Name:____

Maths Class:

SYDNEY TECHNICAL HIGH SCHOOL

20 MATHS

TRIAL HIGHER SCHOOL CERTIFICATE

2005

Time allowed: 3 hours plus 5 mins reading time

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet.
- At the end of the examination this examination paper must be attached to the front of your answers.
- All questions are of equal value and may be attempted.
- All necessary working must be shown. Marks will be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary
- Non programmable calculators may be used.

(For markers use only)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total

120

Question 1 (12 marks)

a)	Evaluate $\sin^2 1.7 + \cos^2 1.7$	(1)
b)	Factorise fully $x^4 - 16$	(2)
c)	Find rational numbers a and b such that $4a + b\sqrt{7} = 36 + \sqrt{63}$	(2)
d)	For $3^x = 7$, find x correct to two decimal places	(2)
e)	Solve $\frac{5}{x} = \frac{4}{x-3}$	(2)
f)	i) Sketch $y = x^2 - x - 2$	
	ii) Hence solve $x^2 - x - 2 < 0$	(3)
0		

Question 2 (12 marks) (Start a new page)

A, B and C are the points (0,4), (1,-5) and (6,-2) respectively.

a)	Sketch the triangle ABC on a number plane	(1)
b)	Show that the length of AC is $6\sqrt{2}$ units.	(1)
c)	Show that the line AC has equation $x + y - 4 = 0$	(2)
d)	Show that the perpendicular distance from B to AC is $4\sqrt{2}$ units	(2)
e)	Hence find the area of triangle ABC	(1)
f)	Find the co-ordinates of D if C is the midpoint of the interval BD	(2)
g)	Find the length of the interval AB	(1)
h)	Hence or otherwise find to the nearest degree the size of $\angle BAC$	(2)

Question 3 (12 marks) Start a new page

a) Consider the function $y = x^3 + x$

i) Find
$$\frac{dy}{dx}$$
 (1)

ii) Hence explain why the function is increasing for all values of x (1)

Differentiate with respect to xb)

i)
$$\frac{3}{x^2}$$
 (1)

ii)
$$\frac{\cos 3x}{x}$$
 (2)

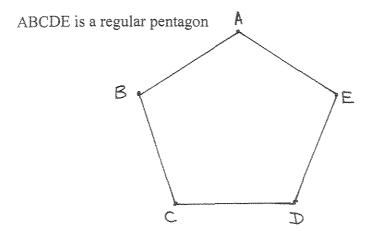
$$iii) \qquad \frac{3}{x^2 + 1} \tag{2}$$

c) Find
$$\int \frac{1}{\sqrt{2x+1}} dx$$
 (3)

d) Solve
$$\log_5 3 = 2\log_5 6 - \log_5 x$$
 (2)

Question 4 (12 marks) Start a new page

a)	An aircraft flies 300 nautical miles from its base B on a bearing of 050° to					
	point Q. It then flies 225 nautical miles due north to point P.					
	i)	Draw a diagram to show this information and find angle $\angle BQP$.	(2)			
	ii) Calculate the distance from the base B to point P to the nearest					
		nautical mile.	(2)			
	iii)	Find the direction the plane must now fly to return to its base	(2)			

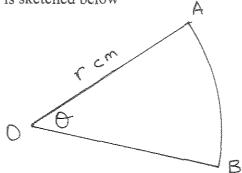


- Find the size of $\angle ABC$ (1) i)
- Prove $\triangle ABC = \triangle AED$ ii) (3)
- Find \angle CAD giving reasons for your answer (2) iii)

b)

Question 5 (12 marks) (Start a new page)

a) The sector OAB is sketched below



- i) Write a formula for the arc length AB in terms of r and θ (1)
- ii) Write a formula for the area of the sector OAB in terms of r and θ (1)
- iii) If the sector has area π cm² and the arc length AB is $\frac{\pi}{4}$ cm find r and θ (2)

b) Solve
$$2\sin 2\theta - 1 = 0$$
 for $0^\circ \le \theta \le 360^\circ$ (4)

c) i) Sketch
$$y = \log_{10} x$$
 (1)

ii) Complete the table below for $y = \log_{10} x$ (leave answers to 3 decimal places) (1)

 x	1	1.5	2	2.5	3
у					

iii) Use Simpsons Rule with five function values from part ii) to estimate

$$\int_{1}^{3} \log_{10} x \, dx$$

Give your answer to 2 decimal places

(2)

a) Let α and β be the roots of the equation $2x^2 - 3x - 4 = 0$. find the values of

i)
$$\alpha + \beta$$
 (1)

