\qquad

SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE

2007

MATHEMATICS

Time Allowed: 3 hours plus 5 mins reading time

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet
- At the end of the examination this examination paper must be attached to the front of your answers
- All questions are of equal vale and may be attempted
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
(For Markers Use Only)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total

Question 1 (12 Marks)

a) Find the value of $\frac{16.2^{2}}{14.7-8.1}$ correct to 3 significant figures
b) Simplify $4 \sqrt{32}-2 \sqrt{8}$ 2
c) Write down the exact value of $\sin \frac{5 \pi}{4}$
d) Simplify $4(2 x+1)-\left(x^{2}+2 x-3\right)$
e) Fully factorise $2 x^{3}-2 y^{3}$ 2
f) Find the primitive of $x^{2}-2 x+\frac{1}{x}$
a) Solve $|1-2 x|>7$
b) Find the exact area of $\triangle P Q R$

Not to scale

c)

Not to scale
The points $\mathbf{0}(0,0) \boldsymbol{A}(5,2)$ and $B(2,5)$ are the vertices of a triangle $A B O$.
(i) Find the distance $\boldsymbol{O A}$ and the distance $\boldsymbol{O B}$
(ii) Show that the equation $A B$ is $x+y-7=0 \quad 2$
(iii) Calculate the perpendicular distance from O to $A B$ 2
(iv) Find the midpoint, M, of $A B \quad 1$
(v) Without any more calculations what is the distance of $O M$, give a reason for answer.
a) Differentiate with respect to x :
i) $y=x^{2}-4 x+1 \quad 1$
ii) $y=\left(e^{2 x}+1\right)^{2}$
iii) $y=x^{2} \cos 2 x$
b) i) Find $\int \frac{4}{4 x+1} d x$
ii) Evaluate $\int_{0}^{\frac{\pi}{4}} 2 \sec ^{2} x d x$
c) The roots of the equation $x^{2}+5 x=7$ are α and β

Find the value of
i) $\alpha+\beta$
ii) $\alpha \beta$
iii) $\quad \alpha^{2}+\beta^{2}$
a) A ship sails from Port A 70 nautical miles due west to Port B. It then proceeds 40 nautical miles on a bearing of $120^{\circ} \mathrm{T}$ to Port C .
i) Find the distance of Port C from Port A (correct to 2 decimal places)
ii) Find the bearing of Port C from Port A (correct to the nearest degree).
b)
 The perimeter of sector AOB is 13.5 cm
i) Find the size of $\angle A O B$, correct to the nearest minute
ii) Find the area of sector $A O B$

In the diagram $A B$ is parallel to $C D$ and $C D \perp \mathrm{BC}$
i) Show that triangle $A X B$ is similar to triangle $C X D$
ii) Given $A B: D C=2: 3$ Show that $9(B X)^{2}=4(X D)^{2}$
a) For the sequence $95,91,87$ find,
i) An expression for the $n t h$ term, $\boldsymbol{T} \boldsymbol{n}$, in its simplest form 2
ii) Which term is the first term less than zero 2
iii) What is the sum of all the terms greater than zero 2

In the diagram given
$\mathrm{AC} / / \mathrm{DE}$ and $\mathrm{AC} / / \mathrm{FH}$
$\angle D E B=145^{\circ}$ and $\angle B G H=125^{\circ}$

Find the size of $\angle E B G$, giving reasons
c) i) For what values of x will a limiting sum exist for the geometric series,

$$
3-12 x+48 x^{2}-, ?
$$

ii) Find the value of x for which the limiting sum is 9 .

