5\right)^{2}+\left(\log _{e} 2\right)^{2}\right) \\
& \doteq 0.19 \quad(2 d p)
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
1+2+3+\ldots+300 & =\frac{300}{2}(1+300) \\
& =45150
\end{aligned}
$$

(ii). Integens dinsible by 3 :

$$
\begin{aligned}
3+6+9+\ldots+300 & =\frac{100}{2}(3+300) \\
& =50 \times 303 \\
& =15150
\end{aligned}
$$

Sum of iutegers not dinisible by $3=45150-15150$

$$
\text { (from } 1 \text { to } 300 \text {) }=30000
$$

(c)
(i) $\quad f^{\prime}(x)=12 x-k x^{2}$ and $f^{\prime \prime}(x)=12-2 k x$ inflestion at $(1,-4)$

$$
\begin{aligned}
f^{\prime \prime}(1) & =0 \\
12-2 k & =0 \\
2 k & =12 \\
k & =6
\end{aligned}
$$

wote: there in a change in concainity at $(1,-4)$.

$$
f^{\prime \prime}(x)=12-12 x \quad \left\lvert\, \begin{array}{c|c|c|c|}
x & 0 & 1 & 2 \\
\hline f^{\prime \prime}(x) & 12 & 0 & -12
\end{array}\right.
$$

Question 14 (continued)
(c)
(ii)

$$
\begin{aligned}
& f^{\prime}(x)=12 x-6 x^{2} \\
& f(x)=6 x^{2}-2 x^{3}+c
\end{aligned}
$$

$(1,-4)$ his on $y=f(x)$, so $f(1)=-4$:

$$
\begin{aligned}
& 6-2+c=-4 \\
& c=-8 \\
& \therefore \quad f(x)=6 x^{2}-2 x^{3}-8
\end{aligned}
$$

(d)
(i)

$$
\begin{aligned}
y & =x \log _{e} x \\
y^{\prime} & =1 \times \log _{e} x+x \times \frac{1}{x} \\
& =\log _{e} x+1
\end{aligned}
$$

(ii)
when $y^{\prime}=0$

$$
\begin{aligned}
\log _{e} x+1 & =0 \\
\log _{e} x & =-1 \\
x & =e^{-1} \\
x & =\frac{1}{e}
\end{aligned}
$$

when $x=\frac{1}{e}, y=\frac{1}{e} \log _{e} \frac{1}{e}$

$$
=-\frac{1}{e}
$$

$$
y^{\prime \prime}=\frac{1}{x}
$$

when

$$
\begin{aligned}
x=\frac{1}{e}, y^{\prime \prime} & =\frac{1}{\frac{1}{e}} \\
& =e \\
& >0
\end{aligned}
$$

so minimum y occurs sven $x=\frac{1}{e}$.
(This in the absounte minimum for the natural domain $x>0$.)
The minimum value of $x \log _{e} x$ is $-\frac{1}{e}$.

Question 14 (continued)

$\frac{d v}{d t}=0$ when $t=0$ and $t=6$. (stationary point)
minimum $\frac{d v}{d t}$ occur when $t=3$. (point of inflesion)
Given $v=0$ arses $t=0$:

Question 15
(a)
(i) $\quad G=G_{0} e^{k t}$
when $t=0, G_{0}=10000$
when $t=8,40000=10000 e^{8 k}$

$$
\begin{aligned}
e^{8 k} & =4 \\
8 k & =\ln 4 \\
k & =\frac{1}{8} \times 2 \ln 2 \\
k & =\frac{1}{4} \ln 2
\end{aligned}
$$

(ii) 2 years $=24$ mouths
when $t=24$,

$$
\begin{aligned}
G & =10000 e^{24 \times \frac{1}{4} \ln 2} \\
& =10000 e^{6 \ln 2} \\
& =10000 \times 2^{6} \\
& =640000
\end{aligned}
$$

(iII) When $10000000=10000 e^{k t}$

$$
\begin{aligned}
e^{k t} & =1000 \\
k t & =\ln 1000 \\
t & =\frac{\ln 1000}{\frac{1}{4} \ln 2} \\
t & \vdots 39.86
\end{aligned}
$$

So the population exceeds 10 million after 40 whole months.
(b)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1}\left(e^{-x}-1\right) d x-\int_{-2}^{0}\left(e^{x}-1\right) d x \\
& =\left[e^{x}-x\right]_{0}^{1}-\left[e^{x}-x\right]_{-2}^{0} \\
& =e^{1}-1-1-\left(1-\left(\frac{1}{e^{2}}+2\right)\right) \\
& =e-2+1+\frac{1}{e^{2}}
\end{aligned}
$$

$$
=e+\frac{1}{e^{2}}-1 \quad \text { square units }
$$

Question 15 (continued)
(c)

$$
\begin{aligned}
4.8 \% \text { p.a. } & =\frac{4.8}{12} \% \text { per month } \\
& =0.004 \text { per mouth }
\end{aligned}
$$

