Sydney Technical High School

Mathematics Department

TRIAL H.S.C. - MATHEMATICS 2 UNIT

AUGUST 2013

General Instructions

- Reading time -5 minutes
- Working Time -180 minutes.
- Approved calculators may be used.
- Write using blue or black pen.
- A table of Standard Integrals is provided at the back of this paper.
- In Question 11-16, show relevant mathematical reasoning and/or calculations.
- Begin each question on a new side of the answer booklet.
- Marks shown are a guide and may need to be adjusted.
- Full marks may not be awarded for careless work or illegible writing.

NAME \qquad

TEACHER \qquad

Total Marks - 100

SECTION 1 Pages 2-5

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes.

SECTION 2 Pages 6-12
90 marks

- Attempt Questions 11-16
- Allow about 2 hours $\mathbf{4 5}$ mins.

Question 1

For what values of k does the equation $x^{2}-6 x-3 k=0$ have real roots?
A. $k \geq-3$
B. $k \leq-3$
C. $\quad k \geq 3$
D. $k \leq 3$

Question 2

For the function $y=f(x), a<x<b$ graphed below:

which of the following is true?
A. $\quad f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$
B. $\quad f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$
C. $\quad f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$
D. $\quad f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$

Question 3

An infinite geometric series has a first term of 8 and a limiting sum of 12 .
What is the common ratio?
A. $1 / 6$
B. $5 / 3$
C. $1 / 2$
D. $1 / 3$

Question 4

What are the domain and range of the function $f(x)=\sqrt{4-x^{2}}$?
A. Domain: $-2 \leq x \leq 2$, Range: $0 \leq y \leq 2$
B. Domain: $-2 \leq x \leq 2$, Range: $-2 \leq y \leq 2$
C. Domain: $0 \leq x \leq 2$, Range: $-4 \leq y \leq 4$
D. Domain: $0 \leq x \leq 2$, Range: $0 \leq y \leq 4$

Question 5

What is the maximum value of $6+2 x-x^{2}$?
A. 6
C. 7
B. 1
D. cannot be determined.

Question 6

The sine curve with amplitude 3 units and period 4π units has equation:
A. $y=4 \sin 3 x$
B. $y=3 \sin 4 x$
C. $y=3 \sin 2 x$
D. $y=3 \sin \frac{x}{2}$

Question 7

The illustrated graph could be:
A. $\quad y=2^{x}$
B. $\quad y=-2^{-x}$
C. $\quad y=\left(\frac{1}{2}\right)^{x}$
D. $y=\left(\frac{1}{2}\right)^{-x}$

Question 8

Janet works out the sum of n terms of an arithmetic series. Her answer, which is correct, could be:
A. $\quad S_{n}=2\left(2^{n}-1\right)$
B. $\quad S_{n}=9-2 n$
C. $\quad S_{n}=8 n-n^{2}$
D. $S_{n}=7 \times 2^{n-1}$

Question 9

Figure not to scale

In the diagram above: $A C \| B D, \angle C A X=2 \angle B A X, \angle D B X=2 \angle A B X$.
$\angle A X B=$?
A. 150°
B. 120°
C. 160°
D. 135°

Question 10

Which expression below will give the area of the shaded region bounded by the curve $y=x^{2}-x-2$, the x-axis and the lines $x=0$ and $x=5$?

A. $\quad A=\left|\int_{0}^{1}\left(x^{2}-x-2\right) d x\right|+\int_{1}^{5}\left(x^{2}-x-2\right) d x$
B. $\quad A=\int_{0}^{1}\left(x^{2}-x-2\right) d x+\left|\int_{1}^{5}\left(x^{2}-x-2\right) d x\right|$
C. $\quad A=\left|\int_{0}^{2}\left(x^{2}-x-2\right) d x\right|+\int_{2}^{5}\left(x^{2}-x-2\right) d x$
D. $\quad A=\int_{0}^{2}\left(x^{2}-x-2\right) d x+\left|\int_{2}^{5}\left(x^{2}-x-2\right) d x\right|$

SECTION 2

90 marks

Attempt Question 11-16

Allow about 2 hours 45 minutes for this section.
Answer each question in the writing book provided. Start each question on a new page. All necessary working should be shown. Full marks cannot be given for illegible writing.

