

FORM VI

MATHEMATICS 2 UNIT

Thursday 1st August 2013

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Candidature - 98 boys
Examiner
BDD

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The value of $\int_{0}^{2}\left(6 x^{2}+1\right) d x$ is:
(A) 17
(B) 18
(C) 24
(D) 66

QUESTION TWO

The line intersecting the x-axis at $x=-1$ and passing through the point $A(1,-4)$ is represented by which of the following equations?
(A) $x+2 y-1=0$
(B) $x+2 y+1=0$
(C) $2 x-y-2=0$
(D) $2 x+y+2=0$

QUESTION THREE

The quadratic equation $2 x^{2}+12 x-9=0$ has roots α and β. The value of $\alpha^{2} \beta+\alpha \beta^{2}$ is:
(A) -108
(B) $\quad-27$
(C) 27
(D) 108

QUESTION FOUR

What is the sum of the first ten terms of the series $96-48+24-12+\cdots$?
(A) 63.9375
(B) 191.8125
(C) $\quad-32.736$
(D) 98.208

QUESTION FIVE

Which of the following does $\frac{d}{d x}\left(e^{3}\right)$ equal?
(A) $3 e^{2}$
(B) e^{3}
(C) 0
(D) $\frac{1}{4} e^{4}$

QUESTION SIX

Which of the following statements is INCORRECT?
(A) $\log a^{n}=n \log a$
(B) $\log a b=\log a+\log b$
(C) $\quad \log (a-b)=\frac{\log a}{\log b}$
(D) $\log e=1$

QUESTION SEVEN

A particle's motion is described by the cubic graph above. Which of the following statements is NOT true of the particle at time $t=a$?
(A) The particle's velocity is negative.
(B) The particle has positive acceleration.
(C) The particle is moving towards the origin.
(D) The particle has returned to its initial position.

QUESTION EIGHT

The equation of the graph sketched above could be:
(A) $y=1+\sin 2 x$
(B) $y=1-\sin 2 x$
(C) $y=1+2 \sin 2 x$
(D) $y=1-2 \sin x$

QUESTION NINE

Which of the following statements is NOT true of the function $y=x^{4}+4 x^{2}$?
(A) It is even.
(B) It has a single stationary point at $x=0$.
(C) It has a single x-intercept at $x=0$.
(D) It has a single point of inflexion at $x=0$.

QUESTION TEN

The diagram above shows the graph of a function $y=f(x)$. A pupil draws the graph of $y=2-|x|$ on the diagram in order to determine the number of solutions to the equation $f(x)=2-|x|$. His answer should be:
(A) 0
(B) 1
(C) 2
(D) 4

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Find the value of $\frac{e^{x}}{1+x^{2}}$ when $x=-3$. Give your answer correct to 3 decimal places.
(b) Differentiate:
(i) $y=\cos 2 x$
(ii) $y=\ln (3 x+1)$
(iii) $y=e^{3 x}$
(c) Find the exact value of $\tan \frac{2 \pi}{3}$.
(d) Rationalise the denominator of $\frac{1}{3-\sqrt{5}}$.
(e) Find the following integrals:
(i) $\int\left(3 x^{2}+4 x\right) d x$
(ii) $\int \frac{5}{x} d x$
(iii) $\int(2 x+1)^{5} d x$
(f) Find the area of a sector subtending an angle of 6 radians at the centre of a circle of radius 3 cm .
(g) Find the one-hundredth term of the arithmetic sequence with first term 8 and common difference 3.
(h) Solve $2 \cos \theta-1=0$, for $0 \leq \theta \leq 2 \pi$.
(i) Draw a one-third page sketch of the parabola $x^{2}=-8 y$, carefully marking the focus and directrix.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) Find the equation of the tangent to $y=x^{2}+4 x$ at $x=1$.
(b)

The graph above shows the area bounded by the curve $y=e^{2 x}$, the line $x=3$ and the coordinate axes. Find the exact shaded area.
(c)

The points $A(2,1), B(4,5)$ and $C(5,2)$ have been marked in the coordinate plane above.
(i) Show that the equation of the line passing through A and B is $2 x-y-3=0$.
(ii) Determine the length of interval $A B$.
(iii) Find the perpendicular distance from the point C to the line $A B$.
(iv) Hence find the area of triangle $A B C$.
(d) Find the domain and range of $y=\sqrt{2 x-6}$.
(e) Solve the quadratic inequation $x^{2}+2 x-3<0$.

