Sydney Grammar School

FORM VI

MATHEMATICS 2 UNIT

Tuesday 9th August 2016

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11 - 16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Reference sheet

Examiner

- Candidature - 88 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What are the solutions of $x^{2}-3 x+1=0$?
(A) $x=\frac{3 \pm \sqrt{5}}{2}$
(B) $x=\frac{-3 \pm \sqrt{13}}{2}$
(C) $x=\frac{3 \pm \sqrt{13}}{2}$
(D) $x=\frac{-3 \pm \sqrt{5}}{2}$

QUESTION TWO

What is the limiting sum for the infinite geometric series $12-6+3-\ldots$?
(A) 24
(B) 8
(C) -8
(D) -12

QUESTION THREE

What is the derivative of $\frac{2}{x}$?
(A) $2 \ln x$
(B) $\ln 2 x$
(C) $-\frac{2}{x^{2}}$
(D) $\frac{2}{x^{2}}$

QUESTION FOUR

Which of the following is a primitive of $e^{2 x}$?
(A) $(2 x+1) e^{2 x+1}$
(B) $2 e^{2 x}$
(C) $\frac{e^{2 x+1}}{2 x+1}$
(D) $\frac{e^{2 x}}{2}$

QUESTION FIVE

What is the value of x in the diagram above?
(A) 66
(B) 76
(C) 64
(D) 86

QUESTION SIX

Simplify $\log _{4} 54-2 \log _{4} 3$.
(A) $\log _{4} 9$
(B) $\log _{4} 48$
(C) $\log _{4} 6$
(D) 1

QUESTION SEVEN

The graph of $y=\sin 2 x$ is drawn. How many solutions does the equation $\frac{1}{6} x=\sin 2 x$ have?
(A) 3
(B) 4
(C) 7
(D) 8

QUESTION EIGHT

Consider the points $A(1,-2)$ and $B(3,6)$. What is the equation of the perpendicular bisector of $A B$?
(A) $y-2=-\frac{1}{4}(x-2)$
(B) $y-2=4(x-2)$
(C) $y-4=-1(x-1)$
(D) $y+2=-\frac{1}{4}(x-1)$

QUESTION NINE

What is the greatest value of $\frac{20}{4 \sin ^{2} \theta+2 \cos ^{2} \theta}$ for $0 \leq \theta \leq \frac{\pi}{2}$?
(A) 10
(B) 5
(C) 20
(D) $\frac{20}{6}$

QUESTION TEN

Which of the following is a correct simplification of $\frac{\cos (\pi-x)}{\cos \left(\frac{\pi}{2}-x\right)}$?
(A) $\cos \frac{\pi}{2} x$
(B) $-\tan x$
(C) $-\cot x$
(D) $\tan x$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Calculate $3 e^{1.5}$ correct to 3 decimal places.
(b) Find the gradient of the line $3 y-2 x=6$.
(c) Factorise $9 a^{2}-16$.
(d) Differentiate $x^{3} e^{x}$.
(e) Differentiate $(3+\sin x)^{4}$.
(f) Solve the inequation $5-2 x \geq 14$.
(g) Solve $|2 x-5|=7$.
(h) Find the coordinates of the focus of the parabola $(x-2)^{2}=8 y+16$.
(i) Solve $2 \sin \theta=-1$ for $0 \leq \theta \leq 2 \pi$.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) Make y the subject of the equation $x=\log _{3} y$.
(b) Find $\int \frac{4 x^{3}}{2+x^{4}} d x$.
(c) Differentiate $\frac{x}{\sin x}$.
(d) Evaluate $11+16+21+\cdots+101$.
(e) The quadrilateral $A B C D$ has vertices $A(0,4), B(4,8), C(-1,-4)$ and $D(-5,-8)$.
(i) Show that $A B C D$ is a parallelogram.
(ii) Find the equation of line $B C$, leaving your answer in the form $a x+b y+c=0$.
(iii) Find the perpendicular distance from A to line $B C$.
(iv) Find distance $B C$.
(v) Hence find the area of $A B C D$.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks
(a)

(i) Prove that $\triangle A B C \| \triangle D E C$ in the diagram above.
(ii) Find the value of x, giving reasons.
(b)

