SYDNEY TECHNICAL HIGH SCHOOL

Mathematics Department

Trial HSC – Mathematics 2 Unit

August 2016

General Instructions

:(

(

- Reading time 5 minutes.
- Working time <u>180 minutes.</u>
- Approved calculators may be used.
- Write using blue or black pen.
- A BOSTES reference sheet is provided at the back of this paper. You may tear it off.
- In Question 11-16, show relevant mathematical reasoning and/or calculations.
- Begin each question <u>on a new page</u> <u>of the answer booklet.</u>
- Marks shown are a guide and may need to be adjusted.
- Full marks may <u>not</u> be awarded for <u>careless</u> work or <u>illegible</u> writing.

NAM	E:
TEAC	HER:
Total r	narks — 100
<u>SECTIC</u>	<u>DN 1</u>
10 ma	rks
0 0	Attempt Questions 1 – 10 Allow about 15 minutes.
<u>SECTIC</u>	<u>DN 2</u>
90 ma	rks
0	Attempt Questions 11 – 16 Allow about 2 hours 45 minutes.

Section 1 (10 marks)

1. For what values of k does the equation $x^2 - 6x - 3k = 0$ have real roots?

A) $k \ge -3$ B) $k \le -3$ C) $k \ge 3$ D) $k \le 3$

2. For the function y = f(x), a < x < b graphed below:

Which of the following is true?

A)
$$f'(x) > 0$$
 and $f''(x) > 0$
B) $f'(x) > 0$ and $f''(x) < 0$
C) $f'(x) < 0$ and $f''(x) > 0$
D) $f'(x) < 0$ and $f''(x) < 0$

3. Which expression will give the area of the shaded region bounded by the curve $y = x^2 - x - 2$, the *x*-axis and the lines x = 0 and x = 5?

A)
$$A = \left| \int_0^1 (x^2 - x - 2) dx \right| + \int_1^5 (x^2 - x - 2) dx$$

B)
$$A = \int_0^1 (x^2 - x - 2) dx + \left| \int_1^5 (x^2 - x - 2) dx \right|$$

C)
$$A = \left| \int_{0}^{2} (x^{2} - x - 2) dx \right| + \int_{2}^{5} (x^{2} - x - 2) dx$$

D)
$$A = \int_0^2 (x^2 - x - 2) dx + \left| \int_2^5 (x^2 - x - 2) dx \right|$$

4. What are the coordinates of the focus of the parabola
$$4y = x^2 - 8$$
?
A) (0, -8) B) (0, -7) C) (0, -2) D) (0, -1)

5. What are the domain and range of the function $f(x) = \sqrt{4 - x^2}$?

A)	Domain:	$-2 \leq x \leq 2,$	Range:	$0 \le y \le 2$
B)	Domain:	$-2 \leq x \leq 2,$	Range:	$-2 \leq y \leq 2$
C)	Domain:	$0 \leq x \leq 2,$	Range:	$-4 \leq y \leq 4$
D)	Domain:	$0 \leq x \leq 2,$	Range:	$0 \le y \le 4$

6. When the curve $y = e^x$ is rotated about the x - axis between x = -2 and x = 2, the volume of the solid generated is given by:

A)
$$\pi \int_{-2}^{2} e^{x} dx$$
 B) $2\pi \int_{0}^{2} e^{x^{2}} dx$

C)
$$\pi \int_{-2}^{2} e^{x^2} dx$$
 D) $\pi \int_{-2}^{2} e^{2x} dx$

7. The sector below has an area of 10π square units.

What is the value of r?

A)	$\sqrt{60}$	В)	$\pi\sqrt{60}$	C)	$\frac{\pi}{3}$	D)	$\sqrt{\frac{1}{3}}$
					A D		V - J