QUESTION TWELVE (Continued)
(f)

The diagram above shows a regular hexagon joined to the radii of a sector. The side length of the hexagon is 5 cm . Find the exact perimeter of the resulting shape.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.
(a)

An island I, a buoy B and the mainland M lie on the vertices of a triangle, as in the diagram above. The distance from M to B is 5 km , from B to I is 10 km and from I to M is 8 km . The buoy is directly north of the mainland.
(i) Use the cosine rule to find $\angle M B I$, correct to the nearest minute.
(ii) What is the true bearing of the island from the buoy?
(b) Differentiate $y=\frac{e^{5 x}+1}{e^{x}}$.

QUESTION THIRTEEN (Continued)
(c) Consider the region bounded by the curve $y=\sec x$, the x-axis and the lines $x=0$ and $x=\frac{\pi}{3}$. Find the volume obtained by rotating this region about the x-axis.
(d)

The velocity-time graph of a particle is shown above. Find the distance travelled in the first 20 seconds.
(e) A particle travelling in one dimension has velocity function $v=6-2 t$, where v is in metres per second and t is in seconds. The particle is initially seven metres to the right of the origin. Assume that the positive direction is to the right.
(i) Find the particle's acceleration function.
(ii) Find the particle's displacement function.
(iii) When is the particle at rest and what is its displacement at this time?
(iv) Draw a one-third page sketch of the particle's displacement function, showing the intercepts with the axes and the vertex of this parabola.
(v) What is the total distance travelled over the first eight seconds?

QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks
(a) Consider the function $f(x)=x^{4}-4 x^{3}+5$.
(i) Find the coordinates of the stationary points of $y=f(x)$.
(ii) Determine the nature of the stationary points.
(iii) Sketch the graph of $y=f(x)$, showing the stationary points and y-intercept.

You need not find any x-intercepts.
(b)

Find the area of the region shaded in the diagram above.
(c)

Find the value of x in the diagram above, giving a reason.
(d) A point $P(x, y)$ moves so that its distance from $A(6,1)$ is twice its distance from $B(-3,4)$.
(i) Show that the locus of P is a circle.
(ii) Find the centre and radius of the circle.
(a) Find the exact value of $\cos \theta$ given that $\tan \theta=7$ and $\sin \theta<0$.
(b) (i) Show that $3 x^{2}+4 x+5$ is positive definite.
(ii) Explain why the function $y=x^{3}+2 x^{2}+5 x+7$ is always increasing.
(c) Prove that $\sin \theta \tan \theta+\cos \theta=\sec \theta$.
(d) Prove that $f(x)=\frac{2 x}{x^{2}+1}$ is an odd function.
(e) (i) Differentiate $x e^{x}$.
(ii) Hence find $\int x e^{x} d x$.
(f) The rate of elimination $\frac{d Q}{d t}$ of a drug by the kidneys is given by the equation

$$
\frac{d Q}{d t}=-k Q
$$

where k is a constant and Q is the quantity of drug present in the blood. In this question, t is measured in minutes and Q in milligrams.
(i) Show that $Q=Q_{0} e^{-k t}$ satisfies the equation $\frac{d Q}{d t}=-k Q$.
(ii) The initial quantity of drug present was measured to be 100 mg and at time $t=20$ minutes, the quantity was 74 mg . Find the values of Q_{0} and k. Give k correct to five decimal places and Q_{0} to the nearest mg.
(iii) What is the initial rate of elimination of the drug? Give your answer correct to one decimal place.
(iv) How long is it until only half the original quantity of drug remains? Give your answer correct to the nearest minute.