Find the shaded area in the diagram above.
(c) A person walks on the true bearing of 050° for 20 km from point P and stops at point A. Another person walks for 30 km on a bearing of 110° from point P and stops at point B.
(i) Represent this information on a neat diagram.
(ii) Find the distance $A B$ to the nearest kilometre.
(iii) Find the bearing of A from B to the nearest degree.
(d) The volume V is the number of litres of water in a tank at time t minutes. Water is flowing into the tank at a rate given by $\frac{d V}{d t}=\frac{4}{2 t+1}$ litres per minute. At time $t=0$ the water begins to flow into an empty tank. How much water is in the tank after 5 minutes, to the nearest tenth of a litre?
(e) Use the trapezoidal rule with 3 function values to estimate $\int_{1}^{3} 2^{x} d x$.
(a) Differentiate $\log _{e}\left(e^{x}+2\right)$.
(b) A sum of $\$ 20000$ is invested at a fixed rate of interest, compounded annually. After 5 years the principal has grown to $\$ 28567$.

Find the annual rate of interest to the nearest tenth of one percent.
(c)

The sector, shown in the diagram above, has an area of 36 square units and a radius of 3 units. Find the arc length ℓ.
(d) Solve the equation $\tan ^{2} \theta+\sqrt{3} \tan \theta=0$ for $0 \leq \theta \leq 2 \pi$.
(e) A particle is moving in a straight line with velocity given by $\dot{x}=3 t^{2}-9 t$ where t is measured in seconds and x is measured in metres. Its displacement from the origin is initially 10 metres.
(i) Find the displacement x as a function of t.
(ii) Find the displacement when the acceleration is zero.
(iii) Find the average speed during the first 4 seconds.

QUESTION FIFTEEN (15 marks) Use a separate writing booklet. Marks
(a) Find the volume formed when $y=\sec 2 x$ is rotated about the x-axis from $x=0$ to $x=\frac{\pi}{8}$.
(b) Find $\int(\sqrt[3]{x-9})^{2} d x$.
(c) The population P of a town is growing at a rate proportional to its size at any time, so that $\frac{d P}{d t}=k P$, for some constant k. At the beginning of 2010 the town's population was 23000 and at the beginning of 2016 its population had grown to 28000 .
(i) Show that $P=A e^{k t}$ satisfies the equation $\frac{d P}{d t}=k P$.
(ii) Find the value of A.
(iii) Find the value of k.
(iv) Estimate, to the nearest hundred, what the population will be at the beginning of 2025 .
(v) During which year will the population be double the size it was at the beginning of 2010 ?
(d) A person borrows $\$ 400000$ and makes regular monthly repayments of $\$ M$. The interest rate is 6% per annum compounded monthly. The loan is taken over a period of 20 years. Let A_{n} be the amount owing after n months, just after a repayment has been made.
(i) Find an expression for A_{2}.
(ii) Find the monthly payment M to the nearest cent.

QUESTION SIXTEEN (15 marks) Use a separate writing booklet. Marks
(a) Consider the function $y=x^{5}-80 x$.
(i) Find the x-intercepts.
(ii) Find the stationary points and determine their nature.
(iii) Find the point of inflexion.
(iv) Draw a neat sketch of the function, showing the above information.
(b)

A large window is constructed in the shape of a rectangle with a semicircle on top, as in the diagram above. The glass forming the semicircle is opaque and the glass forming the rectangle is clear. The height of the rectangle is x metres and the radius of the semicircle is r metres. The perimeter of the entire window is 12 metres.
(i) Show that $x=6-\frac{\pi}{2} r-r$.
(ii) The window is constructed so that the area of the rectangle, made of clear glass, is maximised.

$$
\text { Show that } r=\frac{6}{\pi+2}
$$

(c) The cubic function $y=a x^{3}+b x^{2}+c x+d$ has two stationary points and one point of inflexion.

Prove that the x-coordinate of the point of inflexion is located at the average of the x-coordinates of the two stationary points.