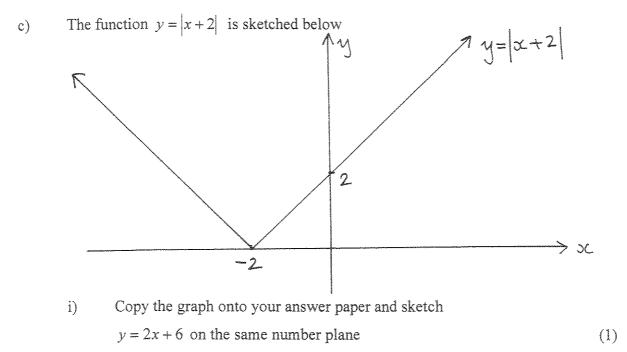
ii)
$$\alpha\beta$$
 (1)

iii)
$$(\alpha + 1)(\beta + 1)$$
 (1)

$$iv) \qquad \alpha^2 + \beta^2 \tag{1}$$

b) A parabola has equation $y^2 - 6y - 3 = 12x$

- i) Write the parabola in the form $(y-k)^2 = 4a(x-h)$ (1)
- ii) Find the co-ordinates of the vertex. (1)
- iii) Sketch the parabola showing the co-ordinates of the focus. (2)



ii) Show the co-ordinates of the point of intersection are
$$(-2\frac{2}{3},\frac{2}{3})$$
 (2)

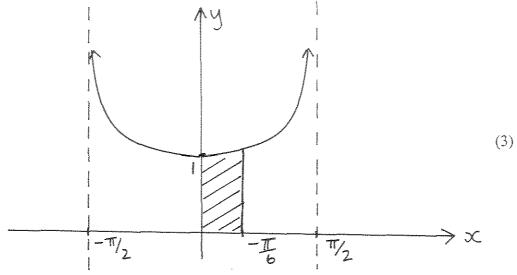
iii) Hence or otherwise solve |x+2| > 2x+6 (1)

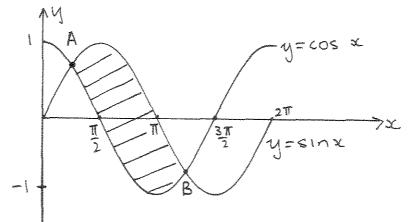
Question 7 (12 marks) (Start a new page)

- a)
- i) Sketch y=3cos2x for $0 \le x \le 2\pi$ (2)
- ii) From the sketch, state how many points of inflexion the curve has in the domain $0 \le x \le 2\pi$ (1)
- b) The diagram below shows the region between the curve $y = \sec x$

and the x axis from x = 0 to $x = \frac{\pi}{6}$

Find the volume generated when this region is rotated around the x axis





i) Show the *x* co-ordinates of the points of intersection

A and B are
$$\frac{\pi}{4}$$
 and $\frac{5\pi}{4}$ respectively. (2)

(4)

ii) Hence find the shaded area.

Question 8 (12 marks) (Start a new page)

a) The function $y = x^3 - 3x^2 - 9x + 1$ is defined in the domain $-4 \le x \le 5$.

- i) Find the co-ordinates of any turning points and determine their nature. (3)
- ii) Find the co-ordinates of any points of inflexion. (1)
- iii) Sketch the function in the domain and label stationary points,
 points of inflexion and end points. (3)
 - iv) Determine the minimum value of the function y in the given domain. (1)

b) For the function
$$y = kx^2 - 4\sqrt{3}x + k - 1$$

i) Find an expression for the discriminant. (1)
ii) For what values of k is the function positive definite? (3)

Question 9 (12 marks) (Start a new page)

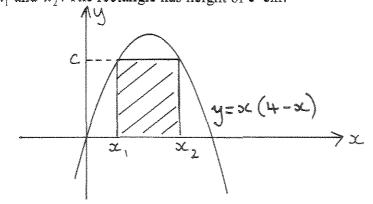
a) i) Find
$$\frac{d}{dx}(\sin^3 x)$$
 (2)

ii) Hence find
$$\int \cos x \cdot \sin^2 x \, dx$$
 (1)

 b) Alan borrows \$130,000 to start a signwriting business. He is charged interest on the balance owing at the rate of 9.75%pa compounded monthly and agrees to repay the loan including interest by making equal monthly instalments of \$M.

i)	How much does Alan owe at the end of the first month just before					
	he makes an instalment?	(1)				
ii)	Write an expression involving M for the total amount owed by Alan					
	just after the second instalment is paid.	(2)				
iii)	Calculate the value of M (to the nearest cent) which will repay the loan					
	after 13 yrs.	(4)				
iv)	In how many months (to the nearest whole month) will the loan be					
	repaid if Alan made instalments of \$1700 per month	(2)				

- a) In a new Quiz show of "The Sky is the Limit", you win \$6 000 for answering the first question correctly, \$14 000 for answering the second question correctly, \$22 000 for answering the third question correctly and so on for the following questions. The prizes form an arithmetic sequence.
 You finish when you answer a question incorrectly. Your total winnings for the contest is the sum of money you win on each question.
 - i) What is the prize money for the 10^{th} question only? (2)
 - ii) How many questions must you correctly answer to exceed
 \$1 000 000 in total winnings? (4)
- b) A rectangle has two vertices on the curve y = x(4-x). The other two vertices are on the x axis in the interval $0 \le x \le 4$ and are called x_1 and x_2 . The rectangle has height of c cm.



