

SYDNEY GRAMMAR SCHOOL

2019 Trial Examination

FORM VI

MATHEMATICS 2 UNIT

Monday 12th August 2019

General Instructions

- Reading time 5 minutes
- Writing time 3 hours
- Write using black pen.
- NESA-approved calculators and templates may be used.

Total - 100 Marks

• All questions may be attempted.

Section I - 10 Marks

- Questions 1–10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Reference Sheet
- Candidature 90 boys

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Examiner PKH

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the value of $\log_e 5 + \log_e 50$, correct to two decimal places?

- (A) 5.52
- (B) 2.08
- (C) 4·01
- (D) 2·40

QUESTION TWO

What is the derivative of $y = e^{2x+1}$?

(A)
$$y' = (2x + 1)e^{2x+2}$$

(B) $y' = e^{2x+1}$
(C) $y' = 2e^{2x+1}$
(D) $y' = \frac{1}{2}e^{2x+1}$

QUESTION THREE

What is the equation of the line parallel to the y-axis passing through the point (-3, 5)?

- (A) x = -3
- (B) x = 5
- (C) y = -3
- (D) y = 5

QUESTION FOUR

What is the natural domain of the function $y = \frac{1}{\sqrt{2x+1}}$?

(A)
$$x > -\frac{1}{2}$$

(B) $x < -\frac{1}{2}$
(C) $x \le -\frac{1}{2}$
(D) $x \ge -\frac{1}{2}$

Examination continues next page ...

QUESTION FIVE

Which of the following is equivalent to $\frac{1}{2\sqrt{5}+3}$?

(A)
$$\frac{2\sqrt{5}+3}{-11}$$

(B) $\frac{2\sqrt{5}-3}{17}$
(C) $\frac{2\sqrt{5}-3}{11}$
(D) $\frac{2\sqrt{5}+3}{11}$

QUESTION SIX

Which expression is equivalent to $3^x \times 2^x + 3x^{-2}$?

(A)
$$6^{2x} + \frac{1}{3x^2}$$

(B) $6^x + \frac{1}{9x^2}$
(C) $6^{2x} + \frac{3}{x^2}$
(D) $6^x + \frac{3}{x^2}$

QUESTION SEVEN

What are the correct solutions to the equation $e^{10x} - 11e^{5x} + 10 = 0$?

(A)
$$x = 1$$
 and $x = 10$

(B)
$$x = 1$$
 and $x = \log_e 10$

(C)
$$x = 0$$
 and $x = \log_e 10$

(D)
$$x = 0$$
 and $x = \frac{1}{5} \log_e 10$

QUESTION EIGHT

How many solutions does the equation $6x\left(\frac{1}{x}+1\right) = 0$ have?

- (A) 0
- (B) 1
- (C) 2
- (D) 3

QUESTION NINE

Which is a correct expression for $-x^2 - 6x - 5$?

(A) $4 + (x+3)^2$ (B) $(x-3)^2 - 4$ (C) $4 - (x+3)^2$ (D) $-4 + (x+3)^2$

QUESTION TEN

How many solutions does the equation $5\sin 2x = x$ for $0 \le x \le 2\pi$ have?

- (A) 2
- (B) 3
- (C) 4
- (D) 5

End of Section I

Examination continues next page

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

- (a) Solve the inequation $2 3x \le 11$.
- (b) For the arithmetic sequence $12, 6, 0, \ldots$ find the 41st term.
- (c) Differentiate:

(i)
$$y = 3x - \frac{1}{x}$$

(ii) $y = \tan(2x + 1)$

(iii)
$$y = \ln(x^2 + 1)$$

(d)

Find the value of x in the diagram above.

(e)

Find the value of x giving reasons.

Examination continues overleaf ...

2

Marks

QUESTION ELEVEN (Continued)

(f) Find:

(i)
$$\int (x^2 - x + 2) dx$$

(ii)
$$\int \sin(3x + 1) dx$$

1

(g) Simplify
$$\frac{x^4 - x^2}{x - 1}$$
.

(h) Differentiate
$$y = \frac{2x}{1+x^2}$$
.

Examination continues next page ...

QUESTION TWELVE (15 marks) Use a separate writing booklet.

- (a) Sketch the following functions, showing any intercepts or asymptotes. Sketch on separate axes.
 - (i) y = -2x + 3

(ii)
$$y = \frac{1}{x - 4}$$

(iii) $y = 2^{-x} + 2$

(b)

In the diagram above, ABCD is a parallelogram.