 An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio? ~

A) $\frac{1}{6}$ B) $\frac{1}{4}$ C) $\frac{1}{3}$ D) $\frac{1}{2}$

9. If $\int_0^a 4 - 2x \, dx = 4$, find the value of a.

A) a = -2 B) a = 0 C) a = 4 D) a = 2

10. What is the greatest value taken by the function $f(x) = 4 - 2\cos x$ for $x \ge 0$?

A) 2 B) 4 C) 6 D) 8

Section 2		(90 marks)	
Question 11		(15 marks)	Marks
a)	Find ∛9.8 ² correct t	to 2 decimal places	1
b)	Factorise fully $ax + 3$	3ay - x - 3y	1
c)	Solve for a and d:		1
	a + 9d = 20		
	2a + 9d = 12		
d)	Express $\frac{2}{5+\sqrt{3}}$ with a r	ational denominator	1
e)	Solve $ 3x - 1 = 5$		2
f)	Solve the following e	quation:	2
	$\log_2 x + \log_2(x+7)$) = 3	
g)	Solve $\cos x = \frac{-1}{2}$ for	$0 \le x \le 2\pi$	2
h)	Find the primitive of a	$x^2 \sqrt{x}$	2
i)	Differentiate $\frac{3}{(2x+1)^2}$		2
j)	Find $\int_0^1 e^{2x} dx$		1

.

.

ŀ

C

С

Question 12(15 marks)Marksa)On the diagram below,A (2, -2)B (-2, -3) andC (0, 2)are the vertices of

i)	Find the gradient of AC	1
ii)	Find the angle of inclination that AC makes with the positive direction of the	
	x axis, to the nearest degree.	1
iii)	Show that the equation of AC is $2x + y - 2 = 0$	1
iv)	Calculate the perpendicular distance of B from the line AC	2
v)	Find the area of Δ ABC	2
vi)	Find the coordinates of D such that ABCD is a parallelogram.	1
b)	Evaluate $\lim_{x \to 0} \frac{\sin 2x}{3x}$	2
c)	In \triangle ABC, AB = 2cm, \angle ABC = 105° and \angle BCA = 30°. Find the length	2
	of BC correct to 1 d.p.	
d)	Max is saving to buy a new car. He needs \$12700. In the	3
	first month he saves \$25, in the second \$40 followed by \$55 in the next.	
	If he continues to increase the amount he saves by \$15 each month, how	
	many months will it take him to save for the car?	

c)

 \mathbb{C}

,

In Δ PQR, point T lies on side QR and point S lies on side PR such that QT = TR,

QS = QP and $ST \perp QT$.

i)	Copy the diagram into your answer booklet showing all given information.	1
ii)	Prove that $\Delta \text{ QTS} \equiv \Delta \text{ RTS}$	2
iii)	Prove that \angle QPS = 2 \angle TQS	2

Question 14 (1	15 marks)
----------------	-----------

a) Consider the curve

$$f(x) = -\frac{1}{3}x^3 - x^2 + 3x + 1$$

i)	Find the coordinates of any stationary points and determine their nature.	3
ii)	Find any point(s) of inflexion	2
iii)	Sketch the curve in the domain, $-6 \le x \le 3$	2
iv)	What is the maximum value of $f(x)$ in the given domain?	1

b) Simplify
$$\frac{1-\sin^2 x}{\cot x}$$

c)

The shaded region bounded by the graph $y = e^{x^2}$, the line y = 5 and the y axis is rotated about the y – axis to form a solid revolution.

i) Show that the volume of the solid is given by

1

Marks

2

$$V = \pi \int_1^5 \log_e y \, dy$$

Copy and complete the following table into your writing booklet. Give your answer correct to 3 decimal places.

у	1	2	3	4	5
log _e y	0	0.693	1.099		1.609

iii) Use Simpson's Rule with five function values to approximate the volume of the solid of revolution V_y , correct to three decimal places.

ii)

Marks

1

3

The shaded region OAB is bounded by the parabola $y = x^2$, the line y = 2 - xand the x - axis.

- i) Find the *x* coordinates of A and B. 2
- ii) Show that the exact area of the shaded region OAB is given by $\frac{5}{6}$ square units.

b) i) Show that
$$\frac{d}{dx}(xe^x) = e^x + xe^x$$
 1
ii) Find $\int xe^x dx$ 2

c) Find the trigonometric equation for the graph below:

Marks

2

2

Questi	ion 15 (cont)	Marks
d)	Mr Egan borrows \$P from a bank to fund his house extensions. The term of	
	the loan is 20 years with an annual interest rate of 9%. At the end of each	
	month, interest is calculated on the balance owing and added to the balance owir	ng.
	Mr Egan repays the loan in equal monthly instalments of \$1050.	
i)	Write an expression for the amount, A_1 , Mr Egan owes at the end of the	1
	first month	
ii)	Show that at the end of n months, the amount owing, A_n , is given by:	3
	$A_n = P(1.0075)^n - 140000(1.0075)^n + 140000$	
iii)	If the loan is repaid at the end of 20 years, calculate the amount Mr Egan	2
	originally borrowed, correct to the nearest dollar.	

