SYDNEY GRAMMAR SCHOOL

2013 Trial Examination

FORM VI MATHEMATICS 2 UNIT

Thursday 1st August 2013

General Instructions

- Reading time 5 minutes
- Writing time 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

$\mathrm{Total}-100~\mathrm{Marks}$

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 90 Marks

- Questions 11–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Candidature 98 boys

Examiner BDD

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The value of $\int_{0}^{2} (6x^{2} + 1) dx$ is: (A) 17 (B) 18 (C) 24 (D) 66

QUESTION TWO

The line intersecting the x-axis at x = -1 and passing through the point A(1, -4) is represented by which of the following equations?

- (A) x + 2y 1 = 0
- (B) x + 2y + 1 = 0
- (C) 2x y 2 = 0
- (D) 2x + y + 2 = 0

QUESTION THREE

The quadratic equation $2x^2 + 12x - 9 = 0$ has roots α and β . The value of $\alpha^2 \beta + \alpha \beta^2$ is:

- (A) -108
- (B) -27
- (C) 27
- (D) 108

Exam continues next page ...

QUESTION FOUR

What is the sum of the first ten terms of the series $96 - 48 + 24 - 12 + \cdots$?

- (A) 63.9375
- (B) 191.8125
- (C) -32.736
- (D) 98.208

QUESTION FIVE

Which of the following does $\frac{d}{dx}(e^3)$ equal?

(A) $3e^{2}$ (B) e^{3} (C) 0(D) $\frac{1}{4}e^{4}$

QUESTION SIX

Which of the following statements is INCORRECT?

- (A) $\log a^n = n \log a$
- (B) $\log ab = \log a + \log b$
- (C) $\log(a-b) = \frac{\log a}{\log b}$
- (D) $\log e = 1$

QUESTION SEVEN

A particle's motion is described by the cubic graph above. Which of the following statements is NOT true of the particle at time t = a?

- (A) The particle's velocity is negative.
- (B) The particle has positive acceleration.
- (C) The particle is moving towards the origin.
- (D) The particle has returned to its initial position.

QUESTION EIGHT

The equation of the graph sketched above could be:

- $(A) \quad y = 1 + \sin 2x$
- $(B) \quad y = 1 \sin 2x$
- $(C) \quad y = 1 + 2\sin 2x$
- (D) $y = 1 2\sin x$

Exam continues next page ...

QUESTION NINE

Which of the following statements is NOT true of the function $y = x^4 + 4x^2$?

- (A) It is even.
- (B) It has a single stationary point at x = 0.
- (C) It has a single x-intercept at x = 0.
- (D) It has a single point of inflexion at x = 0.

QUESTION TEN

The diagram above shows the graph of a function y = f(x). A pupil draws the graph of y = 2 - |x| on the diagram in order to determine the number of solutions to the equation f(x) = 2 - |x|. His answer should be:

 $(A) \quad 0$

- (B) 1
- (C) 2
- (D) 4

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks (a) Find the value of $\frac{e^x}{1+x^2}$ when x = -3. Give your answer correct to 3 decimal places. 1 (b) Differentiate: (i) $y = \cos 2x$ 1 (ii) $y = \ln(3x+1)$ 1 (iii) $y = e^{3x}$ 1 (c) Find the exact value of $\tan \frac{2\pi}{3}$. 1 (d) Rationalise the denominator of $\frac{1}{3-\sqrt{5}}$. 1 (e) Find the following integrals: (i) $\int (3x^2 + 4x) dx$ 1 (ii) $\int \frac{5}{x} dx$ 1 (iii) $\int (2x+1)^5 dx$ 1 (f) Find the area of a sector subtending an angle of 6 radians at the centre of a circle of 1 radius 3 cm. (g) Find the one-hundredth term of the arithmetic sequence with first term 8 and common 1 difference 3. (h) Solve $2\cos\theta - 1 = 0$, for $0 \le \theta \le 2\pi$. $\mathbf{2}$

(i) Draw a one-third page sketch of the parabola $x^2 = -8y$, carefully marking the focus **2** and directrix.

Exam continues next page ...

QUESTION TWELVE (15 marks) Use a separate writing booklet.

(a) Find the equation of the tangent to $y = x^2 + 4x$ at x = 1.

The graph above shows the area bounded by the curve $y = e^{2x}$, the line x = 3 and the coordinate axes. Find the exact shaded area.

