Sydney Grammar School

FORM VI

MATHEMATICS 2 UNIT

Friday 1st August 2014

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Candidature - 91 boys

Examiner

MLS

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the gradient of the line $6 x+3 y-2=0$?
(A) 2
(B) $\quad-2$
(C) $\frac{1}{2}$
(D) $\quad-\frac{1}{2}$

QUESTION TWO

What is $5 \cdot 29784$ correct to three significant figures?
(A) $\quad 5 \cdot 29$
(B) $\quad 5 \cdot 297$
(C) $5 \cdot 30$
(D) $5 \cdot 298$

QUESTION THREE

Which of the following is equal to $\frac{1}{\sqrt{5}+2 \sqrt{3}} ?$
(A) $\frac{\sqrt{5}-2 \sqrt{3}}{7}$
(B) $\frac{2 \sqrt{3}+\sqrt{5}}{7}$
(C) $\frac{2 \sqrt{3}-\sqrt{5}}{7}$
(D) $\frac{\sqrt{5}+2 \sqrt{3}}{-7}$

QUESTION FOUR

The diagram shows the graph of $y=f(x)$. Which of the following statements is true?
(A) $\quad f^{\prime}(t)>0$ and $f^{\prime \prime}(t)<0$
(B) $\quad f^{\prime}(t)>0$ and $f^{\prime \prime}(t)>0$
(C) $\quad f^{\prime}(t)<0$ and $f^{\prime \prime}(t)<0$
(D) $\quad f^{\prime}(t)<0$ and $f^{\prime \prime}(t)>0$

QUESTION FIVE

The acceleration of a particle is given by $\ddot{x}=4 \cos 2 t$ where x is the displacement in metres and t is time in seconds. Which of the following is a possible expression for its displacement?
(A) $-2 \sin 2 t$
(B) $2 \sin 2 t$
(C) $\cos 2 t$
(D) $-\cos 2 t$

QUESTION SIX

Which of the following is the derivative of $y=\frac{e^{7 x}}{e^{3 x}}$?
(A) $4 e^{4 x}$
(B) $e^{4 x}$
(C) $\frac{7 e^{3 x} e^{7 x}+3 e^{3 x} e^{7 x}}{e^{9 x}}$
(D) $\frac{3 e^{3 x} e^{7 x}-7 e^{7 x} e^{3 x}}{e^{9 x}}$

QUESTION SEVEN

A particle moves so that its displacement in metres from the origin at time t seconds is given by $x=20 t-5 t^{2}$. At what time is it stationary?
(A) 0 seconds
(B) 2 seconds
(C) 4 seconds
(D) 6 seconds

QUESTION EIGHT

How many terms are in the series $31+44+57+\cdots+226$?
(A) 4
(B) 13
(C) 15
(D) 16

QUESTION NINE

Given that $\int_{0}^{4}(x+k) d x=12$ and k is a constant, what is the value of k ?
(A) 1
(B) -1
(C) 0
(D) 8

QUESTION TEN

The point E lies on the side $A B$ of the rhombus $A B C D$ such that $A D=D E$. The angle $A D E$ is 2α and the angle $E D B$ is α. Find the value of α.
(A) 45°
(B) 30°
(C) 18°
(D) 15°

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Integrate $\frac{3}{x}$ with respect to x.
(b) Factorise $3 x^{2}-7 x+2$.
(c) Solve $\frac{5 x-8}{x}=1$.
(d) Find the equation of the tangent to the curve $y=x^{3}+4$ at the point $(1,5)$.
(e) Differentiate $y=\cos (6 x+5)$.
(f) Find the exact value of θ such that $\sin 2 \theta=1$, where $0 \leq \theta \leq \pi$.
(g) A sector with radius 5 cm has an arc length of 20 cm . Find the area of the sector.
(h) Find the limiting sum of the series $\frac{17}{3}+\frac{17}{9}+\frac{17}{27}+\cdots$.