Question 11 (15 marks)
a) Differentiate:
(i) $x \sin 2 x$
(ii) $e^{4 x}+\frac{1}{x}$
(iii) $\frac{x+1}{3+2 x}$
b) Find $\int(4 x+2)^{6} d x$
c) Solve for $x: \quad 3^{1-x}=\frac{1}{\sqrt{27}}$
d) Solve $(\sin x+1)(2 \sin x+1)=0$ for $0 \leq x \leq 2 \pi$
e) Evaluate $\sum_{n=1}^{50}(2 n+3)$
a) Solve $|x+2|=3 x$
b) Use a change of base to evaluate $\log _{2} 50$ correct to 2 decimal places.
c) Find the gradient of the curve $y=e^{\sin x}$ at the point where $x=0$.
d) If α and β are the roots of $x^{2}+4 x+1=0$, find without solving:
i) $\alpha+\beta$ and $\alpha \beta$.
ii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
e) Differentiate:
i) $\ln \left(x^{2}+3\right) \quad 1$
ii) $\tan ^{2} 4 x$
f) Given the parabola $4 y=x^{2}-12$, find the:
i) focal length. 1
ii) coordinates of the focus. 1
g) Use Simpson's Rule and the five function values in the table below to estimate $\int_{2}^{4} f(x) d x$

x	2	2.5	3	3.5	4
$f(x)$	4	1	-2	3	8

a) Factorise $24+2 m-m^{2} \quad 1$
ii) Hence solve $24+2 m-m^{2}<0$ 1
b)

$A(0,7)$ and $B(6,3)$ are points on the number plane and the equation of $A B$ is $2 x+3 y-21=0$.
i) Find the length of $A B$. 1
ii) Find the gradient of $A B$. 1
iii) Show that the equation of the perpendicular from $D(-2,0)$ to $A B \quad 2$
is $3 x-2 y+6=0$.
iv) Find the perpendicular distance from D to $A B$.
v) Find the coordinates of a point C such that $A B C D$ is a parallelogram.
c) An amount of money doubles in value over a period of n months. Interest is compounded at the rate of 1% per month. Use the compound interest formula to find the number of months required, correct to the nearest month.
d) \quad i) ind $\frac{d}{d x}(\operatorname{cosec} x)$
ii) Hence evaluate $\int_{\pi / 3}^{\pi / 2} \cot x \operatorname{cosec} x d x$. Give your answer in exact form.
a) Find the angle that the line $3 x+5 y+2=0$ makes with the positive direction of the x-axis.
b) Find: i) $\int \sin \frac{2 x}{3} d x$
ii) $\int \frac{x^{2} e^{x^{2}}+1}{x} d x$
c) Prove that $\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1-\sin \theta}=2 \sec \theta$
d) Solve for $m: \log _{m} 8+3 \log _{m} 4=6$. Leave your answer in exact form.
e)

Figure not to scale
i) Prove that $\triangle B X Y$ is similar to $\triangle A B C$.
ii) If angle A is 35°, use the sine Rule to find the size of angle C , correct to the nearest degree.
a)

Figure not to scale

Two geologists on a large level area of land drive 20 km from point A on a bearing of $150^{\circ} \mathrm{T}$ to a point B . They then drive 40 km on a bearing of $020^{\circ} \mathrm{T}$ to point C .
i) Copy the above diagram into your answer booklet, and find the size of $\angle A B C$.
ii) Use the Cosine Rule to find the distance $A C$ to the nearest kilometre.
b) Consider the curve defined by $y=4-\cos 2 x$.
i) State the amplitude and period of this curve.
ii) Sketch the curve for $0 \leq x \leq \pi$. Show clear, relevant information on the axes.
iii) Find the area between the curve and the line $y=2$ for $0 \leq x \leq \pi$.
c) The diagram shows the curve $y=e^{x}$, a shaded area from $x=-2$ to $x=2$, and a point P on the curve.

i) The point P has a y coordinate of8. Find its x coordinate. 1
ii) The shaded area is rotated about the x-axis. Find the volume of the generated solid, giving your answer correct to 3 significant figures.
d) Factorise $x^{2}+2 x y+y^{2}-1$
a)