QUESTION SIXTEEN (15 marks) Use a separate writing booklet. Marks
(a) In the diagram below, $\angle P Q S=\angle P R S=\theta$ and $P Q=\ell$.

(i) Prove that $\triangle P Q S \equiv \triangle P R S$.
(ii) Give a reason why $Q S=R S$.
(iii) Show that $Q R=2 \ell \cos \theta$.
(iv) Show that the area of $\triangle P Q R$ is given by

$$
A=\ell^{2} \cos \theta \sin \theta
$$

(v) Use calculus to find the value of θ that gives the maximum area of $\triangle P Q R$.
(b) A university student is planning to use a cash account containing $\$ 50000$ to help fund his expenses. The account earns interest at 6% per annum, compounded monthly. At the end of each month interest is added to the account balance and then the student withdraws $\$ 1500$. Let A_{n} be the amount of money remaining in the account at the end of the nth month, following the student's withdrawal.
(i) Find an expression for A_{1}.
(ii) Find expressions for A_{2} and A_{3}.
(iii) After how many months will the account have a balance of zero dollars?

Give your answer to the nearest month.
(c) Solve the following equation, for $0 \leq \theta \leq 2 \pi$:

$$
3 \sin ^{2} \theta+3 \cos ^{2} \theta+3 \tan ^{2} \theta+3 \cot ^{2} \theta+3 \sec ^{2} \theta+3 \operatorname{cosec}^{2} \theta=29
$$

END OF EXAMINATION

SGS Trial 2013 Form VI Mathematics 2 Unit Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$

2013
Trial Examination
FORM VI
MATHEMATICS 2 UNIT
Thursday 1st August 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

Question One

A
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three
AB
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A

B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six
A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A
B

D \bigcirc

Question Eight

A
B
C
D \bigcirc

Question Nine

$\mathrm{A} \bigcirc$
B
\bigcirc
C

D

Question Ten

ABD \bigcirc
$M \subset Q$

1. B
2. D \qquad
3. C
4. A
5. C
6. C
7. B
8. A
9. D
10. D \qquad (d)

$$
\begin{aligned}
\frac{1}{3-\sqrt{5}} & =\frac{1}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\
& =\frac{3+\sqrt{5}}{9-5} \\
& =\frac{3+\sqrt{5}}{4}
\end{aligned}
$$

(e) (i) $\int\left(3 x^{2}+4 x\right) d x=x^{3}+2 x^{2}+c$
(ii) $\int \frac{5}{x} d x=5 \log x+c$
(iii) $\int(2 x+1)^{5} d x=\frac{(2 x+1)^{6}}{12}+c$
(f)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \cdot 3^{2} \mathrm{~cm}^{2} \cdot 6 \\
& =27 \mathrm{~cm}^{2}
\end{aligned}
$$

(g) $\quad t_{n}=8+3(n-1)$
so $t_{100}=8+3 \times 99$

$$
=305
$$

(h) $2 \cos \theta-1=0, \quad 0 \leqslant \theta \leqslant 2 \pi$.

$$
\cos \theta=\frac{1}{2}
$$

so $\quad \theta=\frac{\pi}{3} /$ or $\frac{5 \pi}{3}$
(i)

Question 12
(a) For $y=x^{2}+4 x, \frac{d y}{d x}=2 x+4$.

At $x=1, \frac{d y}{d x}=6$ \& $y=5$
Pant: $(1,5)$; gradient: 6
Equation of tangent: $y-5=6(x-1)$

$$
\therefore y=6 x-1
$$

(b) Area given ln $\int_{0}^{3} e^{2 x} d x=\left.\frac{1}{2} e^{2 x}\right|_{0} ^{3}$

$$
=\frac{1}{2}\left(e^{6}-1\right)
$$

(c) $A(2,1) \quad B(4,5) \quad C(5,2)$
(i) Eq n of line: $y-1=\frac{5-1}{4-2}(x-2)$

$$
y=2 x-3
$$

So $\quad 2 x-y-3=0$, as required.
or substitute coordinates of A, i to show points lie on the line.
(ii)