- (i) Find the co-ordinates of C if C lies in the first quadrant.
- (ii) Find the equation of line DC.
- (iii) Find the distance from B to line DC.
- (iv) Find the area of parallelogram ABCD.
- (v) Is ABCD a rhombus? Give a reason for your answer.

Marks

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks (a) Solve the equation $5^{1-x} = 25^x$. 1 (b) A geometric series has common ratio of $-\frac{2}{3}$ and a limiting sum of 12. $\mathbf{2}$ Find the first term. (c) Let R be the region bounded by the line y = x and the parabola $y = 4x - x^2$ 3 (i) Sketch and shade the region R and find the x co-ordinates of the points of intersection of the line and the parabola. $\mathbf{2}$ (ii) Find the area of the region R. (d) Two men leave point P. One travels 12 km on a bearing of 40° T and stops at point A. The second man travels 15 km on a bearing of 280°T and stops at point B. 1 (i) Represent this situation on a diagram. 1 (ii) Find the size of angle APB. 2 (iii) Find the distance AB correct to the nearest 100 metres. 3 (iv) Find the true bearing of A from B to the nearest degree. **QUESTION FOURTEEN** (15 marks) Use a separate writing booklet. Marks (a) Solve the equation $2x^2 - 2x = 0$. 1 $\mathbf{2}$ (b) Solve |2x - 3| = x. (c) (i) Sketch $y = \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. 1 (ii) Find the equation of the normal to the curve $y = \tan x$ at the point where $x = \frac{\pi}{4}$. $\mathbf{2}$ (d) The quadratic equation $2x^2 - 3px + 36 = 0$ has roots α and 2α , where $\alpha > 0$. (i) Find the value of α . 1 1 (ii) Find the value of p. (e) A parabola has equation $y^2 - 4y = 8x + 4$. (i) Find the focal length and the vertex. $\mathbf{2}$ $\mathbf{2}$ (ii) Sketch the parabola showing the focus and directrix. (f) Solve the equation $\cos \theta - 2 \cos \theta \sin \theta = 0$ for $0 \le \theta \le 2\pi$. 3

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.

- (a) Use Simpson's rule with 3 function values to approximate $\int_1^3 2^{x^2} dx$.
- (b) A particle is moving in a horizontal line and its displacement x metres from a fixed point O is given by $x = \frac{t^3}{3} \frac{t^2}{2} 6t + 11$ where t is measured in seconds. Find the average speed over the first 4 seconds.
- (c) A solid of revolution is formed when the region bounded by $y = \ln x$, the x-axis and $x = e^2$ is rotated about the y-axis.
 - (i) Show the region to be rotated on a set of axes.
 - (ii) Find the volume of the solid of revolution in exact form.
- (d) A university student plans to finish university in two years time. He wishes to travel overseas and thinks he will need \$15000. He decides to invest M at the start of each month in an investment account earning 3% per annum compounded monthly. Let A_n be amount in the account at the end of n months.
 - (i) Find A_2 in terms of M.
 - (ii) Show that $A_n = 401M(1 \cdot 0025^n 1)$.
 - (iii) Find the amount he must invest each month to reach his target of \$15000. Give your answer to the nearest dollar.

2]
3	
	-

	1	
[2	
ſ	2	1

Marks

 $\mathbf{2}$

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.

- (a) The population P of a town was 12500 at the beginning of the year 2000. Its population is growing at a rate proportional to its size, that is $\frac{dP}{dt} = kP$, where t is the time in years after 2000. At the beginning of 2015 its population was 16000.
 - (i) Find the value of k.
 - (ii) What will the population be at the beginning of 2021?

 $x \mathrm{km}$

A racetrack of perimeter one kilometre is formed from two equal semi-circles and a rectangle as shown in the diagram above. The straight sides have length x km and the circles have radius r km.

(i) Show that
$$x = \frac{1 - 2\pi r}{2}$$
.

- (ii) Show that the area of the rectangle is $A = r 2\pi r^2$.
- (iii) Find the values of x and r for which the area of the rectangle is maximised.

Marks

 $\mathbf{2}$

 $\mathbf{2}$

$\mathbf{QUESTION}\ \mathbf{SIXTEEN}\ (\mathbf{Continued})$

(c) The diagram below shows a rectangle ABCD with q < p. Let $\theta = \angle ADE$.

1

 $\mathbf{2}$

3

(i) Show that
$$\cos \angle ADE = \frac{q}{\sqrt{p^2 + q^2}}$$
.

(ii) Show that
$$AE = \frac{pq}{\sqrt{p^2 + q^2}}$$
.