SGS Trial 2014 Form VI Mathematics 2 Unit Page 7
QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks
(a)

The diagram shows the points $A(-2,0), B(3,5)$ and the point C which lies on the x-axis. The point D also lies on the x-axis such that $B D$ is perpendicular to $A C$.
(i) Show that the gradient of $A B$ is 1 .
(ii) Find the equation of the line $A B$.
(iii) What is the size of $\angle B A C$?
(iv) The length of $B C$ is 13 units. Find the length of $D C$.
(v) Calculate the area of $\triangle A B C$.
(vi) Calculate the size of $\angle A B C$, to the nearest degree.
(b) A particle moves on a horizontal line so that its displacement $x \mathrm{~cm}$ to the right of the origin at time t seconds is given by the function

$$
x=\frac{1}{3} t^{3}-6 t^{2}+27 t-18 .
$$

(i) Find the velocity function.
(ii) When is the particle stationary?
(iii) Find the acceleration function.
(iv) When is the acceleration zero?
(v) Where is the particle when the acceleration is zero?
(c) A company starts with 60 employees. At the beginning of each subsequent year the number of employees increases by 15%.
(i) Find a formula for the number of employees at the beginning of the nth year.
(ii) In which year did the number of employees first exceed 120 ?
(a) (i) Find the values of m for which the equation $m x^{2}-4 x+m=0$ has real roots.
(ii) (α) For what values of m does the equation $m x^{2}-4 x+m=0$ have one root only?
(β) Find this root for each value of m in (α).
(b) The rate of increase in the number of bacteria N in a culture after t hours is proportional to the number present. This can be represented by the differential equation $\frac{d N}{d t}=k N$. Initially there are 1000 bacteria present and two hours later there are 1080.
(i) Show that $N=1000 e^{k t}$, where k is a constant, is a solution to the differential

$$
\text { equation } \frac{d N}{d t}=k N
$$

(ii) Find the exact value of k.
(iii) Find the number of bacteria present after a further two hours.
(iv) At what time will the culture have doubled its initial size?
(c) Suppose that $f^{\prime}(x)=\sin 2 x$ and $f(\pi)=1$.
(i) Find the function $f(x)$.
(ii) Find the exact value of $f\left(\frac{\pi}{3}\right)$.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks

The quadrilateral $A B C D$ has diagonals $A C$ and $B D$ which intersect at P.
It is known that $A D=B C$ and $A C=B D$.
Copy the diagram into your answer booklet.
(i) Prove that the triangles $A B C$ and $B A D$ are congruent.
(ii) Show that triangle $A B P$ is isosceles.
(iii) Hence show that triangle $C D P$ is isosceles.
(iv) Show that $A B$ is parallel to $C D$.
(b) (i) Find the gradient of the tangent to $y=\sin x$ at the origin.
(ii) Draw the graphs of $y=\sin x, y=\frac{2}{3} x$ and the tangent in part (i). Draw your three graphs on the same set of axes for $0 \leq x \leq \pi$.
(iii) For what values of m does the equation $\sin x=m x$ have a solution in the domain $0<x<\pi$?

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.
(a)

The diagram above shows the graph of the function $y=\cos 3 x$. Find the total area bounded by $y=\cos 3 x$ and the x-axis from $x=0$ to $x=\frac{\pi}{3}$.
(b) If α and β are the roots of the quadratic equation $5 x^{2}-x-3=0$, find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
(iv) $\frac{1}{\alpha}+\frac{1}{\beta}$
(c)

The diagram shows the graph of the function $y=\log _{e}(x+3)$. The graph crosses the axes at A and B as shown.
(i) Write down the coordinates of B.
(ii) Write x as a function of y.
(iii) Find the exact value of the volume generated when the shaded region $A O B$ is rotated about the y-axis.