END OF EXAMINATION

Sydney Grammar School

2016
Trial Examination
FORM VI
MATHEMATICS 2 UNIT
Tuesday 9th August 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A \bigcirc
B
C

D \bigcirc

Question Two

AB \bigcirc
C
D \bigcirc

Question Three

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A \bigcirc
B \bigcirc
C
D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

A
BD \bigcirc

Question Eight

A \bigcirc
B \bigcirc
C

D \bigcirc

Question Nine

A \bigcirc
B
C
D \bigcirc

Question Ten

A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

SOLVTION TO UNIT TRIAL SGS 2016
Question 1

$$
\begin{aligned}
& x^{2}-3 x+1=0 \\
& x=\frac{3 \pm \sqrt{9-4}}{2} \\
& x=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

Qvestran 2

$$
\begin{align*}
S_{\infty} & =\frac{a}{1-r} \\
S_{\infty} & =\frac{12}{1--\frac{1}{2}} \\
& =12 \times \frac{2}{3} \\
& =8 \tag{B}
\end{align*}
$$

Question 3

$$
\begin{aligned}
y & =2 x^{-1} \\
y^{\prime} & =-2 x^{-2} \\
& =-\frac{2}{x^{2}}
\end{aligned}
$$

Questron 4

$$
\begin{equation*}
\int e^{2 x} d x=\frac{1}{2} e^{2 x}+c \tag{D}
\end{equation*}
$$

Question 5

$$
\begin{gathered}
32+20+232+x=360^{\circ} \\
286 \pm x=360 \\
x=76 \quad(B)
\end{gathered}
$$

$$
\text { 6 } \begin{align*}
& \log _{4} 54-2 \log _{4} 3 \\
= & \log _{4} 54-\log _{4} 9 \\
& =\log _{4} 6 \tag{c}
\end{align*}
$$

1. The line $y=\frac{1}{6} x$
when drown correfully cats the curre 1 fimes. (c)

$$
\begin{array}{rl}
8 & m=\frac{6--2}{3-1}=4 \\
m_{1} & =-\frac{1}{4} M=(2,2)
\end{array}
$$

Equ is

$$
\begin{equation*}
y+2=\frac{-1}{4}(x-) \tag{4}
\end{equation*}
$$

9.

$$
\begin{aligned}
& 4 \sin ^{2} \theta+2 \cos ^{2} \theta \\
= & 2 \sin ^{2} \theta+2 \cos ^{2} \theta+2 \sin ^{2} \theta \\
= & 2+2 \sin ^{2} \theta
\end{aligned}
$$

Least when $\sin \theta=0$
Max of expreskion is $\frac{20}{2}=10$
(A)

$$
\text { 10 } \begin{aligned}
& \frac{\cos (\pi-x)}{\cos \left(\frac{\pi}{2}-x\right)} \\
= & \frac{-\cos x}{\sin x} \\
= & -\cot x
\end{aligned}
$$

QUESTION ELEVEN
(a)

$$
\begin{aligned}
& 3 e^{1.5} \\
= & 13.445\left(3 d_{l}\right)
\end{aligned}
$$

(h) $(x-2)^{2}=4(y+4)$

$$
a=4, \quad v=(2,-4)
$$

(b) $3 y-2 x=6$

$$
y=\frac{2}{3} x+2
$$

Gradient is $\frac{2}{3}$
(c)

$$
\begin{gathered}
9 a^{2}-16 \\
=(3 a-4)(3 a+4)
\end{gathered}
$$

(d)

$$
y=x^{3} e^{x}
$$

$u v$

$$
y^{\prime}=u v^{\prime}+v u^{\prime}
$$

$$
=x^{3} e^{x}+3 x^{2} e^{x}
$$

$$
=x^{2} e^{x}(x+3)
$$

(e)

$$
\begin{aligned}
& y=(3+\sin x)^{4} \\
& y^{\prime}=4(3+\sin x)^{3} \cos x
\end{aligned}
$$

(f)

$$
\begin{gathered}
5-2 x \geqslant 14 \\
-2 x \geqslant 9 \\
x \leqslant-4.5
\end{gathered}
$$

(9) $\quad|2 x-5|=7$

$$
2 x-5=7 \text { or } 2 x-5=-7
$$

$$
x=6 \text { or } x=-1
$$

Questron 12
(a)

$$
\begin{aligned}
& x=\log _{3} y \\
& y=3^{x}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \frac{4 x^{3}}{2+x^{4}} d x \\
= & \ln \left(2+x^{4}\right)+c
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =\frac{x}{\sin x}-u \\
y^{\prime} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{\sin x \cdot 1-x \cos x}{\sin ^{2} x}
\end{aligned}
$$