Question 6 (12 marks) Start a new page
a) Find the equation of the normal to the curve $y=\ln (2 x+3)$ at the point where $x=-1$.
b) The function $f(x)$ is given by $f(x)=2 x(x-3)^{2}$
i) Find the coordinates of the points where the curve $y=f(x)$ cuts the x -axis
ii) Find the coordinates of any turning points on the curve $y=f(x)$, and determine their nature
iii) Sketch the curve $y=f(x)$ in the domain $-1 \leq x \leq 4$
iv) Hence solve $2 x^{3}-12 x^{2}+18 x-8=0$
a) What is the value of $\log _{2} \sqrt{8}$
b) Given $3 x^{2}+4 x+5 \equiv A(x+1)^{2}+B(x+1)+C$

Find the value of the constants A, B and C
c) Consider the function $f(x)=x \sin ^{2} x$
i) Copy and complete the table below in your writing booklet. Values of $f(x)$ are given to 3 decimal places where appropriate.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$f(x)$	0	0.393	1.571		0

ii) Using Simpson's Rule with five function values, evaluate $\int_{0}^{\pi} x \sin ^{2} x d x$, correct to 2 decimal places.
d) i) Sketch the curve $y=1-\cos 2 x, \quad 0 \leq x \leq 2 \pi$
ii) Find the area bounded by the curve, $y=1-\cos 2 x$, the x - axis and the lines $x=0$ and $x=\pi$
a) Given $\log _{a} x=0.417$ and $\log _{a} y=0.609$ find the value of
i) $\quad \log _{a}(a x)$
ii) $\log _{a} \frac{x^{2}}{y}$
b) The region beneath the curve $y=3 e^{-2 x}+1$ which is above the x-axis and between the lines $x=0$ and $x=1$ is rotated about the x-axis
i) Sketch the region
ii) Find the volume of the solid revolution
c) The price of one gram of gold, $\$ \mathrm{P}$, was studied over the period of t days.
i) Throughout the period of study $\frac{d P}{d t}>0$

What does this say about the price of gold?
ii) If it was noted over this time that the rate of change in the price of gold increased. What does this statement imply about $\frac{d^{2} P}{d t^{2}}$?
a) For what values of k does the equation $x^{2}-(k+2) x+1=0$ have;
i) Equal roots
ii) No real roots
b) The population of a town at the end of t years is given by $P=A e^{k t}$, where A and k are constants.

After 1 year the population is 1060
i) Find the value of A if the population was initially 1020
ii) Find the value of k
iii) Calculate the population after 12 years
iv) What is the rate of increase in the population after 12 years
v) How many years will it take the population to double?
a) Shrek borrows $\$ 1000000$ from the Muffin man, at 7.8% p.a. monthly reducible interest to buy a new swamp in Far-Far away land.

He repays the loan in equal monthly repayments of $\$ 8000$.
i) Write an expression for the amount Shrek owes immediately before the $1^{\text {st }}$ repayment
ii) Show that Shrek owes the Muffin man after n months:

$$
\begin{equation*}
A n=1000000(1.0065)^{n}-8000\left[\frac{1.0065^{n}-1}{0.0065}\right] \tag{3}
\end{equation*}
$$

iii) How many months does Shrek take to repay half the loan to the Muffin man?
b) A new grain silo with a capacity of $4000 \mathrm{~m}^{3}$ is to be constructed on a farm. The silo is a fully enclosed cylinder and is to be constructed from concrete.

To Save costs, the farmer wants to minimise the surface area of the silo.
i) Write an expression for the volume of the silo in terms of radius (r) and height (h)
ii) Write an expression for the surface area (A) of the concrete silo in terms of r
iii) Show that $\frac{d A}{d r}=\frac{4 \pi r^{3}-8000}{r^{2}}$
iv) Hence, find the dimensions of the silo to minimise the surface are of the silo. Express your dimensions to 1 decimal place.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x . \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

2007-Maths Trial
Question
a) 39.7636
(1)

$$
\begin{equation*}
=39.8 \tag{3}
\end{equation*}
$$

b) $4 \sqrt{32}$

$$
\begin{align*}
-2 \sqrt{8} & =16 \sqrt{2}-4 \sqrt{2} \tag{1}\\
& =12 \sqrt{2} \tag{1}
\end{align*}
$$

c)

$$
\begin{align*}
\sin \frac{5 \pi}{4} & =-\sin \pi / 4 \tag{1}\\
& =-1 / \sqrt{2} \tag{0}
\end{align*}
$$

d)

$$
\text { 1) } \begin{aligned}
& 4(2 x+1)-\left(x^{2}+2 x-3\right) \\
= & 8 x+4-x^{2}-2 x+3 \\
= & 6 x-x^{2}+7
\end{aligned}
$$

$$
\text { e) } \begin{align*}
& 2 x^{3}-2 y^{3} \\
&= 2\left(x^{3}-y^{3}\right) \\
&= 2(x-y)\left(x^{2}+x y+y^{2}\right) \tag{i}\\
& \text { f) } \int x^{2}-2 x+1 / x d x \\
&= x^{3}-x^{2}+\ln x+c
\end{align*}
$$