Question 16 (15 marks)

•

- a) Find $\int 2^x dx$
- b) Let \propto and β be the solutions of $x^2 + 5x + 3 = 0$. Find:
- i) $\frac{1}{\alpha} + \frac{1}{\beta}$ 2

1

ii) A quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ 2

c) Evaluate
$$\int_0^2 \frac{6x}{x^2+2} dx$$
 3

Marks

1

3

1

d)

The water's edge is a straight line ABC which runs east-west. A lighthouse is 6km from the shore on a rocky outcrop, due north of A.

10km due east of A is a general store. To get to the general store as quickly as possible the lighthouse keeper rows to a point B, xkm from A, and then jogs to the general store. The lighthouse keeper's rowing speed is 6km/h and his jogging speed is 10km/h.

- i) Show that it takes the lighthouse keeper $\frac{\sqrt{36+x^2}}{6}$ hours to row from the 2 lighthouse to B.
- ii) Show that the total time taken for the lighthouse keeper to reach the general store is given by

$$T = \frac{\sqrt{36 + x^2}}{6} + \frac{10 - x}{10} \text{ hours}$$

- iii) Hence, show that when $x = 4\frac{1}{2}$ km, the time it takes the lighthouse keeper to travel from the lighthouse to the general store is a minimum (you may assume it is a minimum – no testing required)
- iv) Find the quickest time it takes the lighthouse keeper to go to the general
 store from the lighthouse. (You may leave your answer in hours).

Student Name: Teacher Name: 2016 Solutions Unit Trial Section A 3 C. 4. D 5. A 6. D 7. 8. (9 D 10 · C Section Question 4.58 b) a(x+3,y) - (x+3y)a = -828 $\frac{2}{5+13} \times \frac{5-13}{5-13}$ e) 3x-1=5 3x - 1 = -5x = -+ 10 - 2 3 (\hat{n}) g) COS X = -1 r + 1 = 3working angl $x^{2}+7x-8=0$ -x-1)(r+8)=0 $\gamma =$ **"**(x= <u>as x > ()</u> $\chi = T$ x = 25 (Ŧ) A e²x dx $\frac{x(2x+1)^{2}}{x(2x+1)^{2}}$ $\perp 2x | 1$ 3×(2×+1) (ન) 27 x 4C 12(2x+1)1/2 (p)-- -(M)

Teacher Name: Student Name: Question $\frac{2-2}{0-2}$ v'' - 2 = -2(x - 0)in M=tanO. alim ≒ = tanQ '_7 =-=117 7=0 $= (2 \times -2 + 1 \times -3 + -2)$ (N) A=+ an d $2^{2} + (-2-7)^{2}$ 20 Units = 755 K = 9 Units2 (Vi) Sinlx \cap 2xN/m \105.0 30 BC \oplus <u>sin30</u> Sin45 2 sin 45 BC Σ -Sin30 $\widehat{\mathbb{O}}$ BC-= 2.8 cm $\left(\right)$ n=7 $S_n = 12700$ d=15 715n2+351-25400 =C α. 7x25+(n-1 $12700 = \frac{1}{2}$ $3n^2 + 7n - 5080 = 0$ = -7 ± 149+12=5080 $25400 = 500 + 150^{2}$ $\bigcap \quad n = 4 \cap \left(\ln s \right)$

JUUURIIL NATHE I GOUNGE ING Question 13 psinx + 2C aris Ix (xtan2x). cii) Ix (= $t_{an}2x + 3cx 2sec^2 2x = cos x e^{sinx} - 3c^{-2}$ = tan2x + 2x sec22x M (dre eij Sin 4da 55ciii) doc $-(7_{1}-7)$ IJ 3+2,10 (2) (2) 23 $(3+2x)^2$ (\mathbb{N}) A'S QTS and RTS ain cia is common QT = TR given $\angle QTS = \angle RTS$ (straight 2 angle STICR) AOTS = ARTS (SAS)M et < TOS=0 cito - LTRS = O (corresponding angles in congruent 1/5) LOST= LRST= 20-Q Tamp sum of A's) LQSP = 180 - 2(20 - 2) (straight angle = 20 L Q PS = 20 (equal angles opposite equal sides a triangle ot $\therefore \angle QPS = 2 \angle TQS$ \bigcirc