$$
\begin{aligned}
A B^{2} & =(4-2)^{2}+(5-1)^{2} \\
& =4+16 \\
& =20
\end{aligned}
$$

$$
\text { So } A B=2 \sqrt{5}
$$

(iii)

$$
\begin{aligned}
d_{1} & =|2(5)-(2)-3| \div \sqrt{4+1} \\
& =\frac{15 \mid}{\sqrt{5}} \\
& =\sqrt{5}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
A_{\triangle A B C} & =\frac{1}{2}(A B) d_{1} \\
& =\frac{1}{2} \cdot 2 \sqrt{5} \cdot \sqrt{5} \\
& =5 u^{2}
\end{aligned}
$$

(d) For $\sqrt{2 x-6}$, domain is all real x such that $2 x-6 \geqslant 0$; ie. all real $x: x \geqslant 3$.

The function $\sqrt{2 x-6}$ is increasing for all $x \geqslant 3$, Hence its nihioum value lies at the lower bound of it domain $(x=3)$:

$$
\min \sqrt{2 x-6}=\sqrt{2(3)-6}=0 .
$$

Since $y=\sqrt{2 x-6}$ increases without bound for all $x \geqslant 3$, the range is then all real $y \geqslant 0$.
(e) $x^{2}+2 x-3<0$
ie. $(x+3)(x-1)<0$

Solution is $-3<x<1$.

(f) Regular hexagon composed of six congruent equilateral triangles of side length 2 cm .
\therefore internal angle is $2 \times 60^{\circ}=120^{\circ}$.
Reflex $4 \therefore 360^{\circ}-120^{\circ}=240^{\circ}$
(a) $($ Arc length $)=\frac{240^{\circ}}{360^{\circ}} \times 2 \pi \times 2 \mathrm{~cm}=\frac{8 \pi}{3} \mathrm{~cm}$.
(i) (Hexagonal contribution) $=4 \times 2 \mathrm{~cm}=8 \mathrm{~cm}$.

$$
\begin{aligned}
\therefore \text { (perineter }) & =8 \mathrm{~cm}+\frac{8 \pi}{3} \mathrm{~cm} \\
& =8\left(1+\frac{\pi}{3}\right) \mathrm{cm}
\end{aligned}
$$

Question 13
(a)
(i)

$$
\begin{aligned}
& 8^{2}= 5^{2}+10^{2}-2.5 \cdot 10 \cos (\angle M B I) \\
& \Rightarrow \cos (\angle M B I)=0.61 \\
& \text { so } \quad \angle M B I \doteq 52^{\circ} 25^{\prime}
\end{aligned}
$$

(ii) True bearing: $180^{\circ}-52^{\circ} 25^{\prime}=127^{\circ} 35^{\prime} T$
(b)

$$
\begin{aligned}
& y=\frac{e^{5 x}+1}{e^{x}} \\
&=e^{4 x}+e^{-x} \\
& \text { so } \frac{d y}{d x}=4 e^{4 x}-e^{-x}
\end{aligned}
$$

(c)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 3} y^{2} d x \\
& =\pi \int_{0}^{\pi / 3} \sec ^{2} x d x \\
& =\pi\left[\left.\tan x\right|_{0} ^{\pi / 3}\right. \\
& =\pi[\sqrt{3}-0] \\
& =\sqrt{3} \pi u^{3} .
\end{aligned}
$$

(d) $|x|=\int_{0}^{12} r_{1}(t) d t+\int_{12}^{20} v_{2}(t) d t$
$=(12-0)(5)+\frac{1}{2}(20-12)(5)$
$=60+20$
$=80 \mathrm{~m}$
(e) $r=6-2 t \mathrm{~m} / \mathrm{s} ; \quad x(0)=7 \mathrm{~m}$.
(i) $a=\frac{d v}{d t}=-2 \mathrm{~m} / \mathrm{s}^{2}$.
(ii) $x=\int 6-2 t d t$
$=6 t-t^{2}+c$
when $t=0, x=7$, so $c=7$.