(c)

(b)

The points A(2,1), B(4,5) and C(5,2) have been marked in the coordinate plane above.

- (i) Show that the equation of the line passing through A and B is 2x y 3 = 0.
- (ii) Determine the length of interval AB.
- (iii) Find the perpendicular distance from the point C to the line AB.
- (iv) Hence find the area of triangle ABC.
- (d) Find the domain and range of $y = \sqrt{2x 6}$.
- (e) Solve the quadratic inequation $x^2 + 2x 3 < 0$.

Exam continues overleaf ...

[2	
ſ	1	
ſ	1	
	1	
	2	
Γ	2	

Marks

 $\mathbf{2}$

 $\mathbf{2}$

QUESTION TWELVE (Continued)

(f)

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

The diagram above shows a regular hexagon joined to the radii of a sector. The side length of the hexagon is 5 cm. Find the exact perimeter of the resulting shape.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

(a)

An island I, a buoy B and the mainland M lie on the vertices of a triangle, as in the diagram above. The distance from M to B is 5 km, from B to I is 10 km and from I to M is 8 km. The buoy is directly north of the mainland.

- (i) Use the cosine rule to find $\angle MBI$, correct to the nearest minute.
- (ii) What is the true bearing of the island from the buoy?

(b) Differentiate
$$y = \frac{e^{5x} + 1}{e^x}$$

QUESTION THIRTEEN (Continued)

(c) Consider the region bounded by the curve $y = \sec x$, the x-axis and the lines x = 0 2 and $x = \frac{\pi}{3}$. Find the volume obtained by rotating this region about the x-axis.

The velocity-time graph of a particle is shown above. Find the distance travelled in the first 20 seconds.

- (e) A particle travelling in one dimension has velocity function v = 6 2t, where v is in metres per second and t is in seconds. The particle is initially seven metres to the right of the origin. Assume that the positive direction is to the right.
 - (i) Find the particle's acceleration function.
 - (ii) Find the particle's displacement function.
 - (iii) When is the particle at rest and what is its displacement at this time?
 - (iv) Draw a one-third page sketch of the particle's displacement function, showing the intercepts with the axes and the vertex of this parabola.
 - (v) What is the total distance travelled over the first eight seconds?

1	
1	
2	
2	

1

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

(a) Consider the function $f(x) = x^4 - 4x^3 + 5$.

- (i) Find the coordinates of the stationary points of y = f(x).
- (ii) Determine the nature of the stationary points.
- (iii) Sketch the graph of y = f(x), showing the stationary points and y-intercept. You need not find any x-intercepts.
 - $y = 4 x^{2}$ $y = 4x x^{2}$ $y = 4x x^{2}$ x

Find the area of the region shaded in the diagram above.

(c)

(b)

Find the value of x in the diagram above, giving a reason.

- (d) A point P(x, y) moves so that its distance from A(6, 1) is twice its distance from B(-3, 4).
 - (i) Show that the locus of P is a circle.
 - (ii) Find the centre and radius of the circle.

3

3

QUESTION FIFTEEN(15 marks)Use a separate writing booklet.Marks(a) Find the exact value of $\cos \theta$ given that $\tan \theta = 7$ and $\sin \theta < 0$.2(b) (i) Show that $3x^2 + 4x + 5$ is positive definite.1(ii) Explain why the function $y = x^3 + 2x^2 + 5x + 7$ is always increasing.1

(c) Prove that $\sin \theta \tan \theta + \cos \theta = \sec \theta$.

(d) Prove that
$$f(x) = \frac{2x}{x^2 + 1}$$
 is an odd function.

(e) (i) Differentiate xe^x .

(ii) Hence find
$$\int x e^x dx$$
.

(f) The rate of elimination $\frac{dQ}{dt}$ of a drug by the kidneys is given by the equation

$$\frac{dQ}{dt} = -kQ$$

where k is a constant and Q is the quantity of drug present in the blood. In this question, t is measured in minutes and Q in milligrams.

- (i) Show that $Q = Q_0 e^{-kt}$ satisfies the equation $\frac{dQ}{dt} = -kQ$.
- (ii) The initial quantity of drug present was measured to be 100 mg and at time t = 20 minutes, the quantity was 74 mg. Find the values of Q_0 and k. Give k correct to five decimal places and Q_0 to the nearest mg.
- (iii) What is the initial rate of elimination of the drug? Give your answer correct to one decimal place.
- (iv) How long is it until only half the original quantity of drug remains? Give your answer correct to the nearest minute.

