Sydney Technical High School

Mathematics Department

Trial HSC - Mathematics 2 Unit

August 2016

General Instructions

- Reading time -5 minutes.
- Working time -180 minutes.
- Approved calculators may be used.
- Write using blue or black pen.
- A BOSTES reference sheet is
provided at the back of this paper. You may tear it off.
- In Question 11-16, show relevant mathematical reasoning and/or calculations.
- Begin each question on a new page of the answer booklet.
- Marks shown are a guide and may need to be adjusted.
- Full marks may not be awarded for careless work or illegible writing.

NAME: \qquad

TEACHER: \qquad
Total marks - 100
SECTION 1
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes.

SECTION 2
90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes.

Section 1

(10 marks)

1. For what values of k does the equation $x^{2}-6 x-3 k=0$ have real roots?
A) $k \geq-3$
B) $\quad k \leq-3$
C) $k \geq 3$
D) $k \leq 3$
2. For the function $y=f(x), \quad a<x<b$ graphed below:

Which of the following is true?
A) $\quad f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$
B) $\quad f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$
C) $\quad f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$
D) $\quad f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$
3. Which expression will give the area of the shaded region bounded by the curve $y=x^{2}-x-2$, the x-axis and the lines $x=0$ and $x=5$?

A) $\quad A=\left|\int_{0}^{1}\left(x^{2}-x-2\right) d x\right|+\int_{1}^{5}\left(x^{2}-x-2\right) d x$
B) $\quad A=\int_{0}^{1}\left(x^{2}-x-2\right) d x+\left|\int_{1}^{5}\left(x^{2}-x-2\right) d x\right|$
C) $\quad A=\left|\int_{0}^{2}\left(x^{2}-x-2\right) d x\right|+\int_{2}^{5}\left(x^{2}-x-2\right) d x$
D) $\quad A=\int_{0}^{2}\left(x^{2}-x-2\right) d x+\left|\int_{2}^{5}\left(x^{2}-x-2\right) d x\right|$
4. What are the coordinates of the focus of the parabola $4 y=x^{2}-8$?
A) $(0,-8)$
B) $(0,-7)$
C) $(0,-2)$
D) $(0,-1)$
5. What are the domain and range of the function $f(x)=\sqrt{4-x^{2}}$?
A) Domain: $\quad-2 \leq x \leq 2, \quad$ Range: $\quad 0 \leq y \leq 2$
B) Domain: $\quad-2 \leq x \leq 2, \quad$ Range: $\quad-2 \leq y \leq 2$
C) Domain: $0 \leq x \leq 2$, Range: $\quad-4 \leq y \leq 4$
D) Domain: $\quad 0 \leq x \leq 2, \quad$ Range: $\quad 0 \leq y \leq 4$
6. When the curve $y=e^{x}$ is rotated about the x-axis between $x=-2$ and $x=2$, the volume of the solid generated is given by:
A) $\quad \pi \int_{-2}^{2} e^{x} d x$
B)
$2 \pi \int_{0}^{2} e^{x^{2}} d x$
C) $\pi \int_{-2}^{2} e^{x^{2}} d x$
D)
$\pi \int_{-2}^{2} e^{2 x} d x$
7. The sector below has an area of 10π square units.

What is the value of r ?
A) $\sqrt{60}$
B) $\pi \sqrt{60}$
C) $\sqrt{\frac{\pi}{3}}$
D) $\sqrt{\frac{1}{3}}$
8. An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio?
A) $\frac{1}{6}$
B) $\frac{1}{4}$
C) $\frac{1}{3}$
D) $\frac{1}{2}$
9. If $\int_{0}^{a} 4-2 x d x=4$, find the value of a.
A) $a=-2$
B) $a=0$
C) $\quad a=4$
D) $\quad a=2$
10. What is the greatest value taken by the function $f(x)=4-2 \cos x$ for $x \geq 0$?
A) 2
B) 4
C) 6
D) 8