(iii) Show that the area of triangle
$$AEG$$
 is $\frac{pq(p^2 - q^2)}{4(p^2 + q^2)}$.

End of Section II

END OF EXAMINATION

SGS 2019 FORM VI MATHEMATICS 2'UNIT ED Solvtion Section A (10 morks) 1 Rage 5 + Roy 50 = 5,52 A $6x\left(\frac{1}{x}+1\right)=0$ $2 y = e^{2pc+1}$ x=0 or $\frac{1}{x}=-1$ Not volud x=-1Isolution B y'= 2 e 2x+1 0 $\frac{3}{(-3)^{5}} \qquad (A)$ $\frac{3}{(-3)^{5}} \qquad (A)$ y -x-6x-5 2x+1>0x>-1 (A) 24 $= -(x^{2}+6x+5)$ $= -(3c^{2}+67c+9)+4$ $\frac{5}{2\sqrt{5}+3} = \frac{1}{2\sqrt{5}-3}$ $= -(x+3)^{2} + 4$ $= \frac{2\sqrt{5}-3}{20-9} \qquad \bigcirc \\ = \frac{2\sqrt{5}-3}{11} \qquad \bigcirc \\ \end{bmatrix}$ $= 4 - (x + 3)^{2}$ $\frac{y}{1}$ $6 3^{x} \times 2^{x} + 3x^{2}$ $= 6^{\chi} + \frac{3}{\chi^2}$ $\sin 2x = \frac{1}{5}x$ $7 = 4t e^{5x} = 4t, u^2 - 11t + 10 = 0$ $x = 2\pi$ $\frac{1}{5}2\pi = 1.25$ (u - 10)(u - 1) = 0 $e^{5x} = 10 e^{5x} = 1$ 4 sol stions (c) $y_{c} = \frac{1}{5} \log_{e} \log x = 0$

2 ELEVEN (15 marks) 15 $2-3x \leq 11$ $\frac{5}{5} = \frac{6}{4}$ (d) (a) $-3x \leq 9$ $x \ge -3$ $x = \frac{30}{4}$ \checkmark JC= 72 (b) 12, 6, 0, · · · (e) 2x+ 80=120 a=12, d=-6 / (Ext ongle Th) $T_n = a + (n-1) d$ 2x = 40x = 20 $T_{41} = 12 + 40 \times -6$ = - 2 2 8 / (f) (1) $\int x^2 - x + 2 \delta x$ $= \frac{3C^{3} - x^{2} + 2x + C}{3}$ V (11) Sin (3sc+1) osc $(c) (c) y = 3x - x^{-1} \\ y' = 3 + \frac{1}{2c^2} \sqrt{\frac{1}{2c^2}}$ $= -\frac{1}{2} \cos(3x+1) + C$ $(9) \frac{x^4 - x^2}{x^4 - x^2}$ (ii) y = tan(2x+1)y'= sec (22(+1) × 2 $= x^2 (x^2 - 1)$ = x² (x-1) (x + 1) x-1) (x + 1) x-1 = 2 ser (22+1) V $(iii) y=ln(x^2+1) / (h)$ $y'=\frac{2\pi}{x^2+1}$ $= x^2(x+1)$ $y = \frac{2\pi}{1+x} \frac{1}{2}$ $y' = \frac{2\pi}{1+x} \frac{1}{2}$ $y' = \frac{1}{\sqrt{2}}$ $= \frac{1}{\sqrt{2}} \frac{1}$ = 2(1-2c2) (1+2c2)2

TWELVE (iii) Dist from B to DC Ry (a) (1) shape is $[Ax_i + By_i + C]$ intercepts $(2,5), \sqrt{A^2+B^2}$ N/m $(x_1, y_1) = |6x2 - 5x5 - 30|$ A=6 B = -5 $\sqrt{6^2 + 5^2}$ YA C = -30= 43 (11) (IV) Area of 11 gram brkh Ishope 1DC | × 43 V fint 20=4 1 Jasymptote When x=0 161 × 43][y= 4 (117) = 43 units 2 y=2 (V) IADI = 1 82+12 + 161 シン Adjacent sides are shape + int / asymptote / not equal V (b)(i) AZD BACTOSS 100/ B>C sume 15 So (= (10, 6) / (11) $m(DC) = \frac{rise}{FUn} = \frac{b}{5} \sqrt{}$ Bup of DC 15 y - y, = m(x-x()) $y - 0 = \frac{6}{5}(x - 5)$ y= 6 30 - 6 62c-5y-30=0