QUESTION FIFTEEN (Continued)
(d) Consider the function given by $y=\sin ^{2} x$.
(i) Copy and complete the following table in your answer booklet.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
y					

(ii) Use Simpson's rule with five function values to find an approximation to

$$
\int_{0}^{\pi} \sin ^{2} x d x
$$

The Exam continues on the next page
(a) A company borrows $\$ 800000$ to update its car fleet. The interest rate is 12% p.a. compounded monthly. It pays off the loan by 24 equal monthly instalments. The first instalment is paid one month after the loan is taken out.
Let A_{n} be the amount owing after n instalments are paid. Let M be the amount of each instalment.
(i) Show that the amount owing after two months is $A_{2}=816080-M(2 \cdot 01)$.
(ii) Show that $M=\frac{8000 \times 1 \cdot 01^{24}}{1 \cdot 01^{24}-1}$.
(iii) Hence calculate M to the nearest dollar.
(iv) After paying ten instalments, the company decides to increase its repayments to $\$ 60000$ each month. Find the total number of months it takes the company to pay off its debt.
(b) A van is to travel 1000 kilometres at a constant speed of $v \mathrm{~km} / \mathrm{h}$. When travelling at $v \mathrm{~km} / \mathrm{h}$, the van uses fuel at a rate of $\left(6+\frac{v^{2}}{50}\right)$ litres per hour. The truck company pays $\$ 1.50$ per litre for fuel and pays each of the two drivers $\$ 30$ per hour while the van is travelling.
(i) Let the total cost of fuel and the drivers' wages for the trip be C dollars. Show that

$$
C=\frac{69000}{v}+30 v .
$$

(ii) The van must take no longer than 12 hours to complete the trip, and speed limits require that $v \leq 110$.
At what speed v should the van travel to minimise the cost C ?

END OF EXAMINATION

SGS Trial 2014 Form VI Mathematics 2 Unit Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Question One

A

B \bigcirc
C

D \bigcirc

Question Two

A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

$\mathrm{A} \bigcirc$
B \qquad
C

D

Question Four

A

B \bigcircD

Question Five

A \bigcirc
BD \bigcirc

Question Six
$\mathrm{A} \bigcirc$
B
C

D \bigcirc

Question Seven

A \bigcirc
B \bigcircD \bigcirc

Question Eight

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Nine

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten

A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Sydney Grammar School

2014
Trial Examination
FORM VI
MATHEMATICS 2 UNIT
Friday 1st August 2014

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

Question One

AB
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two
A
B
C
D ○

Question Three
A \bigcirc
B \bigcirc
C
D \bigcirc

Question Four

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
DO

Question Five

AB \bigcirc
C
D

Question Six

A
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A \bigcirc
B
C
D \bigcirc

Question Eight

A \bigcirc
$B \bigcirc$
$\mathrm{C} \bigcirc$
D

Question Nine
A
$\mathrm{B} \bigcirc$
C \bigcirc
D ○

Question Ten

A \bigcirc
BC
D \bigcirc

Solutions 24 Trial 2014

1. -2β

2, $5.30 C$.
3. $(\sqrt{5}+2 \sqrt{3})(\sqrt{5}-2 \sqrt{3})=5-12=-7$

$$
\frac{\sqrt{5}-2 \sqrt{3}}{-7} \text { or } \frac{2 \sqrt{3}-\sqrt{5}}{7}
$$

0
4. D
5. D
6.

$$
\begin{aligned}
y & =e^{7 x}<e^{-3 x} \\
& =e^{4 x} \\
y^{\prime} & =4 e^{4 x}
\end{aligned}
$$

A
7.

$$
\begin{aligned}
& x=20 t-5 t^{2} \\
& \dot{x}=20-10 t=0
\end{aligned}
$$

B
8. $A P a=3!\quad d=13 \quad T_{n}=226$.

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
226 & =31+(n-1) 13 \\
& =31+13 n-13 \\
226 & =18+13 n \\
13 n & =108 \\
n & =16 .
\end{aligned}
$$

D
9.

$$
\begin{aligned}
& \int_{0}^{4}(x+h) d x=12 \\
& \left.\frac{x^{2}}{2}+k x\right]_{0}^{4}=12 \\
& \frac{16}{2}+4 k=12 \\
& A k=12-8 \\
& A=4 \\
& h=1
\end{aligned}
$$

10.