Write an appropriate integral expression to represent the shaded area above.
b) Given the curve $y=x \log x-x$, for $x>0$.
i) Find where the curve crosses the x-axis.
ii) Find any stationary points and determine their nature.
iii) Write a statement for the concavity of this curve.
iv) Find y when $x=e^{2}$, and sketch the curve for $0<x \leq e^{2}$
c) A man has 1 million (10^{6}) dollars in a bank account. The account earns a steady $\frac{1}{2} \%$ interest per month, compounded monthly. At the same time, however, a bank employee is stealing a constant amount $\$ \mathrm{M}$ per month from this account, immediately after the month's interest is added to the man's account.

Let A_{n} be the amount remaining in the man's account at the end of n months.
i) Write an expression for A_{1}, and show that

$$
A_{2}=10^{6}(1.005)^{2}-M(1.005+1)
$$

ii) Write a simplified expression for A_{n}
iii) Determine the value of $\$ \mathrm{M}$ that is stolen each month, such that the man will have only $\$ 20$ remaining in his account after 10 years.

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Solentcons.
(1)

$$
\begin{gathered}
b^{2}-4 a c \geqslant 0 \\
36+12 k \geqslant 0 \\
k \geqslant-3
\end{gathered}
$$

A
(2) C
(3)

$$
\begin{gathered}
\frac{a}{1-r}=12 \\
8=12-12 r \\
12 r=4 \\
r=\frac{1}{3}
\end{gathered}
$$

(6) $y=3 \sin \frac{x}{2}$
D
(4) A (5) $x=\frac{-2}{-2}=1$
max. value $=7$
$\stackrel{c}{c}$
(2) $y=2^{-x}$
(8) $\stackrel{C}{=}$
(a)

$$
\begin{aligned}
3 x+3 y & =180(10)(x-2)(x+1) \\
x+y & =60 \quad x=2,-1
\end{aligned}
$$

B

$$
c
$$

(1) a

$$
\text { i) } y^{\prime}=(x \sin 2 x+2 \cos 2 x \times x
$$

ii) $y^{\prime}=4 e^{4 x}-\frac{1}{x^{2}}$

$$
\text { iii) } \begin{aligned}
y^{\prime} & =\frac{(3+2 x)-2(x+1)}{(3+2 x)^{2}} \\
& =\frac{3+2 x-2 x-2}{(3+2 x)^{2}} \\
& =\frac{1}{(3+2 x)^{2}} \quad \begin{array}{l}
\text { d) } \sin x=-1 \quad \text { or } \sin x=-\frac{1}{2} \\
\therefore x=\frac{3 \pi}{2}, 2 \pi / 6,11 / 6
\end{array}
\end{aligned}
$$

b) $\frac{(4 x+2)^{7}}{28}+c$
e)

$$
\begin{aligned}
S_{50} & =\frac{50}{2}(5+103) \\
& =2700
\end{aligned}
$$

c)

$$
\begin{aligned}
3^{1-x} & =3^{-\frac{3}{2}} \\
1-x & =-\frac{3}{2} \\
x & =2^{\frac{1}{2}}
\end{aligned}
$$

(2)

$$
\begin{array}{rlrl}
x+2=3 x & \text { or }-(x+2) & =3 x \\
x=1 & -x-2 & =3 x \\
4 x & =-2 \\
x & =-1 / 2 x
\end{array}
$$

only solution is $x=1$
b) $\frac{\log 50}{\log 2} \div 5.64$
c) $y^{\prime}=e^{\sin x} \times \cos x$

When $x=0, m_{T}=e^{0} \times \cos 0$

$$
=1
$$

d) i) $\alpha+\beta=-4, \alpha \beta=1$
(i)

$$
\begin{aligned}
\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}} & =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}} \\
& =\frac{16-2}{1} \\
& =14
\end{aligned}
$$

e)
i) $y^{\prime}=\frac{2 x}{x^{2}+3}$
ii)

$$
\begin{aligned}
y^{\prime} & =2 \tan 4 x \times \sec ^{2} 4 x \times 4 \\
& =8 \tan 4 x \sec ^{2} 4 x
\end{aligned}
$$

f.