(d)

$$
\begin{gathered}
T_{n}=101 \\
a+(n-1) d=101 \\
11+(n-1) 5=101 \\
11+5 n-5=101 \\
5 n=95 \\
n=19 \\
S_{n}=\frac{n}{2}(a+l) \\
S_{19}=\frac{19}{2}(11+101) \\
=1064
\end{gathered}
$$

(e)

(1) Let $M=\bmod p o i n t$ of $A C$.

$$
M=\left(\frac{0+-1}{2}, \frac{4+-4}{2}\right)=\left(-\frac{1}{2}, 0\right)
$$

Mod point of $B D=\left(-\frac{1}{2}, 0\right)$
So diagonals bisect each other
So $A B C D$ is a porallelogions
(ii) $m(B C)=\frac{8--4}{4-1}=\frac{12}{5}$

Bye of line $B C$ is

$$
\begin{aligned}
& y+4=\frac{12}{5}(x+1) \\
& 5 y+20=12 x+12
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 12 x-5 y-8=0 \\
d_{1} & =\left|\frac{\left.A x_{1}+B y_{1}+C\right)}{\sqrt{A^{2}+B^{2}}}\right| \\
= & \frac{|12 \times 0-5 \times 4-8|}{\sqrt{12^{2}+(-5)^{2}}}=\frac{28}{13}
\end{aligned}
$$

(iv)
(v)

$$
\begin{aligned}
\text { Area } & =b \times h \\
& =13 \times \frac{28}{13}=28
\end{aligned}
$$

Ovestron 13
a (i) $\angle A C B$ is common

$$
\angle B A C=\angle E D C=90^{\circ}
$$

$\triangle A B C \| \triangle E C$ (AAA)
(11)

$$
\begin{aligned}
\frac{x}{x+3} & =\frac{5}{6}\left(\begin{array}{c}
\text { corr espondang } \\
\text { matching sides in th } \\
\text { similar } s^{\prime}
\end{array}\right) \\
6 x & =5 x+15 \\
x & =15
\end{aligned}
$$

(b)

$$
\begin{aligned}
A & =\int_{a}^{b} y_{1}-y_{2} d x \\
& =\int_{0}^{4}-\frac{1}{2} x+4-x^{\frac{1}{2}} d x \\
& =\left[-\frac{x^{2}}{4}+4 x-\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{4} \\
& =-\frac{16}{4}+16-\frac{2}{3} \times 8-[0] \\
& =\frac{20}{3} u^{2}
\end{aligned}
$$

(c)
(1)

(ii)

$$
\begin{aligned}
A B^{2} & =20^{2}+30^{2}-2 \times 20 \times 30 \cos 60^{\circ} \\
A B^{2} & =1300 \\
A B= & =\sqrt{700}
\end{aligned}=26.4575 \quad \text { (to nearest km) }
$$

(III)

$$
\begin{aligned}
\cos \theta & =\frac{30^{2}+(26.4575)^{2}-20^{2}}{2 \times 30 \times 26.4575} \\
\theta & =40.89=41^{\circ} \text { to nearest devoice } \\
\text { Bearing } & =360^{\circ}-70+\theta \\
& =331^{\circ} \text { (poorest deane) }
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{4}{2 t+1} \\
& V=4 \frac{\ln (2 t+1)}{2}+C \\
& V=2 \ln (2 t+1)+C
\end{aligned}
$$

when

$$
\left.\begin{array}{l}
t=0 \\
v=0
\end{array}\right\} \quad 0=2 \ln 1+c
$$

- Must show calculation oof C_{I}

When $t=5 \quad V=2 \ln 11$

$$
=4.795 \ldots
$$

$=4.8 \mathrm{~L}$ (to neovest tenth of a litre)
(v)

x	1	2	3
y	2	4	8

$$
\begin{aligned}
\int_{1}^{3} 2^{x} d x & =\frac{2-1}{2}(2+4)+\frac{3-2}{2}(4+8) \\
& =9
\end{aligned}
$$