11.
a) $\int \frac{3}{x} d x=3 \log _{e} x+c \quad \backsim(c$ not required $)$
b) $3 x^{2}-2 x+2=(3 x-1 x-2)$ va
c)

$$
\begin{aligned}
5 x-8 & =x \\
4 x & =8 \\
x & =2
\end{aligned}
$$

d)

$$
\begin{aligned}
y & =x^{3}+4 \\
\frac{d y}{d x} & =3 x^{2} \\
x=1, \quad m & =3 \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =3(x-1) \\
y-5 & =3 x-3 \\
y & =3 x+2
\end{aligned}
$$

e)

$$
\begin{aligned}
y & =\cos (6 x+5) \\
\frac{d y}{d x} & =-6 \sin (6 x+5)
\end{aligned}
$$

f)

$$
\begin{aligned}
\sin 2 \theta & =1 \\
2 \theta & =\frac{\pi}{2} \\
\theta & =\pi
\end{aligned}
$$

(g)

$$
\begin{aligned}
l & =\lambda \theta \\
20 & =5 \theta \\
A & =\frac{1}{2} r^{2} \theta, \quad(r \theta=20, r=5) \\
& =\frac{1}{2} \times 5 \times 20 \\
& =50 \mathrm{~cm}^{2}
\end{aligned}
$$

h)

$$
\begin{aligned}
& \frac{12}{3}+\frac{12}{9}+\frac{12}{27}+\cdots \\
& \begin{aligned}
G P, a & =\frac{12}{3}, \quad r=\frac{1}{3} \\
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{\frac{12}{3}}{1-\frac{1}{3}} \\
& =\frac{\frac{3}{3}}{\frac{2}{3}} \\
& =\frac{12}{3} \times \frac{3}{2} \\
& =\frac{12}{2}
\end{aligned}
\end{aligned}
$$

12.

(i)

$$
\begin{aligned}
\frac{5}{8} m & =\frac{y_{1}-y_{1}}{x_{1}-x_{2}} \\
& =\frac{5-0}{3--2} \\
& =1
\end{aligned}
$$

11)

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-0 & =1(x+2) \\
4 & =x+2
\end{aligned}
$$

111) $\angle B A C=45^{\circ}$
112)

$$
\begin{aligned}
& \overbrace{D}^{\beta} \ll \\
& D C^{2}=13^{2}-5^{2} \\
& D C=12 u
\end{aligned}
$$

V)

$$
\begin{aligned}
(A C) & =2+3+12=17 \\
\text { erea } & =\frac{2}{2} \times 17 \times 5 \\
& =42.5 U^{2}
\end{aligned}
$$

41). $\quad \sin \angle D B C=\frac{12}{13}$

$$
\angle D B C=67^{\circ} 23^{\prime}
$$

$$
\quad \angle A B D=45^{\circ}
$$

$$
\text { so } \begin{aligned}
\angle A B C & =45^{\circ}+67^{\circ} 23^{\prime} \\
& =112^{\circ} 23^{\prime} \\
& \simeq 1120^{\circ}
\end{aligned}
$$

(6R) Here the sene rule.
b) $\quad x=\frac{1}{3} t^{3}-6 t^{2}+27 t-18$
(i) $\quad \dot{x}=t^{2}-12 t+27$
(ii) $\quad t^{2}-12 t+27=0$

$$
(t-3 x t-9)=0
$$

$t=3$ and 9 sec
(III) $x=2 t-12$.
(IV) $t=6$ seconds
(v) $\quad x=\frac{1}{3} \times 6^{3}-6 \times 6^{2}+27 \times 6-18$ $=0 \mathrm{~cm}$.
at is at the origen
c) (i)

$$
\begin{aligned}
& N_{2}=60(1.15) \\
& N_{n}=60(1.15)^{n-1}
\end{aligned}
$$

(il)

$$
\begin{gathered}
60(1.15)^{n-1}=120 \\
(1.15)^{n-1}=2
\end{gathered}
$$

60

$$
\begin{gathered}
60(1.15) \quad 60 \operatorname{lot} 5)^{2} \quad 60(1.15)^{3} 60(1.15)^{4} \begin{array}{c}
60(1.15)^{5} \\
120.65
\end{array} \\
(n-1) \log 1.15=\log 2 \\
n \log 1.15-\log 1.15=\log 2 \\
n \log 1+15=\log 2+\log 1.15 \\
n=\frac{\log 2+\log 1.15}{\log 1.15}
\end{gathered}
$$