$$
\begin{aligned}
x^{2} & =4 y+12 \\
& =4(y+3)
\end{aligned}
$$

i) focal lingth $a=1$
ii) vetex at $(0,-3) \therefore$ foous at $(0,-2)$
(2)
g)

$$
\begin{aligned}
\int_{2}^{4} f(x) d x & \doteqdot \frac{0.5}{3}(4+4 \times 1+2 \times(-2)+4 \times 3+8) \\
& =\frac{1}{6}(4+4-4+12+8) \\
& =\frac{1}{6} \times 24 \\
& =4
\end{aligned}
$$

(3) a) $(6-m)(4+m)$
ii) $\frac{-4}{1}$

$$
\therefore m<-4 \text { or } m>6
$$

onus is

$$
\begin{aligned}
d_{A B} & =\sqrt{36+16} \\
& =\sqrt{52} \text { or } 2 \sqrt{13}
\end{aligned}
$$

ii)

$$
\begin{aligned}
M_{A B} & =\frac{-4}{6} \\
& =\frac{-2}{3}
\end{aligned}
$$

iii) Use $m_{\perp}=\frac{3}{2}$

$$
\begin{aligned}
\therefore y-0 & =\frac{3}{2}(x+2) \\
2 y & =3 x+6 \\
3 x & -2 y+6=0 \text { as read. }
\end{aligned}
$$

$$
\text { iv) } \begin{aligned}
p \cdot d . & =\frac{|-4+0-2| \mid}{\sqrt{2^{2}+3^{2}}} \\
& =\frac{25}{\sqrt{13}}
\end{aligned}
$$

v) C is $(4,-4)$
c)

$$
\text { E) } \begin{aligned}
2 l & =\rho(1+r)^{n} \\
2 & =1.01^{n} \\
\log 2 & =n \log 1.01 \\
n & =\frac{\log 2}{\log 1.01} \\
& =70 \text { months }
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{d}{d x}\left[(\sin x)^{-1}\right] \\
& =-(\sin x)^{-2} \times \cos x \\
& =\frac{-\cos x}{\sin ^{2} x} \\
& =-\cot x \operatorname{cosec} x
\end{aligned}
$$

ii) $[-\operatorname{cosec} x]_{\pi / 3}^{\pi / 2}$

$$
=\frac{-1}{\sin \pi / 2}-\left(-\frac{1}{\sin \pi / 3}\right)
$$

$$
=\frac{-1}{1}+\frac{1}{\sqrt{3 / 2}}
$$

$$
=-1+\frac{2}{\sqrt{3}}
$$

(14)

$$
\begin{aligned}
\text { a) } 5 y & =-3 x-2 \\
y & =-\frac{3}{5} x-\frac{2}{5} \\
\therefore \text { grad. } & =-\frac{3}{5} \\
\tan \theta & =-\frac{3}{5} \\
\therefore \theta & =149^{\circ}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& -\cos \frac{2 x}{3} \times \frac{3}{2}+c \\
& =-\frac{3}{2} \cos \frac{2 x}{3}+c
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \int\left(x e^{x^{2}}+\frac{1}{x}\right) d x \\
& =\frac{e^{x^{2}}}{2}+\log x+c
\end{aligned}
$$

e)

$$
\begin{aligned}
& \frac{B X}{B C}=\frac{3}{9}=\frac{1}{3} \\
& \frac{B Y}{B A}=\frac{5}{15}=\frac{1}{3}
\end{aligned}
$$

and $\angle B$ is common
$\therefore \triangle B \times Y \| \triangle A B C$ equal ratio 0
sides about equal ind.ang.
ii)

$$
\begin{aligned}
\frac{9}{\sin 35^{\circ}} & =\frac{15}{\sin C} \\
\sin C & =\frac{15 \sin 35}{9} \\
\therefore C & \div 73^{\circ}
\end{aligned}
$$

c)

$$
\begin{aligned}
L H S & =\frac{\cos \theta(1-\sin \theta)+\cos \theta(1+\sin \theta)}{1-\sin ^{2} \theta} \\
& =\frac{2 \cos \theta}{\cos ^{2} \theta} \\
& =2 \sec \theta \\
& =\text { RHS }
\end{aligned}
$$

d)

$$
\begin{gathered}
\log _{m} 8+\log _{m} 64=6 \\
\log _{m} 512=6 \\
m^{6}=512 \\
\therefore m=\sqrt[6]{512} \\
(\operatorname{cr} 2 \sqrt{2})
\end{gathered}
$$