- i) Find the length $(x_2 x_1)$ in terms of c and hence show the area of the rectangle is given by $A=2c\sqrt{4-c} cm^2$ (3)
- ii) Show the maximum area of this rectangle is $\frac{32\sqrt{3}}{9}cm^2$. (3)

$$(showing marks)$$

$$STHS TRIAL HSC - MATHS 2U - 2005$$

$$(guestion 1)$$
a) $sin^{1}17 + cos^{1}17 = 1$
b) $x^{h} - ib = (x^{2} - 4)(x^{2} + 4)$
c) $x^{h} - ib = (x^{2} - 4)(x^{2} + 4)$
c) $x^{h} - ib = (x^{2} - 4)(x^{2} + 4)$
c) $4a + b [7 = 3b + 3(7)$
 $(a = 4 - b + 3)$
 $(a = 4 - 2 - 1)$
 $(a = 4)(2 - 6)^{2} + (4 + 2)^{2}$
 $(a = \sqrt{2} - 6)(2 - 6)^{2} + (4 + 2)^{2}$
 $(a = \sqrt{2} - 6)(2 - 6)^{2} + (4 + 2)^{2}$
 $(a = \sqrt{2} - 6)(2$

c) $\left(\left(2x+1 \right)^{-1/2} dx = \frac{(2x+1)^{1/2}}{(2x+1)^{1/2}} + c \right)$ f) Let D(x, y) $= \sqrt{2x+1} + c^{-1}$ $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ y-5 = -2 take off'. for no (3)3+1=12 y-5=-4 d) $\chi = 1^{1}$ $\log_{2} 3 = 2\log_{2} 6 - \log_{2} x$ 3=1 $\log_5 3 = \log_5 \left(\frac{36}{2}\right)$ · D(11,1) ----- $AB = \left[(0-1)^2 + (4+5)^2 \right]$ 5) $3 = \frac{36}{3}$ \bigcirc (2)= 182 units x = 12 $\sin \theta = \frac{4\sqrt{2}}{\sqrt{n}}$ 5 ß QUESTION 4 82 8 = 38.65 a N p=452 .: BAC=390-0 225 nm 15 *(*) (nearest degree) 300 1.115 0 QUESTION 3 BOp=130° (conterior angles i) $dy = 3x^2 + 1$ — () B parallel lines) dol ii) Bp²= 300 + 225²-2×300×225 cos 130° ii) for all values of x, x >0 BP= 477 nat mis (to recrest .: dy 0 .: increasing for obv all sc () V. m)) iii) Let BPQ=0 b) i) $\frac{d}{d\omega} \left(3\omega^{-2} \right) = -6\omega^{-3}$ $\frac{SM\Phi}{300} = \frac{SIN130}{477}$ $= \frac{-6}{x^3} - 0$ $sin \theta = \frac{300 sin 130^{\circ}}{477}$ ii) u= cos 3x V 2 (1)0=28.8° -Q u'= -3 51~3x v'=1 .: Bearing 180° + 28.8° $\frac{dy}{dx} = \frac{-3 x \sin 3 x - \cos 3 x}{x^2}$ (1)= 209° (to nearest degree) $\frac{d}{da} \left(3 \left(\chi^2 + 1 \right)^{-1} \right) = -3 \times 2 \varkappa \left(\chi^2 + 1 \right)^{-2}$ S 29°W (;;; NO $\frac{-6x}{(x^2+1)^2}$ ----(2)

$$\begin{array}{c} p) \quad y^{2} - 6y - 3 = 12x \\ (y - 3)^{2} = 12x + 3 + 9 \\ (y - 3)^{2} = 12x + 12 \\ (y - 3)^{2} = 12x + 12 \\ (y - 3)^{2} = 12x + 12 \\ (y - 3)^{2} = 12(x + 1) \\ (y - 3)^{2} = 1(x + 1) \\ (y - 3)^{2} =$$

*• • •

$$= \left[\left(\frac{1}{12} + \frac{1}{12} \right) - \left(-\frac{1}{12} - \frac{1}{12} \right) \right] = 2$$

$$= \frac{1}{12} - \left(-\frac{2}{12} \right) = 2$$

$$= \frac{1}{12} - \frac{1}{12} - \frac{1}{12} = 2$$

$$= \frac{1}{12} - \frac{1}{12} = 2$$

$$= \frac{1}{12} - \frac{1}{12} - \frac{1}{12} - \frac{1}{12} = \frac{1}{12} = \frac{1}{12} - \frac{1}{12} - \frac{1}{12} = \frac{1}{12} = \frac{1}{12} - \frac{1}{12} - \frac{1}{12} = \frac{1}{12} = \frac{1}{12} - \frac{1}{12} = \frac{1}{12}$$

** * * **