$O R$

$$
=3.5 .959 \ldots
$$

Guess/chark
During fast year 60
11 Ind yo $60(1.15)$

$$
\begin{array}{ll}
\text { ard yr } & 60(1.15)^{2} \\
4^{4} \text { yr } & 60(1.15)^{2} \\
5^{4} \text { yr } & 60(1.15)^{4}=104.94 \\
6^{4} \text { yr } & 60(1.15)^{5}=120.68
\end{array}
$$

The number of employees exceeds 120 in the $6^{\text {th }}$ year.

Q13.
a). (i) $m x^{2}-4 x+m=0$
for mal roos $\Delta \geqslant 0$.

$$
\begin{aligned}
\Delta= & 16-4 m^{2} \geqslant 0 \\
& 4\left(4-m^{2}\right) \geqslant 0 .
\end{aligned}
$$

 m.

$$
\Delta \geqslant 0 \text { for }-2 \leq m \leq 2 \text {. }
$$

(ii) ($) ~ m x^{2}-4 x+m=0$.

Lor one root, $\Delta=0$.
also coclua
subo in mo
solve equ.

$$
\begin{aligned}
16-4 m^{2} & =0 \\
m & =2 \text { or }-2 .
\end{aligned}
$$

(β)

$$
\begin{aligned}
x= & =\frac{b}{2 a} \\
& =\frac{4}{2 m}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
m=2, & x=\frac{4}{4}=1 \\
m=-2 & x=\frac{4}{-4}=-1
\end{array}\right\}
$$

\square need bolt
b)

$$
\begin{gathered}
\frac{d N}{d t}=k N \\
t=0, N_{0}=1000 \\
t=2, N_{2}=1080
\end{gathered}
$$

(i)

$$
\left.\begin{array}{rl}
N & =1000 e^{k t} \\
\frac{d N}{d t} & =k 1000 e^{k t} \\
& =k \mathrm{~N}
\end{array}\right\}
$$

(II)

$$
\begin{gathered}
N=1000 e^{h t} \\
t=2, \quad 10.80=1000 e^{2 k} \\
e^{2 k}=1.08 \\
2 k=\ln 1.08 \\
h=\frac{1}{2} \ln 1.08
\end{gathered}
$$

$$
\begin{aligned}
\text { or } e^{2 k} & =\frac{27}{25} . \\
2 k & =\frac{22}{25} \\
k & =\frac{1}{2} \ln \frac{27}{25}
\end{aligned}
$$

(III)

$$
\begin{aligned}
t=4, \quad N & =1000 e^{2 \ln 1.08} \\
& =1000 \times 1.08^{2} \\
& =166.4 \\
& \simeq 1166
\end{aligned}
$$

iv) fend t when $N=2000$

$$
\begin{aligned}
2000 & =\log 0 e^{k t} \\
2 & =e^{k t} \\
k t & =\ln 2
\end{aligned}
$$

$$
t=\ln 2 \div \frac{1}{2} \ln 1.0 \delta
$$

$\simeq 18$ horers ofter entel tinn:
(c) $\quad f^{\prime}(x)=\sin 2 x, \quad f(\pi)=1$.
(i) $f(x)=\int \sin 2 x d x$.

$$
=-\frac{1}{2} \cos 2 x+C
$$

$$
\begin{aligned}
& x=\pi, \quad 1 \\
&=-\frac{1}{2} \cos 2 \pi+c \\
& 1=-\frac{1}{2}+c \text { so } \quad c=\frac{3}{2} \\
& f(x)=-\frac{1}{2} \cos 2 x+\frac{3}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f\left(\frac{\pi}{3}\right) & =-\frac{1}{2} \cos \frac{2 \pi}{3}+\frac{3}{2} \\
& =-\frac{1}{2} \times\left(-\frac{1}{2}\right)+\frac{3}{2} \\
& =\frac{1}{4}+\frac{3}{2} \\
& =\frac{7}{4}
\end{aligned}
$$