Section 2

a) Find $\sqrt[3]{9.8^{2}}$ correct to 2 decimal places 1
b) Factorise fully $a x+3 a y-x-3 y$. 1
c) Solve for a and d: 1

$$
a+9 d=20
$$

$$
2 a+9 d=12
$$

d) Express $\frac{2}{5+\sqrt{3}}$ with a rational denominator $\quad 1$
e) Solve $|3 x-1|=5$ 2
f) Solve the following equation:
$\log _{2} x+\log _{2}(x+7)=3$
g) Solve $\cos x=\frac{-1}{2}$ for $0 \leq x \leq 2 \pi \quad 2$
h) Find the primitive of $x^{2} \sqrt{x}$
i) Differentiate $\frac{3}{(2 x+1)^{2}} \quad 2$
j) \quad Find $\int_{0}^{1} e^{2 x} d x$
a) On the diagram below, $A(2,-2) \quad B(-2,-3)$ and $C(0,2)$ are the vertices of a triangle $A B C$. Copy this diagram into your answer booklet.

i) Find the gradient of $A C$ 1
ii) Find the angle of inclination that AC makes with the positive direction of the x axis, to the nearest degree.
iii) Show that the equation of $A C$ is $2 x+y-2=0$
iv) Calculate the perpendicular distance of B from the line $A C$
v) Find the area of $\triangle A B C$ 2
vi) Find the coordinates of D such that $A B C D$ is a parallelogram. 1
b) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x} \quad 2$
c) In $\triangle A B C, A B=2 \mathrm{~cm}, \angle A B C=105^{\circ}$ and $\angle B C A=30^{\circ}$. Find the length 2 of $B C$ correct to $1 \mathrm{~d} . \mathrm{p}$.
d) Max is saving to buy a new car. He needs $\$ 12700$. In the first month he saves $\$ 25$, in the second $\$ 40$ followed by $\$ 55$ in the next. If he continues to increase the amount he saves by $\$ 15$ each month, how many months will it take him to save for the car?

Question 13

a) Differentiate:
i) $x \tan 2 x$
ii) $\quad e^{\sin x}+\frac{1}{x}$ 2
iii) $\frac{3 x-7}{3+2 x}$
b) Find
i) $\quad \int(5 x-1)^{9} d x$
ii) $\int \sin \frac{3 x}{4} d x$
c)

In $\triangle P Q R$, point T lies on side $Q R$ and point S lies on side $P R$ such that $Q T=T R$, $Q S=Q P$ and $S T \perp Q T$.
i) Copy the diagram into your answer booklet showing all given information.
ii) Prove that $\triangle \mathrm{QTS} \equiv \triangle$ RTS 2
iii) Prove that $\angle \mathrm{QPS}=2 \angle \mathrm{TQS} \quad 2$
a) Consider the curve

$$
f(x)=-\frac{1}{3} x^{3}-x^{2}+3 x+1
$$

i) Find the coordinates of any stationary points and determine their nature.
ii) Find any points) of inflexion
iii) Sketch the curve in the domain, $-6 \leq x \leq 3$
iv) What is the maximum value of $f(x)$ in the given domain?
b) \quad Simplify $\frac{1-\sin ^{2} x}{\cot x}$
c)

The shaded region bounded by the graph $y=e^{x^{2}}$, the line $y=5$ and the y axis is rotated about the y-axis to form a solid revolution.
i) Show that the volume of the solid is given by

$$
V=\pi \int_{1}^{5} \log _{e} y d y
$$

ii) Copy and complete the following table into your writing booklet.

Give your answer correct to 3 decimal places.

y	1	2	3	4	5
$\log _{e} y$	0	0.693	1.099		1.609

iii) Use Simpson's Rule with five function values to approximate the volume of the solid of revolution V_{y}, correct to three decimal places.
a)

The shaded region $O A B$ is bounded by the parabola $y=x^{2}$, the line $y=2-x$ and the x-axis.
i) Find the x coordinates of A and B.
ii) Show that the exact area of the shaded region $O A B$ is given by $\frac{5}{6}$ square units.
b) i) Show that $\frac{d}{d x}\left(x e^{x}\right)=e^{x}+x e^{x}$
ii) Find $\int x e^{x} d x$
c) Find the trigonometric equation for the graph below:

Question 15 (cont)

d) Mr Egan borrows \$P from a bank to fund his house extensions. The term of the loan is 20 years with an annual interest rate of 9%. At the end of each month, interest is calculated on the balance owing and added to the balance owing. Mr Egan repays the loan in equal monthly instalments of $\$ 1050$.
i) Write an expression for the amount, A_{1}, Mr Egan owes at the end of the first month
ii) Show that at the end of n months, the amount owing, A_{n}, is given by:
$A_{n}=P(1.0075)^{n}-140000(1.0075)^{n}+140000$
iii) If the loan is repaid at the end of 20 years, calculate the amount Mr Egan originally borrowed, correct to the nearest dollar.