$$
\therefore \quad x(t)=6 t-t^{2}+7 .
$$

(iii) Particle at rest when $v(t)=0$. Then

$$
6-2 t=0 \Rightarrow t=3 \mathrm{~s} .
$$

When $t=3, \quad x(3)=6(3)-(3)^{2}+7$
$=16 \mathrm{~m}$
(iv)

(v) Total distance: from $t=0$ to $t=3$, distonce is $16-7=9 \mathrm{~m}$; from $t=3$ to $t=7$, distance is 16 m ;

Tobel $\therefore 34 \mathrm{~m}$.

Question 14
(iii)
(a) $f(x)=x^{4}-4 x^{3}+5$.
(i) Stationary points for x : $f^{\prime}(x)=0$.

Now, $f^{\prime}(x)=4 x^{3}-12 x^{2}$, so solving

$$
4 x^{2}(x-3)=0 \quad \Rightarrow x=0 \text { or } x=3
$$

For $x=0, f(0)=5 \rightarrow(0,5)$ is a stationary point.
For $x=3, \quad f(3)=-22 \rightarrow(3,-22)$ is a stationary point.
(ii) Nature:

$$
\begin{aligned}
f^{\prime \prime}(x) & =12 x^{2}-24 x \\
& =12 x(x-2)
\end{aligned}
$$

Now, $f^{\prime \prime}(0)=0 \rightarrow$ indeterminate: use table.

$$
f^{\prime \prime}(3)=36>0 \rightarrow \text { Local minimum at }(3,-22) \text {. }
$$

For $(0,5)$:

x	-1	0	1
$f^{\prime \prime}(x)$	36	0	-12
concav.	\ddots	.	\frown

\therefore horizontal point of inflexion at $(0,5)$.
(b) Intersection of graphs occurs for x such that

$$
\begin{aligned}
4-x^{2} & =4 x-x^{2} \\
\text { iss. } \quad x & =4 .
\end{aligned}
$$

Area, A, is compound, so

$$
A=\int_{0}^{1} 4 x-x^{2} d x+\int_{1}^{2} 4-x^{2} d x
$$

$\sqrt{\text { at least }}$ one correct $=2 x^{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}+4 x-\left.\frac{x^{3}}{3}\right|_{1} ^{2}$ integration f
sulostitution
$\begin{aligned} & \text { without } \\ & \text { Simplification. }\end{aligned}\left(2-\frac{1}{3}\right)-(0)+\left(8-\frac{8}{3}\right)-\left(4-\frac{1}{3}\right)$

$$
=\frac{10}{3} \text { or } 3 \frac{1}{3} u^{2}
$$

(c) By ratio of intercepts of transversals on parallel lines,

$$
\frac{x+4}{5}=\frac{12}{x-7}
$$

80

$$
\begin{aligned}
& \quad(x-7)(x+4)=60 \\
& x^{2}-3 x-88=0 \\
& (x-11)(x+8)=0 \\
& \therefore \quad x=11 \mathrm{~cm} \text { or } x=-8 \mathrm{~cm} .
\end{aligned}
$$

$x=-8 \mathrm{~cm}$ does not work. So $x=11 \mathrm{~cm}$.
(d) (i) (Distance of P to A) is $2 \times$ (distance of P to B)
i-

$$
\begin{aligned}
& \overline{A P}=2 \overline{B P} \\
& \overline{A P}^{2}=4 \overline{B P}^{2}
\end{aligned}
$$

$$
\begin{aligned}
(x-6)^{2}+(y-1)^{2} & =4\left[(x+3)^{2}+(y-4)^{2}\right] \\
x^{2}-12 x+36+y^{2}-2 y+1 & =4\left[x^{2}+6 x+9+y^{2}-8 y+16\right] \\
& =4 x^{2}+24 x+36+4 y^{2}-32 y+64
\end{aligned}
$$

which simplifies to

$$
\begin{aligned}
& x^{2}+12 x+y^{2}-10 y+21=0 \\
& x^{2}+12 x+6^{2}+y^{2}-10 y+(-5)^{2}=-21+6^{2}+(-5)^{2} \\
& (x+6)^{2}+(y-5)^{2}=40
\end{aligned}
$$

This is the equation of a circle.
(ii) From (i), centre: $(-6,5)$
radius: $2 \sqrt{10}$.