Q 14.
a)

(i) In $\triangle A B C, \triangle B A D$.
$A B$ is common.
$B C=A D$, gwen
$A C=B Q$ graen
$\therefore \triangle A B C \equiv \triangle A B D, 555$.
$\sqrt{\text { need }}$ reason
(ii) Matchiry angles en conoprrect braybles are equal

$$
\therefore \angle A B D=\angle D A B
$$

so $\triangle A P B$ is voscebs sunce it has tevo equal angls.
(11) How $A C=D B$ gevei
$A P=B P$ siden opposite equen anglesen $\triangle A P B$.
So $A C-A P=B D-B P$.
le $P D=P C$ and $\triangle D P C$ is isoscefo.
(ceon also show $\angle D=C C$).
(v) $\angle A P B=\angle D P C$, verleals oppos te So $\angle P A B+\angle A B P=\angle P D C+\angle P C D$, anyec sume of $\triangle A P B, \triangle D P C$ are 1808 But bott are isorule'.

So $\angle A B P=\angle P D C \quad$ L
$\left.\begin{array}{l}\text { But there are alternate } \\ \text { So } A B / / D C\end{array}\right\}$
(b) (i)

$$
\text { (i) } \quad \begin{aligned}
\quad y & =\sin x \\
\frac{d y}{d x} & =\cos x \\
x=0, & m
\end{aligned}=\cos 0 .
$$

(can just slate $m=1$).

(III) $\quad 0<m<1$.

Q15
a)

$$
\begin{aligned}
A & =2 \int_{0}^{\frac{\pi}{6}} \cos 3 x d x \\
& =\frac{2}{3}[\sin 3 x]_{0}^{\frac{\pi}{6}} \\
& =\frac{2}{3}\left(\sin \frac{\pi}{2}-\sin 0\right) \\
& =\frac{2}{3} u^{2}
\end{aligned}
$$

b) $5 x^{2}-x+3=0$
(i) $\alpha+\beta=\frac{1}{5}$
(ii) $\alpha \beta=-\frac{3}{5}$
(III)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\frac{1}{25}+\frac{6}{5} \\
& =\frac{31}{25}
\end{aligned}
$$

(4)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \\
& =\frac{\frac{1}{5}}{-\frac{3}{5}} \\
& =\frac{1}{5} \times \frac{-5}{3} \\
& =-\frac{1}{3}
\end{aligned}
$$

(a) (i) B is $(0, \ln 3)$.
(ii)

$$
\begin{aligned}
& y_{y}=\ln (x+3) \\
& e^{y}=x+3 \\
& x=e^{y}-3
\end{aligned}
$$

(iii)

$$
\begin{aligned}
V & =\pi \int_{0}^{\ln 3} x^{2} d y \\
& =\pi \int_{0}^{\ln 2}\left(e^{y}-3\right)^{2} d y \\
& =\pi \int_{0}^{\ln 3} e^{2 y}-6 e^{y}+9 d y \\
& =\pi\left[\frac{1}{2} e^{2 y}-6 e^{y}+9 y\right]_{0}^{\ln 3} \\
& =\pi\left[\left(\frac{1}{2} \times 9-6 \times 3+9 \ln 3\right)-\left(\frac{1}{2}-6+0\right)\right] \\
& =\pi\left(4 \frac{1}{2}-18+9 \ln 3+5 \frac{1}{2}\right) \\
& =\pi(-8+9 \ln 3) .
\end{aligned}
$$

(d) $\quad y=\sin ^{2} x$.
(i)

(II)

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2} x d x & =\frac{\pi}{6}\left(0+\frac{4}{2}+1+1+\frac{4}{2}+0\right) \downarrow \\
& =\frac{\pi}{12} \times 6 \\
& =\frac{\pi}{2} \quad u^{2}
\end{aligned}
$$

Q16
(a)
i)

$$
\begin{aligned}
A_{1} & =800000(1.01)-M \\
A_{2} & =800000(1.01)^{2}-M(1.01)-M \\
& =800000(1.01)^{2}-M(1.01+1) \\
& =800000(1.01)^{2}-M(2.01)
\end{aligned}
$$