Question 2
a) $|1-2 x|>7$

$$
\begin{array}{rlrl}
1-2 x & \gg & -1+2 x & >7 \\
-2 x & >6 & 2 x & >8 \\
x & <-3 & (1) & x \tag{1}
\end{array}>4
$$

b)

$$
\begin{align*}
A & =1 / 2 a b \sin C \\
& =1 / 2 \times 7 \times 8 \times \sin 60^{\circ} \\
& =1 / 2 \times 7 \times 8 \times \sqrt{3} / 2 \tag{ד}\\
& =14 \sqrt{3} \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

(i)

$$
\begin{align*}
& d O A=\sqrt{29} \tag{0}\\
& d O B=\sqrt{29} \tag{0}
\end{align*}
$$

$$
\text { (1) } \begin{aligned}
& \operatorname{MAB}=\frac{2-5}{5-2} \\
&=-1 \\
& \therefore \quad y-5=-1(x-2) \\
& y-5=-x+2 \\
& x+y-7=0
\end{aligned}
$$

(ii) $p t(0,0)$ line $x+y-7=0$

$$
\begin{align*}
d_{1} & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \tag{1}\\
& =\frac{10+0-7 \mid}{\sqrt{1^{2}+1^{2}}} \\
& =\frac{7}{\sqrt{2}} \tag{1}
\end{align*}
$$

*) Midpt $m(3.5,3.5)$
v) dist om $=\frac{7}{\sqrt{2}}$ as $\triangle A O B$ is
isosceles \therefore om is 1 bisector of $A B$.
(1) \rightarrow must have a suttable reason....

Question 3
a) $1 \cdot \frac{d y}{d x}=2 x-4$

$$
\begin{align*}
4 \cdot \frac{d x}{d x} & =2\left(e^{2 x}+1\right) \cdot 2 e^{2 x} \\
& =4 e^{2 x}\left(e^{2 x}+1\right) \tag{2}
\end{align*}
$$

$$
\text { ni. } \frac{d y}{d x}=\cos 2 x(2 x)+x^{2}(-2 \sin 2 x
$$

$$
\begin{equation*}
=2 x \cos 2 x-2 x^{2} \sin 2 x \tag{2}
\end{equation*}
$$

b) . $\int \frac{4}{4 x+1} d x=\ln (4 x+1)+c$
$\left.\cdots \int_{0}^{\pi / 4} \sec ^{2} d x=2 \tan x\right]_{=}^{\pi / 4}$

$$
\begin{align*}
& =2\left[\tan \frac{\pi}{4}-\tan 0\right] \\
& =2[1-0] \\
& =2 \tag{1}
\end{align*}
$$

c) $x^{2}+5 x-7=0$
$a=1, b=5$
(1)

$$
\begin{align*}
\alpha+\beta & =-b / a \\
& =-5
\end{align*}
$$

$$
\text { (ii) } \alpha \beta=c / a
$$

! 1.

$$
\begin{aligned}
\frac{\sin \alpha}{40} & =\frac{\sin 30^{\circ}}{40.62} \\
\sin \alpha & =0.49236 \ldots \\
\alpha & =29^{\circ} 30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
b \operatorname{cosing} & =270^{\circ}-24030^{\prime} \\
& =240^{\circ} 30^{\prime}
\end{aligned}
$$

b)
ii)

$$
\begin{aligned}
A & =1 / 2 r^{2} \theta \\
& =1 / 2 \times 6^{2} \times 0.25 \\
& =4.5 \mathrm{~cm}^{2}
\end{aligned}
$$

c)