(15 a)

$$
\text { ii) } \begin{aligned}
A C^{2} & =20^{2}+40^{2}-2 \times 20 \times 40 \times \cos 50^{\circ} \\
& =400+1600-1600 \cos 50^{\circ} \\
& =971.54 \\
\therefore A C & \doteqdot 31 \mathrm{~km}
\end{aligned}
$$

b) i) amp. $=1$, period $=2 \frac{\pi}{2}$ $=\pi$ units
ii)

iii)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi}(4-\cos 2 x) d x-2 \pi \\
& =\left[4 x-\frac{\sin 2 x}{2}\right]_{0}^{\pi}-2 \pi \\
& =(4 \pi-0)-(0-0)-2 \pi \\
& =2 \pi u^{2}
\end{aligned}
$$

(5) c) i) $8=e^{x} \Rightarrow x=\log _{e} 8$ or $\ln 8$ or 2.079
ii)

$$
\text { ii) } \begin{aligned}
V & =\pi \int_{-2}^{2}\left(e^{x}\right)^{2} d x \\
& =\pi \int_{-2}^{2} e^{2 x} d x \\
& =\pi\left[\frac{e^{2 x}}{2}\right]_{-2}^{2} \\
& =\pi / 2\left(e^{4}-e^{-4}\right) \\
& \doteqdot 85 \cdot 7 u^{3} \\
\text { d) }(x+y)^{2} & -1=(x+y+1)(x+y-1)
\end{aligned}
$$

((6) a) Area $=\left(\int_{\pi / 4}^{\pi} \sin x d x-\int_{\pi / 4}^{\pi / 2} \cos x d x\right) \times 2$
(d) i)

$$
\begin{aligned}
& y=0 \Rightarrow x \log x-x=0 \\
& x(\log x-1)=0 \\
& x=0(n o \text { sol. }) \text { or } \log x-1=0 \\
& \log x=1 \\
& \therefore x=e \text { only }
\end{aligned}
$$

ii) S. A:'s when $y^{\prime}=\log x+\frac{1}{x} \times x-1=0$

$$
\begin{gathered}
\therefore \log x+X-X=0 \\
\log x=0 \\
\therefore x=1
\end{gathered}
$$

$$
y^{\prime \prime}=\frac{1}{x}
$$

When $x=1, y^{\prime \prime}>0 \Rightarrow$ minimum turning pt at $(1,-1$,
(ii) For all $x>0, y^{\prime \prime}>0$
\therefore curve is always concave up.
iv)

$$
\begin{aligned}
& x=e^{2} \\
& \therefore y=e^{2} \log \left(e^{2}\right)-e^{2} \\
&=e^{2} \times 2-e^{2} \\
&=e^{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
A_{1} & =10^{6}(1.005)-M \\
A_{2} & =\left[10^{6}(1.005)-M\right] \times 1.005-M \\
& =10^{6}(1.005)^{2}-1.005 M-M \\
& =10^{6}(1.005)^{2}-M(1.005+1) \text { as read. }
\end{aligned}
$$

ii)

$$
\begin{aligned}
& =10^{6}(1.005)-M(1.005)^{n}-M\left(1.005^{n-1}+1.005^{n-2}+\cdots+1\right) \\
A_{n} & =10^{6}(1.005)^{n}-M \times\left(\frac{\left(1.005^{n}-1\right)}{1.005-1}\right. \\
& =10^{6}(1.00)^{n}-M \frac{\left(1.005^{n}-1\right)}{0.005} \\
& =10^{6}(1.005)^{n}
\end{aligned}
$$

(ii) $A_{120}=20$

$$
\text { ii) } \begin{aligned}
A_{120} & =20 \\
\therefore 20 & =10^{6}(1.005)^{120}-200 M\left(1.005^{120}-1\right) \\
\therefore M & =\frac{10^{6}(1.005)^{120}-20}{200(1.005)^{120}-1} \\
& =\$ 11,101.93 \text { (accept } 101 \text { or } 102)
\end{aligned}
$$