(i)

$$
A_{24}=800000(1.01)^{24}-\mu\left(1.01^{23}+1.01^{22}+\cdots+1\right)
$$

whontron en pard $M=0$
So $800000(1.01)^{24}-M\left(1.01^{23}+1.01^{22}+\cdots+1\right)=0$

- need to show GP for thes $m \mathrm{k}$,

$$
\begin{aligned}
& 800000(1.01)^{24}=\frac{M\left(1.01^{24}-1\right)}{0.01} \\
& M=\frac{800000(1.01)^{24} \times 0.01}{(1.01)^{24}-1} \\
& \begin{array}{l}
\text { ored to see } \\
\text { Ancuration some of it }
\end{array} \\
&=\frac{8000(1.01)^{24}}{(1.01)^{24}-1}
\end{aligned}
$$

111) $M \approx \$ 37659$
v).

$$
\begin{aligned}
A_{10} & =800000(1.01)^{10}-37659\left(\frac{1.01^{10}-1}{0.01}\right) \\
& =\$ 489701
\end{aligned}
$$

So we need to pay thes off witt

$$
\begin{aligned}
& M=\$ 60000 \\
& 0=489701(1.01)^{n}-60000\left(\frac{1.01^{n}-1}{0.01}\right) \text {. } \\
& 489701(1.01)^{n}=6000000\left(1.01^{n}\right)-6000000 . \\
& (1.01)^{n}(6000000-489201)=6000000 \\
& (1.01)^{n}=\frac{6000000}{5510299} \\
& =1108887 \text {. } \\
& n=\frac{\ln (1.05557)}{\ln 1.01} \\
& =8.5 \\
& \simeq 9 \quad \text { hementis. }
\end{aligned}
$$

It take 19 montts to pay the delot.
(b) (i) Time for trep $=\frac{1000}{v}$ hes

Druers wages $=\frac{30 \times 1000}{2} \times 2$
No of litres of feul $=\$ 1,50 \times \frac{1000}{v} \times\left(6 \times \frac{v^{2}}{50}\right)$

$$
\begin{aligned}
& =\frac{1500}{v} \times\left(6 \times \frac{v^{2}}{50}\right) \\
& =\frac{9000}{v}+30 v
\end{aligned}
$$

$$
\begin{aligned}
\text { So Total } & =\frac{60000}{v}+\frac{9000}{v}+30 v \\
C & =\frac{69000}{v}+30 v \text { dollors. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& C=69000 v^{-1}+30 v \\
& \frac{d c}{d u}=-69000 v^{-2}+30
\end{aligned}
$$

$=0$ at stationony point

$$
\begin{aligned}
\frac{69000}{u^{2}} & =30 \\
u^{2} & =2300 \\
u & =\sqrt{2300} \\
& \simeq 48 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Now if $u=\sqrt{2300}$, then $t=\frac{1000}{\sqrt{2300}}$ kno

$$
\simeq 20.8 \text { hevers. }
$$

Thes es too long, we must temk no longer then 12 hoves.

We want $\frac{1000}{2} \leq 12$

$$
\begin{aligned}
& v \geqslant \frac{1000}{12} \\
& v \geqslant 83 \frac{1}{3} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
y / v=83 \frac{1}{2}, \quad C & =\frac{69000}{83 \frac{1}{2}}+30 \times 83 \frac{1}{3} \\
& =\$ 3328 \\
v=110, \quad C & =\frac{69000}{110}+30 \times 110 \\
& =\$ 3927
\end{aligned}
$$

cheik coneauity:

$$
\begin{array}{r}
\frac{d^{2} c}{d v^{2}}=2 \times 69000 v^{-3}>0 \\
\text { for all } w>0
\end{array}
$$

So $v=48$ km/kr guves a menimum turning point, and C is inexeas ung after $v=4 \delta$. Ab v unreases, e crerebes, so, the menmum C that satrifee the condition is $v=83 \frac{1}{3} \mathrm{~km} / \mathrm{hr}$.