- $\ln \triangle A X B$ and $\triangle C X D$
$\xrightarrow{(1)} \angle B A X=\angle D C X$ (allenate anales)
$\square \angle A X B=\angle C X D$
$\therefore \triangle A \times B$ Ill $\triangle C \times D$ (equiangular) (I
ii) $A B=\frac{X B}{X D} \quad$ corcesponding sides of III ${ }^{\prime}$'s in proportio

Question 4
a)

$$
\begin{align*}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \tag{1}\\
& =(-5)^{2}-2(-7) \\
& =39 \tag{1}
\end{align*}
$$

${ }^{N}$

$$
A C^{2}=70^{2}+40^{2}-2 \times 70 \times 40 \times \cos 30^{\circ}
$$

$$
A C=40.62336 \cdots \cdots
$$

$$
\begin{align*}
& \frac{r /)^{r} \quad 13 \cdot 5 \theta \cdot 2 r+r \theta}{13 \cdot 5=12+6 \theta} \tag{1}\\
& r=6 \\
& 0.25=\theta(\mathrm{rad}) \\
& \theta=0.25 \times \frac{180^{\circ}}{\pi}=14^{\circ} 19^{1} \tag{1}
\end{align*}
$$

Question 5
a) $95,91,87, \ldots$

$$
a=95
$$

$$
\begin{aligned}
& a=95 \quad A P \\
& d=-4
\end{aligned}
$$

1)

$$
\begin{align*}
T_{n} & =a+(n-1) d \tag{3}\\
& =95+(n-1)(-4) \\
& =95-4 n+4 \\
& =99-4 n
\end{align*}
$$

0
11) $\ln <0$
$99-4 n<0$
$4 n>99$
$n>24.75$
$\therefore 25 t h$ term is last negative. (1)
iii) $\dot{\alpha} \alpha 4$ terms $>\overline{0} \quad n=24 \quad \bar{a}=95$

$$
\begin{align*}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
& =\frac{24}{2}(2(95)+23(-4)) \tag{1}\\
& =1176
\end{align*}
$$

(1)
b) $\angle C B G+125^{\circ}=180^{\circ} \quad\left(\left.\begin{array}{c}\text { conquintuior } \\ \text { angles }\end{array} \right\rvert\, I f H\right)$ $\angle C B G=55^{\circ} \quad$ (1) both
$\angle A B E+145^{\circ}=180^{\circ}$ (conintenor $\begin{aligned} & \text { angles } A C \| D E\end{aligned}$ $\angle A B E=35^{\circ}$

$$
\begin{equation*}
35+55+\angle E B G=180^{\circ} \quad \text { (straight) } \tag{1}
\end{equation*}
$$

$$
\angle E B G=90^{\circ}
$$

c) $a=3 \quad t=-4 x$
1)

$$
\begin{aligned}
& \therefore \quad-1<r<1 \\
& -1<-4 x<1 \\
& 1 / 4>x>-1 / 4 \\
& \therefore \quad-1 / 4<x<1 / 4
\end{aligned}
$$

ii)

$$
\begin{array}{r}
S_{\infty}=\frac{a}{1-r} \quad \frac{3}{1+4 x} \\
9(1+4 x)=3 \\
x=-1 / 6
\end{array}
$$

Question 6
c) $\frac{d x}{d x}=\frac{2}{2 x+3}$ ot $x=-1 \quad y=0$

$$
\begin{align*}
& M T=2 \\
& M N=-1 / 2 \tag{D}
\end{align*}
$$

eq:

$$
\begin{gather*}
2 y=-x-1 \tag{0}\\
x+2 y+1=0
\end{gather*}
$$

b)

$$
f(x)=2 x(x-3)^{2}=2 x^{3}-12 x^{2}+18 x
$$

(1) x-int $4=0$
$(0,0)$ and $(3,0)$
(ii) Stat pts $f^{\prime}(x)=0$

$$
\begin{gathered}
f^{\prime}(x)=6 x^{2}-4 x+1 x=0 \\
6(x-3)(x-1)=0 \\
x=3 \quad x=1 \\
y=0 \quad y=8
\end{gathered}
$$