Question 16
(15 marks)
a) Find $\int 2^{x} d x$
b) Let α and β be the solutions of $x^{2}+5 x+3=0$. Find:
i) $\frac{1}{\alpha}+\frac{1}{\beta}$
ii) A quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
c) Evaluate $\int_{0}^{2} \frac{6 x}{x^{2}+2} d x$
d)

The water's edge is a straight line $A B C$ which runs east-west. A lighthouse is 6 km from the shore on a rocky outcrop, due north of A.

10 km due east of A is a general store. To get to the general store as quickly as possible the lighthouse keeper rows to a point $B, x \mathrm{~km}$ from A , and then jogs to the general store. The lighthouse keeper's rowing speed is $6 \mathrm{~km} / \mathrm{h}$ and his jogging speed is $10 \mathrm{~km} / \mathrm{h}$.
i) Show that it takes the lighthouse keeper $\frac{\sqrt{36+x^{2}}}{6}$ hours to row from the lighthouse to B. general store is given by

$$
\mathrm{T}=\frac{\sqrt{36+x^{2}}}{6}+\frac{10-x}{10} \text { hours }
$$

iii) Hence, show that when $x=4 \frac{1}{2} \mathrm{~km}$, the time it takes the lighthouse keeper to travel from the lighthouse to the general store is a minimum (you may assume it is a minimum - no testing required)
iv) Find the quickest time it takes the lighthouse keeper to go to the general store from the lighthouse. (You may leave your answer in hours).
\qquad
20162 Unit Trial Solutions
Section 1
1.A 2 C 3.C.4.D 5.A 6.D 7.A 8.C \quad ? D $10 \cdot C$

$$
m_{A C}=-2
$$

$$
\theta=117^{\circ}
$$

$$
y-2=-2 x
$$

Section 2.
(ii) $m=\tan \theta$.
(iii) $y-2=-2(x-0)$
a) ${ }^{2} M_{A C}=\frac{2--2}{0-2}$

$$
-2=\tan \theta
$$

$$
2 x+y-2=0
$$

(si) $d=\frac{|2 x-2+|x-3+-2|}{\sqrt{2^{2}+1^{2}}}$ (1)
(v)

$$
\begin{aligned}
A & =\frac{1}{2}, A C \times \sqrt{5} \\
& =\frac{9}{2 \sqrt{5}} \times \sqrt{2^{2}+(-2-2)} \\
& =\frac{7}{\sqrt{5}} \times \sqrt{20}(1) \\
& =\frac{9}{25} \times 2 \sqrt{5} \\
& =9 \text { units }
\end{aligned}
$$

Question 11
9) 4.58
b) $a(x+3 y)-(x+3 y)$ $(a-1)(x+3 y)$
c) $a=-8$

$$
\begin{equation*}
=\frac{1}{\sqrt{5}} \text { units } \tag{1}
\end{equation*}
$$

(vi) $D(4,3)$
6) $\frac{2}{3 x} \lim _{3} \frac{\sin 2 x}{2 x(1)}$
$=\frac{2}{3}$
(a)

$$
\begin{aligned}
& \frac{2}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}} \text { es } \frac{3 x-1=5}{} \quad 3 x-1=-5 \\
= & \frac{10-2 \sqrt{3}}{22} \\
= & \frac{x=2}{1} \\
= & \frac{5-\sqrt{3}}{11}
\end{aligned}
$$

f)

$$
\begin{aligned}
& \log _{2} x(x+7)=3 \quad \text { g) } \cos x=\frac{-1}{2} \\
& x(x+7)=8 \\
& x^{2}+7 x-8=0 \\
& (x-1)(x+8)=0 \\
& x=1 \text { or }>8 \\
& \begin{aligned}
& \frac{x=1}{1} \text { as } x>0 \\
&(1) \therefore x=\frac{\pi-\frac{\pi}{3}}{3}, \frac{\pi+\frac{\pi}{3}}{3} \\
& \frac{x}{3} \frac{2 \pi}{3}(1)
\end{aligned} \\
& \text { working angle } \frac{\pi}{3} \\
& \begin{array}{l}
S_{S} \\
J_{T} \\
\hline
\end{array}
\end{aligned}
$$