The exam continues on the next page

 $\mathbf{2}$

1

1

1

1

 $\mathbf{2}$

1

 $\mathbf{2}$

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.

(a) In the diagram below, $\angle PQS = \angle PRS = \theta$ and $PQ = \ell$.

- (i) Prove that $\triangle PQS \equiv \triangle PRS$.
- (ii) Give a reason why QS = RS.
- (iii) Show that $QR = 2\ell \cos \theta$.
- (iv) Show that the area of $\triangle PQR$ is given by

$$A = \ell^2 \cos \theta \sin \theta.$$

- (v) Use calculus to find the value of θ that gives the maximum area of $\triangle PQR$.
- (b) A university student is planning to use a cash account containing \$50,000 to help fund his expenses. The account earns interest at 6% per annum, compounded monthly. At the end of each month interest is added to the account balance and then the student withdraws \$1500. Let A_n be the amount of money remaining in the account at the end of the *n*th month, following the student's withdrawal.
 - (i) Find an expression for A_1 .
 - (ii) Find expressions for A_2 and A_3 .
 - (iii) After how many months will the account have a balance of zero dollars? Give your answer to the nearest month.
- (c) Solve the following equation, for $0 \le \theta \le 2\pi$:

$$3\sin^2\theta + 3\cos^2\theta + 3\tan^2\theta + 3\cot^2\theta + 3\sec^2\theta + 3\csc^2\theta = 29$$

End of Section II

END OF EXAMINATION

[1	
	1	
ſ	1	

1

Marks

3

	1
	2
ļ	2

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

SYDNEY GRAMMAR SCHOOL

2013 Trial Examination FORM VI MATHEMATICS 2 UNIT Thursday 1st August 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question	One		
A 🔾	В ()	$C \bigcirc$	D ()
Question '	Γ wo		
A ()	В ()	С ()	D ()
Question '	Three		
A 🔾	В ()	С ()	D ()
Question 2	Four		
A ()	В ()	С ()	D ()
Question 2	Five		
А ()	В ()	С ()	D ()
Question 8	Six		
A \bigcirc	В ()	С ()	D ()
Question 8	Seven		
А ()	В ()	С ()	D ()
Question 2	Eight		
A \bigcirc	В ()	С ()	D ()
Question 2	Nine		
А ()	В ()	С ()	D ()
Question '	Ten		
А ()	В ()	С ()	D ()

CANDIDATE NUMBER:

2 Unit Tribel HSC Sociations 2013

1. B 2. D 3. C 4. A 5. C 6. C 7. B 8. A 9. D 10. D	MCW
1. D 3. C 4. A 5. C 6. C 7. B 8. A 10. D 10. D	
3. C 4. A 5. C 7. S 8. A 9. D 10. D	1, 5
3. C 4. A 5. C 7. S 8. A 9. D 10. D	
4. A 5. C 4. C 7. B 8. A 9. D 10. D	<u>4,</u>
4. A 5. C 4. C 7. B 8. A 9. D 10. D	2 (
<u>5</u> . <u>C</u> 7 . <u>B</u> <u>8</u> . <u>A</u> <u>9</u> . <u>D</u> <u>10</u> . <u>D</u> <u>10</u> . <u>C</u>	
<u>5</u> . <u>C</u> 7 . <u>B</u> <u>8</u> . <u>A</u> <u>9</u> . <u>D</u> <u>10</u> . <u>D</u> <u>10</u> . <u>C</u>	4 4-
6 C 7 B 8 A 9 D 10 D	
6 C 7 B 8 A 9 D 10 D	δ. Δ
	6. <u>C</u>
	<u>7.</u> <u>B</u>
	<u>8. A</u>
	4. D
	10. D
	· · · · · · · · · · · · · · · · · · ·
	and a second
	· · · · · · · · · · · · · · · · · · ·
	and a second
	· · · · · · · · · · · · · · · · · · ·
(A) A set of the	

QUESTION !!