** * * * ^{*}

THIRTEEN (a) $5^{1-\chi} = 25^{\chi}$ 1-2c = 2.5c $2c = \frac{1}{3} \sqrt{\frac{1}{3}}$ (ii) <u>LAPB = 120°</u> Sat I-A (6) UN AB = 15 + 12 - 2x 15 x 12 cos 120 $= 225 + 144 + 2 \times 180 \times -1$ $12 = \frac{\alpha}{1+\frac{1}{2}} \sqrt{\frac{1}{1+\frac{1}{2}}}$ = 369 + 180 $12 = \frac{a}{5}$ = 549 $\alpha = 20$ $AB = \sqrt{549} = 23.4 \, km$ $c(i) = \frac{y - x}{4 - x^{2}}$ (IV) See dragram Let O = LABP $\cos \theta = \frac{AB^2 + BP^2 - AP^2}{2 \times AB \times BP} /$ $\cos \theta = 549 + 225 - 12^2$ V correct graphs $0 = 26.3^{\circ}$ 1 correct shooling (11) Points of intersection Benny of A from B V where $\chi = 4\chi - \chi^2$ = 180° - 80° - 26.3° 12-3× × 0 (Note L×BP = 80) x(x-3) = 0 / 2= 74 T (to / (iii) Area = 5³ 4x - x² - x brc = So 3x - x dx / the nearest Mov con also use $= \frac{3x^2}{2} - \frac{x^3}{3} \int_0^3$ $= \frac{27}{2} - 9$ = $\frac{9}{2}$ units Sine rule

FOURTEEN 15 (d) 2x - 3px+36=0 (i) Product of roots $2x^2 - 2x = 0$ (0) $= 2 \alpha^2 = \frac{36}{2}$ $\alpha^2 = \frac{36}{2}$ 2x(x-2)=0X=0 or x=2 V x=3 (x>0) (b) |2x-3| = x2x-3 = x or 2x-3 = -x(ii) substa=3 into the equation x = 3 or x = 118-9p +36=0 u) | /| /| / 54 = 9P P=6 V [OR use Zroots] $\langle \langle \rangle$ (f) con 0 - 2 con 0 sin 0 = 0 (00 0 (1-25in0) = 0/ COTO = O OF SIND = 1 (11) y=tunoc R/ y'= sec x / When $sc = \frac{1}{4}$, $M = scr \frac{1}{4} = 2$ $Q = \frac{11}{2}, \frac{311}{2}, Q = \frac{1}{6}, \frac{511}{6}$ \checkmark $M_1 = -\frac{1}{2} , y = 1$ Equot the normal is $(e) y^2 - 4y = 8x + 4$ $y = 1 = -\frac{1}{2} \left(\frac{x - \pi}{4} \right) \sqrt{(e)} y^2 - 4y = 8x + 8$ $y = -\frac{1}{2} \left(\frac{x - \pi}{4} \right) \sqrt{\frac{y^2 - 4y + 4}{4}} = 8x + 8$ y2-47+4 = 8x+8 1(-2,2) × 5(0,2) (-2,2) × 5(0,2) ×=-4 d x=-4 d $(y-2)^{2} = 4(2)(x+2)/$ focul leng th = 2 Vertex = (-2,2) /

FIF TEEN

15 (a) $A = b - \omega \left[f(a) + 4 f(a+b) + f(b) \right]$ $\int_{1}^{3} 2^{3} dx = \frac{3}{6} \left[f(1) + 4 f(x) + f(3) \right]$ $f(1) = 2 \qquad = \frac{1}{3} \left(2 + 4 \times 16 + 512 \right)$ $f(2) = \frac{1}{6} \left\{ \sqrt{\frac{1}{3}} = \frac{578}{3} = \frac{192.6}{4} \text{ u}^{2} \right\}$ $f(3) = 512 \left\{ \text{Award 1 wrong values} \\ \text{entered into correct formula} \right\}$ (b) $\chi = \frac{t^3}{3} - \frac{t^2}{2} - 6t + 11$ $d_{sc} = t^2 - t - 6$ Velocity zero when t2-t-6=0 (t-3)(t+1) = 0 $t = 3 \text{ or } t = 2 \sqrt{}$ t=0, x=11t=3, x=9-9-18+11When = 20 - 22 2 = -2-2 t = 4, $\chi = 64 - 8 - 24 + 11$ = 1/2 In first 4 secs average speed = distance travelled = 13/2 + 2/2 + 3 (=4.083) = 412 m/serg Accept opprox