Question. 14
(a)

$$
\begin{aligned}
& y=\ln \left(e^{x}+2\right) \\
& y^{\prime}=\frac{e^{x}}{e^{x}+2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P=A\left(1+\frac{r}{100}\right)^{n} \\
& 28567=2000\left(1+\frac{r}{100}\right)^{5} \\
&\left(1+\frac{r}{100}\right)^{5}=\frac{28567}{20000} \\
& 1+\frac{r}{100}=\sqrt[5]{\frac{28567}{20000}} \\
& 1+\frac{r}{100}=1.0739 \ldots \\
& \frac{r}{100}=0.0739 \\
& r=7.39 \ldots
\end{aligned}
$$

So rate is 7.4%
(c)

$$
\begin{aligned}
& A=\frac{1}{2} r^{2} \theta=36 \\
& \frac{1}{2} \times 9 \times \theta=36 \\
& \quad \theta=8 \\
& l=r \theta \\
& =3 \times 8 \\
& =
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \tan ^{2} \theta+\sqrt{3} \tan \theta=0 \text { for } 0 \leqslant \theta \leqslant 2 \pi \\
& \tan \theta(\tan \theta+\sqrt{3})=0 \\
& \tan \theta=0 \text { ar } \tan \theta=-\sqrt{3} \\
& \theta=0, \pi, 2 \pi \text { or } \theta=\frac{2 \pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

(e)

$$
\begin{array}{ll}
\text { (1) } & \\
& x=3 t^{2}-9 t \\
& x=t^{3}-\frac{9}{2} t^{2}+c \\
t=0 & \\
x=10 & \\
x=0-0+c \\
& \\
& =10 \\
& x=t^{3}-\frac{9}{2} t^{2}+10
\end{array}
$$

(II)

$$
\ddot{x}=6 t-9
$$

$$
\ddot{x}=0 \quad t=\frac{3}{2}
$$

when $\quad t=\frac{3}{2}$

$$
\begin{aligned}
& x=\left(\frac{3}{2}\right)^{3}-\frac{9}{2} \times\left(\frac{3}{2}\right)^{2}+10 \\
& x=\frac{27}{8}-\frac{81}{8}+\frac{80}{8} \\
& x=\frac{26}{8}=\frac{13}{4}
\end{aligned}
$$

(iii) The particle con change direction when $\dot{x}=0$

$$
\begin{aligned}
& 3 t^{2}-9 t=0 \\
& 3 t(t-3)=0 \\
& t=0 \text { or } t=3
\end{aligned}
$$

$t=0$,

$$
\begin{array}{ll}
t=0, & x=10 \\
t=3, & x=27-\frac{9}{2} \times 9+10=-3.5
\end{array}
$$

$$
t=4, \quad x=64-\frac{9}{2} \times 16+10=2
$$

Total distance travelled $=13.5+5.5=19$

$$
\underset{\text { Average speed }}{\text { Aver first } 4 \text { sees }}=\frac{19}{4}=4.75 \mathrm{~m} / \mathrm{s}
$$

Question 15
(a)

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x \\
& =\pi\left[\frac{\tan 2 x}{2}\right]_{0}^{\frac{\pi}{8}} \\
& =\frac{\pi}{2}\left[\tan \frac{\pi}{4}-\tan \theta\right] \\
& =\frac{\pi}{2} \operatorname{mon}^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int(\sqrt[3]{x-9})^{2} d x \\
= & \int(x-9)^{\frac{2}{3}} d x \\
= & \left(\frac{x-9}{\frac{5}{3}}\right)^{\frac{5}{3}}+C \\
= & \frac{3}{5}(x-9)^{\frac{5}{3}}+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
P & =A e^{k t} \\
\frac{d P}{d t} & =k A e^{k t} \\
\frac{d P}{d t} & =k P
\end{aligned}
$$

In 2010
(ii) $\quad P=A e^{k t}$
$\operatorname{In} 2010, t=0$

$$
\begin{array}{lr}
t=0 & 23000=A e^{0} \\
P=23000 & A=23000
\end{array}
$$

(iii) In $2016 \quad t=6$

$$
\begin{aligned}
P=28000 \quad & 28000=23000 \mathrm{e} \\
& K \\
& =\frac{1}{6} \ln \left(\frac{28}{23}\right) \quad V \\
& \doteqdot 0.032785 \ldots
\end{aligned}
$$