(a) $\frac{e^{-3}}{1+(-3)^2} \neq 0.005$ (b) (i) $dy = -2s_{1}h^{2}x$ (ii) $\frac{d}{dx} \ln(3x+i) = \frac{3}{3x+i}$ $\frac{(i\bar{u})}{du} \frac{d}{du} e^{3x} = 3e^{3x}$ (c) $\tan \frac{2\pi}{3} = \tan \left(\pi - \pi \right)$ = - ten II = - \sqrt{3} . $\frac{1}{3-\sqrt{5}} = \frac{1}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$ = 3+55 9-5 $= \frac{3+\sqrt{5}}{4}$ (i) $((3x^2+4x))dx = x^3+2x^2+c$ $(ii) \int \frac{s}{x} dx = s \log x + c$ $(iii) \int ((2x+i)^5 dx = \frac{(2x+i)^6}{12} + c$

QUESTION 12 (a) For $y = x^2 + 4x$, dy = 2x + 4. Af x=1, dy = 6 & y = 5.Paht: (1,5); gradiert: 6 Equation of targent: y-5 = 6(x-1) $\therefore y = 6x - 1$ (b) Area given my e²x dx = 1 e²x $= \frac{1}{2} \left(\frac{e^6}{1} - 1 \right)$ (c) A(2,1) B(4,5) C(5,2)(i) Eq. of line: $y - 1 = \frac{5 - 1}{4 - 2} (x - 2)$ y = 2x - 32n-y-3=0, as required. or substitute coordinates of A, B to show points lie on the line.

	·
(ii) $AB^2 = (4-2)^2 + (5-1)^2$	The function $\sqrt{2x-6}$ is increasing for all $x > 3$
= 4 + 16	tience its rubiaum value lies at the lower bound
= 20	\overline{q} it donah $(x=3)$:
so AB = 25	$\min \sqrt{2x-6} = \sqrt{2(3)-6} = 0$
(iii) $d_1 = [2(5) - (2) - 3] \div \sqrt{4 + 16}$	Since y= 12x-6 increases without bound
= <u>lsl</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	for all 2.73, the range is then all
S S	<u>real y >0</u> .
$(iv) A_{\Delta ABC} = \frac{1}{2} (AB) d_{1}$	$(e) x^{2} + 2x - 3 < 0$ $i \cdot e \cdot (x + 3)(x - 1) < 0$ $size 0 -3 < x < 1.$
= <u>1</u> .25.5	Solution is -3 < x < 1.
$= S u^2$	(f) Regular hexagon composed of six congruent equilectered
(d) For J2x-6, domain is all real x such that	triangles of side length 2cm.
2x-670; i.e. all real x: x73.	:. internal angle is $2 \times 60^\circ = 120^\circ$. Reflex 4 :: $360^\circ - 120^\circ = 240^\circ$
	$(\alpha) \left(\frac{\text{Arc length}}{360^{\circ}} \right) = \frac{240^{\circ}}{360^{\circ}} \times \frac{2\pi \times 2cm}{3} = \frac{8\pi}{3} cm.$

(B) (Hexagonal contribution) = 4×2cm = 8cm. : (parimeter) = 8cm + 8tt cm $= 8 \left(l + \frac{\pi}{3} \right) cm$

QUESTION 13 (a) (i) $8^2 = 5^2 + 10^2 - 2.5.10 \cos(2MBT)$ ⇒ cos (CMBI) = 0.61 LMBI = 52°25' 50 (ii) True bearing: 180° - 52°25' = 127°35' T $y = \frac{e^{5x} + 1}{e^{x}}$ (6) so $du = 4e^{4x} - e^{-x}$ (c) $V = \pi \int y^2 dx$

 $= \pi \int_{-\infty}^{\pi/2} \sec^2 x \, dx$ $=\pi\left[\tan x\right]^{\frac{\pi}{3}}$ = T [J3 - 0] $=\sqrt{3}\pi u^3$.

(d)
$$|x| = \int_{0}^{12} v_{1}(t) dt + \int_{12}^{20} v_{2}(t) dt$$

= $(12-0)(5) + \frac{1}{2}(20-12)(5)$
= $60 + 20$
= 80 m

(e)
$$v = 6-2t m/s; x(0) = 7m.$$

(i) $a = dv = -2 m/s^{2}.$
dt
(ii) $x = \int 6-2t dt$
 $= 6t-t^{2} + c$
When $t=0$, $x = 7$, so $c=7.$
 $\therefore x(t) = 6t-t^{2} + 7.$

(iii) Particle at rest when v(t)=0. Then

 $6 - 2t = 0 \implies t = 3 s.$ When t = 3, $x(3) = 6(3) - (3)^2 + 7$ = 16 m.