Question 15
(a) Since $\tan \theta>0, \sin \theta<0, \theta$ lies in quadrant III.

Now, $\tan \theta=\frac{y}{x}$ for any point (x, y) on the ray given by θ.

$$
\text { i.e. } \quad \cos \theta= \pm \frac{1}{5 \sqrt{2}}
$$

Since θ is in quadrant III,

Choose, then, $x=-1, y=-7$.
Then $r=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& =\sqrt{1+49} \\
& =\sqrt{50} \\
& =25 \sqrt{2}
\end{aligned}
$$

So

$$
\begin{aligned}
\cos \theta & =\frac{x}{r} \\
& =\frac{-1}{5 \sqrt{2}}
\end{aligned}
$$

OR Given $\tan \theta=7$,

$$
\begin{aligned}
\tan ^{2} \theta & =49 \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta} & =49 \\
\sin ^{2} \theta & =49 \cos ^{2} \theta \\
1-\cos ^{2} \theta & =49 \cos ^{2} \theta
\end{aligned}
$$

so $\cos ^{2} \theta=\frac{1}{50}$
(b) (i) $3 x^{2}+4 x+5$ has discrimhat

$$
\Delta=4^{2}-4(3)(5)<0
$$

and coefficient of x^{2} is positive. thence the graph of $3 x^{2}+4 x+5$ lies entirely above the x-axis: the quadratic is positive definite.
(ii) $y=x^{3}+2 x^{2}+5 x+7$

So $\frac{d y}{d x}=3 x^{2}+4 x+5$
which, by (i), is positive forall real x; i.e. $\frac{d y}{d x}>0$ for an x.

Hence $y=x^{3}+2 x^{2}+5 x+7$ is increasing always.
(c)

$$
\sin \theta \tan \theta+\cos \theta=\sin \theta \cdot \frac{\sin \theta}{\cos \theta}+\cos \theta
$$

$$
=\frac{\sin ^{2} \alpha+\cos ^{2} \theta}{\cos \theta}
$$

$$
=\frac{1}{\cos \theta}
$$

$$
=\sec \theta
$$

(d) $f(x)$ is odd if $f(-x)=-f(x)$.

Now $f(x)=\frac{2 x}{x^{2}+1}$, so

$$
\begin{aligned}
f(-x) & =\frac{2(-x)}{(-x)^{2}+1} \\
& =-\frac{2 x}{x^{2}+1} \\
& =-f(x)
\end{aligned}
$$

Hence, $f(x)$ is oold.
(e) (i) $\frac{d}{d x} x e^{x}=x e^{x}+e^{x}$
(ii) $\int \frac{d}{d x} x e^{x} d x=\int\left(x e^{x}+e^{x}\right) d x$

$$
x e^{x}=\int x e^{x} d x+\int e^{x} d x
$$

$$
=\int x e^{x} d x+e^{x}
$$

$$
\therefore \int x e^{x} d x=x e^{x}-e^{x}+c
$$

May leare coustant out.
(f)
(i)

$$
\begin{aligned}
Q=Q_{0} e^{-k t} \rightarrow \frac{d Q}{d t} & =-k Q_{0} e^{-k t} \\
& =-k Q
\end{aligned}
$$

(ii) At $t=0, Q=100 \mathrm{Mg}$, so loomg $=Q_{0} \cdot e^{0}$

$$
\therefore \text { e. } \quad Q_{0}=100 \text { ing. }
$$

At $t=20 \mathrm{~min}, Q=74 \mathrm{mg}$, so $74=100 \mathrm{e}^{-20 \mathrm{k}}$

$$
\begin{aligned}
\log \left(\frac{74}{100}\right) & =-20 k \\
\therefore k & =\frac{\log \left(\frac{74}{100}\right)}{-20} \\
& \simeq 0.01506 \mathrm{~min}^{-1} .
\end{aligned}
$$