MAX $(1,8)$ । MIN $(3,0)$.
(III) End pts $(-1,-32)$ \& $(4,8)$

v) $2 x^{3}-12 x^{2}+18 x=8$ \therefore

$$
\begin{equation*}
x=1, x=4 \tag{1}
\end{equation*}
$$

Question 7
a) $\log _{2} \sqrt{8}=\frac{1}{2} \log _{2} 8$

1

$$
=\frac{1}{2} \times 3 \log _{2} 2
$$

$$
\begin{equation*}
=1.5 \tag{1}
\end{equation*}
$$

b) $3 x^{2}+4 x+5 \equiv A\left(x^{2}+2 x+1\right)+$ $B x+B+C$
equating

$$
\begin{aligned}
& \begin{array}{l}
3=A \\
4=2 A+B \\
4=6+B \\
B=-2 \\
5=A+B+C \\
5=3-2+C \\
\therefore=4=3, B=-2, C=4
\end{array} \\
& \therefore B, C
\end{aligned}
$$

c) $\left.\frac{\frac{3 \pi}{4}}{} \right\rvert\,$

$$
\text { 11. } h / 3[f+L+4 m]
$$

0

$$
\begin{equation*}
\frac{\pi / 4}{3}[0+1.571+4 \times 0.393] \tag{1}
\end{equation*}
$$

1 $=2.47(2 d p)$

$$
y=1-\cos 2 x
$$

$11 . \int_{0}^{\pi} 1-\cos 2 x d x$

$$
\begin{align*}
& =\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi /} \tag{D}\\
& =\pi-1 / 2 \sin 2 \pi-[0-0]
\end{align*}
$$

Question 8
b) $\log _{4} 4$

$$
\begin{align*}
&=\log _{a} a+\log _{a} x \\
&=1+0.417 \\
&=1.47 \tag{1}
\end{align*}
$$

ii) $\log _{a} \frac{x^{2}}{y}=2 \log _{4} x-\log _{0} y$

$$
=2(0.417)-0.609
$$

11.

$$
\begin{align*}
& \text { 11. }=\pi \int^{4} y^{2} x \tag{1}\\
& =\pi \int_{0}^{1}\left(3 e^{-2 x}+1\right)^{2} d x \tag{1}\\
& =\pi \int_{0}^{1} 9 e^{-4 x}+6 e^{-2 x}+1 d x \\
& =\pi\left[\frac{9}{-4} e^{-4 x}+\frac{6 e^{-2 x}}{-2}+x\right]_{0}^{1} \tag{1}\\
& =\pi\left[\frac{9}{-4} e^{-4}-3 e^{-2}+1-\left(-\frac{9}{4}-3\right)\right] \\
& =\pi\left[-\frac{9}{4} e^{-4}-3 e^{-2}+\frac{25}{4}\right]
\end{align*}
$$

c) $\frac{d P}{d t}>0$ price of gold inveasing
ii) $\frac{d^{2} p}{d t^{2}}>0$

Question 9
a) $x^{2}-(1 x+2) x+1=0$

1) Equal roots $\Delta=0$

$$
\begin{gather*}
b^{2}-4 a c=0 \tag{1}\\
(k+2)^{2}-4(1)(1)=0 \\
k^{2}+4 k+4-4=0 \\
k^{2}+4 k=0 \\
k(k+4)=0 \\
k=0, k=-4 \tag{1}\\
\text { 11) } \quad \Delta<0,-4<k<0 \tag{1}
\end{gather*}
$$

b) $t=0 \quad P=1020$

$$
\begin{equation*}
\therefore A=1020 \tag{1}
\end{equation*}
$$

11. $t=1 \quad P=1060$

$$
\left.\begin{array}{l}
t-1060=1020 e^{k(i)} \\
\frac{1060}{1020}=e^{k} \\
\ln \left(\frac{106}{102}\right)=k \\
k \tag{1}
\end{array}\right)=\ln \left(\frac{106}{102}\right) .
$$