(v) Total distance: from t=0 to t=3, distance is 16-7=9m; from t=3 to t=7, distance is 16m; from t=7 to t=8, distance is 9m.

QUESTION 14

(a)
$$f(x) = x^4 - 4x^3 + 5$$
.
(i) Stationary points = for x: $f'(x) = 0$.
Now, $f'(x) = 4x^3 - 12x^2$, so solving
 $4x^2(x-5) = 0 \implies x = 0 \text{ ar } x = 3$.
For $x = 0$, $f(0) = 5 \implies (0, 5)$ is a stationary point.
For $x = 3$, $f(3) = -22 \implies (3, -22)$ is a stationary point.
(ii) Nature:
 $f''(x) = 12x^2 - 24x$
 $= 12x(x-2)$
Now, $f''(0) = 0 \implies indeterminate : use table.$
 $f''(3) = 36 > 0 \implies local minimum at $(3, -22)$.
For $(0, 5)$:
 $x = -1 = 0$
 $f''(x) = 36 = 0 = -2$$

$$\int ast least = 2x^2 - \frac{x^3}{3} \Big|_{0}^{1} + 4x - \frac{x^3}{3} \Big|_{1}^{2}$$

$$integration + \frac{1}{3} \int_{0}^{1} (0) + \frac{1}{3} \int_{0}^{2} (1-\frac{1}{3}) \int_{0}^{2} (1$$

(c) By ratio of intercepts of transversals on parallel lines,

 $\frac{x+4}{5} = \frac{12}{x-7}$ with reason (saying only 4 ratio of intercepts" (x-7)(x+4) = 60 $x^{2}-3x-88 = 0$ (x-11)(x+8) = 0

 \therefore $\chi = 11 \text{ cm} \text{ or } \chi = -8 \text{ cm}$.

x = - 8 cm does not work. So x = 11 cm.

<u>, ње</u> ,

$$\overline{AP} = 2\overline{BP}$$
$$\overline{AP}^2 = 4\overline{BP}^2$$

 $(x-6)^{2} + (y-1)^{2} = 4\left[(x+3)^{2} + (y-4)^{2}\right]$ $x^{2} - 12x + 36 + y^{2} - 2y + 1 = 4\left[x^{2} + 6x + 9 + y^{2} - 8y + 16\right]$ $= 4x^{2} + 24x + 36 + 4y^{2} - 32y + 64$

which simplifies to

$$x^{2} + 12x + y^{2} - 10y + 21 = 0$$

$$x^{2} + 12x + 6^{2} + y^{2} - 10y + (-5)^{2} = -21 + 6^{2} + (-5)^{2}$$

$$(x + 6)^{2} + (y - 5)^{2} = 40$$

This is the equation of a circle.

QUESTION 15

(a) Since tond >0, sha <0, a lies in quadrant III.

 $\begin{aligned}
 & \cos \theta &= \frac{x}{\tau} \\
 &= \frac{-1}{5\sqrt{2}} \sqrt{1}
 \end{aligned}$

= = = 5 \2

R Given ton == 7,

 $\tan^2 \theta = 49$ $\frac{sh^2 \theta}{\cos^2 \theta} = 49$ $\sin^2 \theta = 49 \cos^2 \theta$ $1 - \cos^2 \theta = 49 \cos^2 \theta$ $so \cos^2 \theta = \frac{1}{50}$

i.e.
$$\cos \theta = \pm \frac{1}{5\sqrt{2}}$$

Since θ is in quadrant \overline{II} ,
 $\cos \theta = -\frac{1}{5\sqrt{2}}$.

(b) (i) $3x^2 + 4x + 5$ has discriminant $\Delta = 4^2 - 4(3)(5) < 0$ and coefficient of z² is posifive. Hence the graph of 3x2+4x+5 lies entirely above the z-axis: the guadratic is positive definite. (ii) $y = x^3 + 2x^2 + 5x + 7$ $s_0 = \frac{1}{3x^2} + 4x + 5$ which, by (i), is positive for all real x; i.e. dy >0 for all x. Hence $y = x^3 + 2x^2 + 5x + 7$ is increasing always.