(iii) Since $\frac{d Q}{d t}=-k Q$,
when $t=0, Q=Q_{0}=100 \mathrm{mg}$.
Hence the initial rate of elimination is given by

$$
\begin{aligned}
\frac{d Q}{d t} & =-k Q_{0} \\
& =-(0.01506) \times 100 \mathrm{mg} \cdot \mathrm{~min}^{-1} \\
& \simeq-1.5 \mathrm{mg} \cdot \mathrm{~min}^{-1} .
\end{aligned}
$$

(iv) We need t such that

$$
50 \mathrm{mg}=100 \mathrm{mg} \cdot e^{-k t}
$$

so

$$
\begin{aligned}
\frac{1}{2} & =e^{-k t} \\
\log \frac{1}{2} & =-k t \\
\therefore \quad t & =\frac{\log 2}{k} \\
& \simeq 46 \mathrm{mh}
\end{aligned}
$$

Question 16
(a)(i) In $\triangle P Q S \& \triangle P R S$:
(α) $\angle P Q S=\angle P R S \quad$ (given)
(p) $\angle P S Q=\angle P S R$ (given)
(v) $\quad P S=P S \quad$ (common)

By angle-agle-side test, $\triangle P Q S \equiv \triangle P R S$.
(ii) $Q S=R S$ since they are corresponding sides of two congruent triangles.
(iii) $\cos \theta=\frac{Q S}{l}$

$$
Q S=l \cos \theta
$$

Since $Q S=R S, \quad Q R=Q S+S R$

$$
=2 Q S
$$

$=2 l \cos \theta$, as required.
(iv) Area, A, given by

$$
\begin{aligned}
A & =\frac{1}{2} \cdot l \cdot Q R \cdot \sin \theta \\
& =\frac{1}{2} l \cdot 2 l \cos \theta \sin \theta \\
& =l^{2} \cos \theta \sin \theta
\end{aligned}
$$

(v)

$$
\begin{aligned}
\frac{d A}{d \theta} & =l^{2}[\sin \theta(-\sin \theta)+\cos \theta(\cos \theta)] \\
& =l^{2}\left[\cos ^{2} \theta-\sin ^{2} \theta\right]
\end{aligned}
$$

Extrema for $\theta: \frac{d A}{d \theta} \approx$, so sole:

$$
\begin{array}{r}
l^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=0 \\
\sin ^{2} \theta=\cos ^{2} \theta \\
\tan ^{2} \theta=1 \\
\therefore \tan \theta= \pm 1
\end{array}
$$

implies $\theta=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$ for $0 \leqslant \theta \leqslant \pi$.
But $\theta \neq \frac{3 \pi}{4}$ since angle sun of triangle would exceed $\pi \cdot f_{0} \quad \theta=\frac{\pi}{4}$ only.

Now, $\frac{d^{2} A}{d \theta^{2}}=l^{2}[2 \cos (-\operatorname{sh} \theta)-2 \sin \theta \cos \theta]$

$$
=-4 l^{2} \cos \theta \sin \theta
$$

Evaluated at $\theta=\frac{\pi}{4} \rightarrow \frac{d^{2} A}{d \theta^{2}}=-4 l^{2} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}<0$
So $\theta=\frac{\pi}{4}$ is a minchuem.