$$
\text { (11) } \begin{aligned}
t & =12 \quad p=? \\
& =1020 e^{k \cdot 12} \quad k=\ln \left(\frac{106}{102}\right) \\
& =1618.335 \cdots
\end{aligned}
$$

v) rate $=\frac{d}{d t}$

$$
\begin{align*}
\frac{d p}{d t} & =k \cdot\left(1020 e^{k t}\right) \quad k=\ln \left(\frac{106}{102}\right) \\
& =62.2513 . \cdots \\
& =62.25 \text { people/45. } \tag{0}
\end{align*}
$$

v) $t=? \quad P=2 A$

$$
\begin{align*}
& 2 A=A e^{k t} \quad k=\ln \left(\frac{106}{102}\right. \\
& 2=e^{k t} \tag{1}\\
& n 2=\operatorname{in} E
\end{align*}
$$

$$
\begin{align*}
\ln 2 & =k \cdot t \\
t & =\ln 2 \div k \\
& =18.0196 \tag{1}\\
& \approx 18 \text { yeas } .
\end{align*}
$$

Question 10
a) manthly repayment $=8000$

Pincipal $=1000000$

$$
\text { rate }=7.8 \% \div 12(\text { monthy })
$$

$$
\begin{equation*}
=0.0065 \tag{1}
\end{equation*}
$$

(1) $1000000(1.0065)$
(i1) $A_{1}=1000000(1.0065)-8000$

$$
A_{2}=A_{1}(1.0065)-8000
$$

$$
=100002(1.0065)^{2}-8000(1.0065)
$$

$$
-8000
$$

$$
A_{n}=1000000(1.0065)^{n-8000}\left[1.0065^{n-1}+1.0065^{n-2}\right]
$$

$$
\begin{equation*}
=1000000(1.0065)^{n}-8000\left[\frac{a\left(r^{n}-1\right)}{r-1}\right] \text { (1) } \tag{1}
\end{equation*}
$$

$$
a=1 \quad 1=1.0065 \quad n=n
$$

$$
=1000000(1.0065)^{n}-8000\left[\frac{1.0065^{n}-1}{0.0065}\right]
$$

$$
\begin{gathered}
500000=100000(1.0065)^{n}-1230769\left[1.0065^{n}-1\right] \\
500000=1000000(1.0065)^{n}-1230769(1.0065)^{n}+ \\
230769(1.0065)^{n}=730769 \\
1.0065^{n}=3.1666 \cdots \\
\log 1.0065^{n}=\log 3.1666 \cdots \cdots \\
n[\log 1.0065]=\log 3.166 \cdots \\
n=\log 3.166 \div \log 1.0065
\end{gathered}
$$

(1)

$$
y=4000 \mathrm{~m}^{3}
$$

$$
v=\pi r^{2} h
$$

(1)

$$
4000=\pi r^{2} h
$$

(i) $\quad B=2 \pi r^{2}+2 \pi r h$
(3)

$$
\begin{align*}
\theta & =2 \pi r^{2}+2 \pi\left[\frac{4000}{\pi r^{2}}\right] \\
& =2 \pi r^{2}+\frac{8000}{r} \tag{0}\\
& =2 \pi r^{2}+8000 r^{-1}
\end{align*}
$$

(iii)

$$
\begin{aligned}
\frac{d A}{d r} & =4 \pi r-8000 r^{-2} 0 \\
& =\frac{4 \pi r^{3}-8000}{r^{2}}
\end{aligned}
$$

ov) Min Surface Area $d A / d r=0$

$$
\begin{array}{r}
\frac{4 \pi r^{3}-8000}{r^{2}}=0 \\
4 \pi r^{3}=8000 \\
r^{3}=\frac{8000}{4 \pi}
\end{array}
$$

$$
r=\sqrt[3]{\frac{2000}{\pi}}
$$

$$
\doteq 8.6025
$$

$$
\doteq 8 \cdot 6 \quad(1 d \rho)
$$

test			
r	8	$8-6025-\cdots$	9
$\frac{d A}{d r}$	1	-	$/$

\therefore dimensions are

$$
r \doteq 8.6 m \quad h=17.2 m
$$