 $(e) (i) \underline{d} \times e^{\chi} = \chi e^{\chi} + e^{\chi} \vee$ (c) sine ton 2 + cas 2 = sin 2. sind + cas 2 Case $sih^2 + cos^2 =$ (\ddot{u}) Ξ cosa xen = xen dr + fer dr 610 = Sec O = $\left(xe^{x} dx + e^{x} \right)$ (d) f(x) is cald if f(-x) = -f(x). May leave $\int xe^{x} dx = xe^{x} - e^{x} + C$ constart Now $f(x) = \frac{2x}{x^2+1}$, so x^2+1 out. $\begin{pmatrix} f \\ (i) \\ Q = Q_0 e^{-kt} \longrightarrow \frac{dQ}{dt} = -kQ_0 e^{-kt} \\ \frac{dQ}{dt} = -kQ_0 e^{-kt}$ f(-x) = 2(-x) $(-x)^2 + 1$ = -k0 $= - \frac{2x}{x^2 + 1}$ (11) At t=0, Q=100 mg, so 100 mg = Qo. 2° = - f (sc) ine Q = 100 mg . V Hence, f(x) is odd. At t= 20 min, Q=74 mg, so 74 = 100 e -20k $\log\left(\frac{74}{100}\right) = -20k$ $\dots \mathbf{k} = \log\left(\frac{74}{100}\right)$ ~ 0.01506 min 1.1

(iii) Since
$$dQ = -kQ$$
,
when $t=0$, $Q = Q_0 = 100 \text{ mg}$.
Hence the initial rate of dimutediation is given by
 $\frac{dQ}{dt} = -kQ_0$
 $\frac{dQ}{dt} = -kQ_0$
 $\frac{dT}{dt} = -(0.01506) \times 100 \text{ mg} \cdot \text{min}^{-1}$
 $\simeq -1.5 \text{ mg} \cdot \text{min}^{-1}$.
(iv) we need t such that
 $50 \text{ mg} = 100 \text{ mg} \cdot e^{-kt}$
 $50 \frac{1}{2} = -kt$
 $\log \frac{1}{2} = -kt$
 $\therefore t = \frac{\log 2}{k}$
 $\simeq 46 \text{ min}$.

 $\frac{(v)}{dA} = \frac{l^2}{sno(-sno)} + \frac{coso(coso)}{d\Theta}$ The maximum area is therefore, $= d^2 \left[\cos^2 \theta - \sin^2 \theta \right]$ $A = \frac{l^2}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$ Extrema for 0: dA =>, so source. de $= \underbrace{2}{7}$ $l^2(\cos^2\theta - \sin^2\theta) = 0$ $S_{i}u^{i}\vartheta = cos^{2}\vartheta$ (b) Let $A_0 = \$50000$, M = \$1500, R = (1+0.06) = 1.005tan 2 = 1 (i) $A_1 = A_0R - M$ $\therefore \tan \theta = \pm 1$ = 59000 (1.005) - 1500 $\frac{1}{4} + \frac{1}{4} + \frac{1}$ But 0 \$ 317 since angle sum of triagle would $(ii) A_{1} = A_{R} - M$ $=(A_{R}-M)R-M$ exceed T. So B= It only. 4 $= A_3 R^2 - M R - M$ Now, $d^2 A = l^2 (2 \cos(- \sin \theta) - 2 \sin \theta \cos \theta)$ $d\theta^2$ = 50 000 (1.005) - 1500 (1+ 1.005) $= -4l^2\cos\theta$ sing $A_3 = A_2 R - M$ Evaluated at $\theta = \pi \rightarrow \frac{d^2 A}{d \theta^2} = -4l^2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} < 0$ $= \left[A_0R^2 - MR - M\right]R - M$ $\frac{S_0}{4} = \frac{1}{K}$ is a minimum. $= A_0 R^3 - M R^2 - M R - M$ $= A_0 R^3 - M \left(1 + R + R^2 \right)$ $= 50000 (1.005)^{3} - 1500 (1+1.005 + 1.005^{2})$

For
$$don\theta = \pm \frac{1}{\sqrt{3}}$$
, $\theta = \frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$;

 $\tan \theta = \pm \sqrt{3}, \quad \theta = \frac{\pi}{3}, \quad \frac{2\pi}{3}, \quad \frac{4\pi}{3}, \quad \frac{5\pi}{3}.$ $\therefore \quad \Theta \in \left\{ \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{11\pi}{6} \right\}.$