h)

$$
\begin{array}{lll}
x^{2} \sqrt{x} & \text { i) } \frac{\frac{d}{d x(2 x+1)^{2}}}{} \quad \text { j) } \int_{0}^{1} e^{2 x} d x \\
\int x^{\frac{5}{2}} d x \text { (1) } & \frac{d}{d x} 3 \times(2 x+1)^{-2} & {\left[\frac{1}{2} e^{2 x} \int_{a}^{1}\right.} \\
=\frac{\frac{2}{7} x^{\frac{1}{2}}+c}{(1)}=-12(2 x+1)^{-3}(1) & \frac{1}{2}\left(e^{2}-1\right)
\end{array}
$$

Question 13

viii) Let \angle TVS $=\theta$
$\therefore \angle T R S=\theta$ (corresponding ages in congruent al's)
$\therefore \angle Q S T=\angle R S T=90-\theta$ (angle sum of Δ^{\prime} 's) (0)
$\angle Q S P=180-2(90-\theta)$ (straight angle)

$$
=2 \theta
$$

$\angle Q P S=2 \theta$ (equal angles opposite equal sides of a triangle)

$$
\begin{equation*}
\therefore \angle Q P S=2 \angle T Q S \tag{1}
\end{equation*}
$$

Question 14
a) $f(x)$

$$
\begin{aligned}
& f(x)=-3 x^{3}-x^{2}+3 x+1 \\
& f^{\prime}(x)=-x^{2}-2 x+3=0
\end{aligned}
$$

(ii) $\frac{f^{\prime \prime}(x)}{}=0$ for $p t s_{x}$ of inflexion

$$
\begin{gathered}
x^{2}+2 x-3=0 \text { (1) } \\
(x-1)(x+3)=0 \\
x=1 \text { or }-3 \\
f^{\prime \prime}(x)=-2 x-2 \\
f^{\prime \prime}(1)=-4<0 \div\left(1,2^{\left.\frac{2}{3}\right)}\right. \text { max. } \\
f^{\prime \prime}(-3)=4>0 \div(-3,-8)_{\text {min. }}^{10}
\end{gathered}
$$

Student Name: \qquad

(ii) | y | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\log _{e} y$ | 0 | 0.693 | 1.099 | 1.386 | 1.609 |

(iii)

$$
\begin{align*}
& V_{y} \doteqdot \frac{1}{3}\{0+1.609+4(0.693+1.386)+2 x(.099\}) \times \pi \tag{1}\\
&(2) \\
&=12.695
\end{align*}
$$

Student Name: \qquad
Question 15
(i)

$$
\begin{array}{cc}
x^{2}=2-x & y=2-x \\
x^{2}+x-2=0 & 0=2-x \\
(x-1)(x+2)=0 & \therefore x=2 \\
x=1 \text { or }>2 &
\end{array}
$$

At A $x=1(>0)$ (1)

$$
\text { xii) } \begin{aligned}
A & =\int_{0}^{1} x^{2} d x+\int_{1}^{2} 2-x d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{3}+(4-2)-\left(2-\frac{1}{2}\right) \\
& =\frac{1}{3}+2-2+\frac{1}{2} \\
& =\frac{5}{6} \text { units }
\end{aligned}
$$

b) (i)

$$
\begin{array}{ll}
\frac{d}{d x}\left(x e^{x}\right) & \text { (ii) } \frac{d}{d x}\left(x e^{x}\right)=e^{x}+x e^{x} \\
=x e^{x}+e^{x} \cdot 1 & \frac{1}{d x}\left(x e^{x}\right)-e^{x}=x e^{x} 0 \\
=e^{x}+x e^{x} & \int \frac{d x}{d x}\left(x e^{x}\right)-e^{x} d x=\int x e^{x} d x \\
& x e^{x}-e^{x}+C=\int x e^{x} d x
\end{array}
$$

c) Amplitude 2

$$
\text { Period }=\frac{4 \pi}{3}
$$

$$
\therefore=\frac{2 \pi}{n}=\frac{4 \pi}{3} \therefore n=\frac{3}{2}
$$

Curve is of the
form $y=A \sin n x$

$$
\begin{aligned}
& \therefore \quad y=\frac{2 \sin \frac{3 x}{2}}{(1)} \\
& \quad 10
\end{aligned}
$$