The maximum area is therefore,

$$
A=l^{2} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}
$$

$$
=\frac{e^{2}}{2}
$$

(b) Let $A_{0}=\$ 50000, M=\$ 1500, R=\left(1+\frac{0.06}{12}\right)=1.005$
(i)

$$
\begin{aligned}
A_{1} & =A_{0} R-M \\
& =50000(1.005)-1500
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{2} & =A_{1} R-M \\
& =\left(A_{0} R-M\right) R-M \\
& =A_{0} R^{2}-M R-M \\
& =50000(1.005)^{2}-1500(1+1.005)
\end{aligned}
$$

$$
\begin{aligned}
A_{3} & =A_{2} R-M \\
& =\left[A_{0} R^{2}-M R-M\right] R-M \\
& =A_{0} R^{3}-M R^{2}-M R-M \\
& =A_{0} R^{3}-M\left(1+R+R^{2}\right) \\
& =50000(1.005)^{3}-1500\left(1+1.005+1.005^{2}\right)
\end{aligned}
$$

(ii) The pattern developed in (ii) suggests for A_{n} :

$$
\begin{aligned}
& A_{n}=A_{0} R^{n}-M\left(1+R+R^{2}+\cdots+R^{n-1}\right) \\
&=A_{0} R^{n}-M \cdot \frac{R^{n}-1}{R-1}, \text { since } 1+R+R^{2}+\cdots+R^{n-1} \text { is } \\
& \text { geometric. }
\end{aligned}
$$

The account will peach zero for n such that $A_{n}=0$.
So solve for n in the follounty:

$$
\begin{aligned}
O & =A_{0} R^{n}-M \cdot \frac{R^{n}-1}{R-1} \\
& =A_{0}(R-1) R^{n}-M\left(R^{n}-1\right) \\
& =A_{0}(R-1) R^{n}-M R^{n}+M \\
& \left.=A_{0}(R-1)-M\right] R^{n}+M
\end{aligned}
$$

So

$$
\begin{aligned}
R^{n} & =\frac{M}{M-A_{0}(R-1)} \\
n \log R & =\log \left[\frac{M}{M-A_{0}(R-1)}\right] \\
n & =\frac{\log \left[\frac{M}{M-A_{0}(R-1)}\right]}{\log R}
\end{aligned}
$$

so $n=\log \left[\frac{1500}{1500-50000 \times 0.005}\right]$
$\log (1.005)$

$$
=36.5553 \ldots
$$

$\div 37$ mouths.
(c)

$$
\begin{aligned}
& 3 \sin ^{2} \theta+3 \cos ^{2} \theta+3 \tan ^{2} \theta+3 \cot ^{2} \theta+3 \sec ^{2} \theta+3 \operatorname{cosec} 2 \theta=29 \\
& 3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+3 \tan ^{2} \theta+3 \cot ^{2} \theta+3\left(1+\tan ^{2} \theta\right)+3\left(1+\cot ^{2} \theta\right)=29 \\
& 8+3 \tan ^{2} \theta+3 \cot ^{2} \theta+3+3 \tan ^{2} \theta+3+3 \cot ^{2} \theta=2920 \\
& 6\left(\tan ^{2} \theta+\cot ^{2} \theta\right)=20 \\
& 3 \tan ^{2} \theta+\frac{3}{\tan ^{2} \theta}=10
\end{aligned}
$$

$$
3 \tan ^{4} \theta+3=10 \tan ^{2} \partial
$$

$$
3 \tan ^{4} \theta-10 \tan ^{2} \theta+3=0
$$

$$
3 \tan ^{4} \theta-9 \tan ^{2} \theta-\tan ^{2} \theta+3=0
$$

$$
3 \tan ^{2} \theta\left(\tan ^{2} \theta-3\right)-\left(\tan ^{2} \theta-3\right)=0
$$

$$
\left(3 \tan ^{2} \theta-1\right)\left(\tan ^{2} \theta-3\right)=0
$$

$$
\therefore \tan ^{2} \theta=\frac{1}{3} \text { or } \tan ^{2} \theta=3
$$

so $\tan \theta= \pm \frac{1}{\sqrt{3}}$ or $\tan \theta= \pm \sqrt{3}$

For $\tan \theta= \pm \frac{1}{\sqrt{3}}, \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$;
and $\tan \theta= \pm \sqrt{3}, \theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$.
$\therefore \quad \theta \in\left\{\frac{\pi}{6}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{4 \pi}{3}, \frac{5 \pi}{3}, \frac{11 \pi}{6}\right\}$.