(Jupstion (ii) f"(x) = 0 for pts. $f(x) = \frac{1}{3}x^3 - x^2 + 3x + 1$ inflexion $f'(x) = -x^2 - 2x + 3 = 0$ -2x - 2 = 0 $x^{2}+2x-3=0$ (1) x - D(x+3)x = -=-() -1-2=) q non (x =00 f''(x) = -3x - 2horizontal influxion =-4.0; (1.23)0× (1-)17 20 No Max f''(-3) = 4 > 0 : (-3 - 8) mintesting required cw 19 (Π) cin_ (-6, 19) (1,23) (+1,-23) 2 ×(3,-8) (-3 - 8)City = TT / x 2 du $y = x^2$ than x202 = SINE COSX

()

Student Name: Teacher Name: ·4-2 ? CiÙ. 0.693 1.099 1.386 1.609 109 V . . $\frac{1}{3} \frac{1}{2} 0 + 1.609 + 4(0.693 + 1.386) + 2 \times 1.099}{3} \times TT$ (iii) 12.695 Ξ

Teacher Name: Student Name: ____ Question 15 $\chi^{2} = \int -x$ ノニン $\gamma^{2} + \gamma - 2 = 0$ 2c=2 at B D(3 + 2) = 0(1)m= or ->2 A x=1 (>0) (1)x² dor + 2-2 d.sc A-= cù x - 2 \mathbb{G} Units 2 xex) $(\mathbf{r},\mathbf{r}) = \mathbf{r}^{\mathbf{x}} + \mathbf{x} \cdot \mathbf{r}^{\mathbf{x}}$ dib 6) (i) $= \chi e^{\chi} + e^{\chi}$ $\gamma \varphi$ rdx= rerdx $= e^{x} + x e^{x}$ $(x e^{x})$ $xe^{x} - e^{x} + C = 1$ Die da (1) Amplitude 下=开=夺: N=3 CUCVE is of the form y=Asinnx $y = 2sin\frac{3x}{2}$ (1)

 $d)_{ci}A_{1} = P_{x}(1+\frac{12}{100})-1050$ = Px(1.0075) -1050 (ii) A = A, x 1.0075-1050 $= [P_{x}|.0075 - 1050]_{x}|.0075 - 1050$ $= P_{R} 1.0075^{2} - 1050(1 + 1.0075)$ $A_{\mu} = P_{\times} \left[\frac{10075^{1} - 1050(1 + 1.0075 + \dots 1.0075^{-1})}{0} \right]$ F=1.0075, N= N = Px1.0075 - 1050 x 1x 1:0075"-.0075- $= P_{x1.0075}^{n} - 140000(1.0075^{n} - 1$ $= P_{\times 1} \cdot 0075^{"} - 140000 \times 1.0075^{"} + 1.40000$ $\frac{1}{0} \frac{A+20}{0} \frac{1}{20} \frac{1}{20}$ + 140000 P = \$116702(2)

Question $b)(i)d + \beta =$ $\operatorname{rin} \mathcal{X}^{-}(\overline{a} + \overline{b})$ 109.22 +C $3x^2 + 5x + 1 = 1$ $x^2 + \frac{5}{5}x + \frac{1}{3} =$ T= 5 d (i) (D)distance from B to lighthou = 1 x2+36 km () x2+36 hours (1 160 $\frac{\text{cii} \, \text{RUM ning}}{T = \frac{\text{oliotance BC}}{\text{running spe}}$ $= \frac{10 - x}{1 - x}$ = 310ge 3 ... Total time = 122+36 $=\frac{1}{6}\times\frac{1}{2}(x^{2}+36)^{2}\times2x$ ciii) Loc · 10 6 J 2C2+36 MINIMUM.

Student Name:

Teacher Name:

X 202+36 $6\sqrt{x^2+36}$ = 10 xJac2+36 ____ $25x^2$ 202 \oplus +36 9x2+324 $25\pi^{2} =$ $|6x^2 = 3.24$ $x^2 = 20.25$ = 4.5Km () expression for into x = 4.5(iv) Sub +36 10 - 4.54.5 ᠇ 1.8 hours () ____

•••