d) (i)

$$
\begin{aligned}
& A_{1}=P_{x}\left(1+\frac{7 / 200}{100}\right)-1050 \\
& A_{1}=P_{x}(1.0075)-1050
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& A_{2}=A_{1} \times 1.0075-1050 \\
& =\left[P_{x} 1.0075-1050\right]_{x} 1.0075-1050 \\
& =P \times 1.0075^{2}-1050(1+1.0075) \\
& A_{n}=P_{x} 1.0075^{n}-1050\left(\frac{\left(1+1.0075+\ldots 1.0075^{-1}\right.}{a=1, F=1.0075, n=n}(1)\right. \\
& =P \times 1.0075^{n}-1050 \times \frac{1 \times \frac{1.0075^{n}-1}{1.0075-1} \text { (0) } 0 \text { (} 0.0075^{n}-1}{} \\
& =P \times 1.0075^{n}-140000\left(1.0075^{n}-1\right) \\
& =P \times 1.0075^{n}-140000 \times 1.0075^{n}+1.40000
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { At } 20 \text { years } n=240, A_{n}=0 \text {, solve } P \\
& 0=P \times 1.0675^{240}-140000 \times 1.0075^{240}+140000 \\
& P=\$ 116702
\end{aligned}
$$

Question 16

1) $\int 2^{x} d x$
$\frac{1}{\log 2} 2^{x}+c$ (1)
c) $\int_{0}^{2} \frac{6 x}{x^{2}+2} d x$
d) (i) $10 \begin{gathered}\text { A } \\ 5 \times T\end{gathered} T=\frac{0}{s}$
$3 \int_{0}^{2} \frac{2 x}{x^{2}+2} d x$ (1)
distance from B to lighthoo
$=3\left[\log _{0}\left(x^{2}+2\right)\right]_{0}^{2}(1)$

$$
=\sqrt{x^{2}+36} \mathrm{~km} \text { (1) }
$$

$$
=3\left[\log _{e} 6-\log _{0} 2\right]
$$

$$
\therefore T=\frac{\sqrt{x^{2}+26}}{6} \text { hoors } 0
$$

(ii) RUnning:

$$
=3 \log _{c} 3 \text { (1) }
$$

$$
\begin{aligned}
& =\frac{\text { Tomii }}{}=\frac{10-x}{19} \\
& 1+.
\end{aligned}
$$

\therefore Total time T

$$
=\frac{\sqrt{x^{2}+36}}{6}+\frac{10-x}{10}
$$

(iii) $\frac{d T}{d x}=\frac{1}{6} \times \frac{1}{2}\left(x^{2}+36\right)^{-\frac{1}{2}} \times 2 x-\frac{1}{10}$

$$
\text { (1) }=\frac{x}{6 \sqrt{x^{2}+36}}-\frac{1}{10}=0 \text { for } \text { minim. }
$$

$$
\begin{aligned}
& \text { b) (i) } \alpha+\beta=-5 \\
& \alpha \beta=3 \quad x^{2}-\left(\frac{-5}{3}\right) x+\frac{1}{3}= \\
& \begin{array}{l}
\frac{-1}{\alpha}+\frac{1}{\beta} \quad \frac{3 x^{2}+5 x+1}{0}=0 \\
=\frac{\alpha+\beta}{\alpha \beta} 0 \quad x^{2}+\frac{5}{3} x+\frac{1}{3}=0 \\
=\frac{-5}{30}
\end{array}
\end{aligned}
$$

\qquad

$$
\begin{align*}
\frac{x}{6 \sqrt{x^{2}+36}} & =\frac{1}{10} \\
\frac{10 x}{\frac{5 x}{3}} & =\sqrt{x^{2}+36} \\
\frac{25 x^{2}+36}{9} & =x^{2}+36 \\
\frac{25 x^{2}}{16 x^{2}} & =9 x^{2}+324 \tag{1}\\
x^{2} & =20.25 \\
x & =4.5 \mathrm{~km}
\end{align*}
$$

(iv) $\frac{S u b}{T} x=4.5$ into expression for

$$
\begin{align*}
T & =\frac{\sqrt{4.5^{2}+36}}{6}+\frac{10-4.5}{10} \\
& =1.8 \text { hours } \tag{1}
\end{align*}
$$