(iv)

$$
P=23000 e^{15 k}
$$

$$
p=37600 \text { (to nearest minded) }
$$

(v)

$$
\begin{array}{cc}
P=23000 e \\
t=? & 46000 \\
P=46000 & e^{k t}=2300 e^{k t} \\
(\text { doubled }) & k t=\ln 2 \\
& t=\frac{1}{k} \ln 2 \\
& t=21 \cdot 14 \cdots
\end{array}
$$

Doubles during the 22 nd year

$$
\text { ce } 2031 .
$$

(c)
(1)

$$
\begin{aligned}
& A_{1}=400,000 \times 1.005-M \quad 6 \% \text { pa } \\
& A_{2}=(400,000 \times 1.005-M) 1.005-M^{\text {monthly }}
\end{aligned}
$$

* Must show
3 terms.
(ii)

$$
\begin{aligned}
& A_{2}=400,000 \times 1.005^{2}-M(1+1.005) * \\
& A_{n}=400,000 \times 1.005^{n}-M\left(1+1.005+1.005^{2}\right. \\
&+\cdots+(1.005)^{n-1} 23 \\
& A_{240}=400000 \times(1.005)^{240}-M(1+1.005+\cdots+1.005
\end{aligned}
$$

But $A_{240}=0_{240}$
So $\quad 400,000 \times 1.005^{240}=\frac{\operatorname{Ma}\left(r^{n}-1\right)}{r-1}$

$$
\begin{gathered}
400,000 \times 1.005^{240}=M \times 1 \frac{\left.1.005^{240}-1\right)}{0.005} \\
M=\$ 2865.72
\end{gathered}
$$

Question 16
(a)

$$
y=x^{5}-80 x
$$

(1) x intercepts where $y=0$

$$
\begin{aligned}
& x^{5}-80 x=0 \\
& x\left(x^{4}-80\right)=0 \\
& x=0, \sqrt[4]{80},-\sqrt[4]{80}
\end{aligned}
$$

(ii) $y^{\prime}=5 x^{4}-80$
stat pts where $y^{\prime}=0$

$$
\begin{aligned}
& 5 x^{4}=80 \\
& x^{4}=16 \\
& x= \pm 2 \\
& y^{\prime \prime}=20 x^{3}
\end{aligned}
$$

When $\quad x=2, y^{\prime \prime}=160>0$
Min pt at (2, -128)
When $x=-2, \quad y^{\prime \prime}=-160<0$ Max pt at $(-2,128)$
(iii) Possible point of inflexion where $y^{\prime \prime}=0$ Table of values for $y^{\prime \prime}$ uh $x=0$

x	-1	0	1	
$y^{\prime \prime}$	-20	0	20	

There is a chore in concavity at $x=0$
So $(0,0)$ is a point of inflexion

(b).
(1)

$$
\begin{aligned}
& P=2 r+\pi r+2 x \\
& 12=2 r+\pi r+2 x \\
& x=6-\frac{\pi}{2} r-r
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =2 r x \\
& =2 r\left(6-\frac{\pi}{2} r-r\right) \\
A & =12 r-\pi r^{2}-2 r^{2} \\
A^{\prime} & =12-2 \pi r-4 r \\
A^{\prime \prime} & =-2 \pi-4<0
\end{aligned}
$$

Mox value where $A^{\prime}=0$

$$
\begin{gathered}
12-2 \pi r-4 r=0 \\
6-\pi r-2 r=0 \\
6=\pi r+2 r \\
r=\frac{6}{\pi+2}
\end{gathered}
$$

(c) $\quad y=a x^{3}+b x^{2}+c x+d$

$$
y^{\prime}=3 a x^{2}+2 b x+c
$$

Let x co-ords of the stationary pts be α and β
α and β are roots of

$$
\begin{aligned}
& 3 a x^{2}+2 b x+c=0 \\
& \alpha+\beta=\Sigma \text { roots } \\
& \alpha+\beta=-\frac{2 b}{3 a}
\end{aligned}
$$

Average of α and $\beta=\frac{\alpha+\beta}{2}=\frac{-b}{3 a}$
We ore told that there is a point of inflexion.
This occur when $y^{\prime \prime}=0$

$$
\begin{gathered}
6 a x+2 b=0 \\
x=\frac{-b}{3 a}
\end{gathered}
$$

which is the average of α and β.