In y= ln x (c)oc=ey x=e² x I groph of y= hx I correct region $(\dot{v}) T \left(\frac{\chi_{R}^{2} - \chi_{L}^{2}}{V_{z}} \right) dy$ $= \pi \int_{0}^{2} \frac{4}{e^{2y}} - \frac{2y}{e^{2y}} dy$ $= \pi \left(e^{4}y - \frac{e^{2}y}{2} \right)^{2}$ $=\pi\left(\left(2e^{4}-e^{4}\right)-\left(0-\frac{1}{2}\right)\right)$ $= \overline{11} \left(\frac{3e^4}{4} + \frac{1}{2} \right) units^3 \sqrt{1}$ (d)(i) A1 = 1.0025M A2 = 1:0025 M + 1.0025 M (1)A3= 1.8025M+ 1.0025 M+ 1.0025 M An= (1.0025+1.0025+... 1.0025 M = M × a (r-1) = M x 1.0025 (1.0025 - 1) $\sqrt{=401M(1.0025^{n}-1)}$ $A_{24} = 401M(1.0025^{n}-1) = 15000$ 0.0025 M = \$606 (to represt dollor

SIX TEEN $\frac{dP}{dt} = KP$ (a) 15 P=Poekt Po= 12500 t= 15 P= 16000 16000 = 12800 C K(15) $K = \frac{1}{15} ln \frac{32}{25} \sqrt{\frac{1}{15}}$ (11) When t = 20 P=12, 500 e 3 hog (32) = 12, 500 × (32) 43 ≥ 17370 (neorest 10) / (Accept correct to the nearest hundred, (6) FKM 11) Permeter = 2117 + 22 = x= 1-2017 (11)A = '2r X $(\operatorname{Rectongle}) = 2T\left(\frac{1-2\overline{N}T}{2}\right)$ (upside porobola 59 has max) トーンデナム K 0-1 = 1-411 V A' (11)= -411 < 0 A" Max where A = D 1-4Tit = =0 / $\mathcal{L} = \frac{1}{1}$ 下三五百

S1X TEEN $\begin{array}{cc} (a) & dP = KP \\ (i) & dt \end{array}$ 15 P=Poekt Po = 12500 t= 15 P= 16000 16000 = 12800 CK(15) $K = \frac{1}{15} \ln \frac{32}{25} \sqrt{\frac{1}{25}}$ (ii) When t = 21 $P = 12, 500 e^{\frac{21}{15}} e^{\frac{22}{25}}$ $= 12500 \times (\frac{32}{25}) = 15$ = 17660 (neorest 10) (Accept correct to the nearest hundred) (6) rkm rkm (1)Permeter = 2117 + 22 = 1 x= 1-207 (11) $A = 2r \chi$ $(\text{Rectongle}) = 2T \left(\frac{1-2\pi T}{2} \right)$ (upside porohola so has max) = 1 - 257 e - 1 $A' = 1 - 4 \Pi Y$ (11)= -411 < 0 A" Mox where A = 0 1-4Tir = 0 $\mathcal{K} = \frac{1}{\mathcal{L}}$ 下二六

(c) A P (i) 9 0 В By Pythoyonas $BD = \sqrt{P^2 + 2^2}$ $COD = \frac{q}{\sqrt{p^2 + q^2}}$ Anen A AD = 2Pq (1)Also Arece ADB = 2 AEX DB = 2Py $AE = \frac{PQ}{DB} = \frac{PQ}{\sqrt{p^2 + q^2}}$ (There are other ways to do this) = 1 Jp2+q2 (Py thoyaros) (iii) AG = 1 AC EF = AF - AF $= \frac{1}{4} \left(p^{2} \star q^{2} \right) - \frac{p^{2} \pi^{2}}{2}$ 4 e4+2e292+94 = 4 12 2 $4(p^{2}+y^{2})$ p4-2p2q2+q4 ~ $p^2 - q^2$ $(p^2 + q^2)$ $EG^2 =$ He'+92) $EG = \frac{\left[e^{2} - q^{2}\right]}{2\sqrt{e^{2} + q^{2}}} = \frac{p^{2} - q^{2}}{2\sqrt{e^{2} + q^{2}}}$ since p29 Area DAEG = 2 AEXEG $= \frac{1}{2} \frac{p_{q_{1}}}{\sqrt{p_{1}^{2}+q_{1}}} \times \frac{(p_{1}^{2}-q_{1}^{2})}{2\sqrt{p_{1}^{2}+q_{1}^{2}}}$ 82(12-22) 4 (P2+22)