(i)

$$
\begin{aligned}
A_{1} & =\$ 5000(1+R)^{12} \\
& =5000(1.004)^{12} \\
& =5245.35
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{2} & =\left(A_{1}+\$ 5000\right) \times 1.004^{12} \\
& =\left(\$ 5000 \times 1.004^{12}+\$ 5000\right) \times 1.004^{12} \\
& =\$ 5000 \times 1.004^{24}+\$ 5000 \times 1.004^{12} \\
& =\$ 5000\left(1.004^{12}+1.004^{24}\right)
\end{aligned}
$$

(III)

$$
\begin{aligned}
& A_{3}=\$ 5000\left(1.004^{12}+1.004^{24}+1.004^{36}\right) \\
& A_{n}=\$ 5000\left(1.004^{12}+1.004^{24}+1.004^{36}+\cdots+1.004^{12 n}\right)
\end{aligned}
$$

OP: $a=1.004^{12}$

$$
S_{n}=\frac{a\left(x^{n}-1\right)}{x-1}
$$

$$
\begin{aligned}
A_{n} & =\$ 5000 \times \frac{1.004^{12}\left(\left(1.004^{12}\right)^{n}-1\right)}{1.004^{12}-1} \\
\therefore A_{n} & =\frac{\$ 5000 \times 1.004^{12} \times\left(1.004^{12 n}-1\right)}{1.004^{12}-1}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\text { Interest } & =A_{10}-\$ 5000 \times 10 \\
& =\$ 65689.84-\$ 50000 \\
& =\$ 15689.84
\end{aligned}
$$

Question 16
(a)

$$
\begin{aligned}
2 x^{2} & +(m+1) x+(m-1)=0 \\
\Delta & =(m+1)^{2}-4 \times 2 \times(m-1) \\
& =m^{2}+2 m+1-8 m+8 \\
& =m^{2}-6 m+9
\end{aligned}
$$

(ii) Real root occur wren $\Delta \geqslant 0$

$$
(m-3)^{2} \geqslant 0
$$

So the quadratic uni have real roots for all realm.
(b) (i) $\frac{d F}{d t}=1+\frac{5}{1+3 t} \mathrm{~kL} / \mathrm{min}$
when $t=8, \quad \frac{d F}{d t}=1+\frac{5}{1724}$
(ii)

(iii) From $t=0$ to $t=8$:

$$
\begin{aligned}
F & =\int_{0}^{8} 1+\frac{5}{1+3 t} d t \\
& =\left[t+\frac{5}{3} \log (1+3 t)\right]_{0}^{8} \\
& =8+\frac{5}{3} \log 25-\left(0+\frac{5}{3} \log 1\right) \\
& =8+\frac{5}{3} \log 25 \quad k L \\
& \doteq 13365 L \quad \text { (nearest } L \text {) }
\end{aligned}
$$

Question 16 (continued)
(c)
(i)

$$
\begin{aligned}
V & =\pi \int_{0}^{1} x^{2}-x^{6} d x \\
& =\pi\left[\frac{x^{3}}{3}-\frac{x^{7}}{7}\right] 1 \\
& =\pi\left(\frac{1}{3}-\frac{1}{7}\right) \\
& =\frac{4 \pi}{21} \text { cubic unis }
\end{aligned}
$$

(ii) when $x^{2 n-1}=x^{2 n+1}$
(OR BY SUBSTITUTION)

$$
\begin{aligned}
x^{2 n-1}\left(1-x^{2}\right) & =0 \\
x & =0 \text { or } 1, \text { for } x \geqslant 0
\end{aligned}
$$

when $x=0, y=0^{2 n+1}=0$
(iii)

$$
\begin{aligned}
V_{n} & =\pi \int_{0}^{1}\left(x^{2 n-1}\right)^{2} d x-\pi \int_{0}^{1}\left(x^{2 n+1}\right)^{2} d x \\
& =\pi \int_{0}^{1}\left(x^{4 n-2}-x^{4 n+2}\right) d x \\
& =\pi\left[\frac{x^{4 n-1}}{4 n-1}-\frac{x^{4 n+3}}{4 n+3}\right]{ }_{0}^{1} \\
& =\pi\left(\frac{1}{4 n-1}-\frac{1}{4 n+3}\right)
\end{aligned}
$$

(iv) $v_{1}+v_{2}+v_{3}+\cdots$ gives the volume of a cone with height I unit and radius / unit.
(v) From part (iv), $\quad V_{1}+V_{2}+V_{3}+\ldots=\frac{1}{3} \pi(1)^{2}(1)$

$$
v_{1}+v_{2}+v_{3}+\ldots=\frac{\pi}{3}
$$

From port (iii), $\pi\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\cdots\right)=\frac{\pi}{3}$

$$
\begin{aligned}
& \frac{4}{3 \times 7}+\frac{4}{7 \times 11}+\frac{4}{11 \times 15}+\ldots=\frac{1}{3} \\
\therefore \quad & \frac{1}{3 \times 7}+\frac{1}{7 \times 11}+\frac{1}{11 \times 15}+\cdots=\frac{1}{12}
\end{aligned}
$$

