ABBOTSLEIGH

TRIAL HIGHER SCHOOL CERTIFICATE

1990

MATHEMATICS

3 UNIT/4 UNIT COMMON PAPER

Time Allowed: 2 hours

All questions may be attempted
Answer each question in a separate booklet
All questions are of equal value
Approved, silent calculators may be used
Show all necessary working
STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n-1} x^{n-1}, n = -1; x = 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0.$$

$$\int e^{4x} dx = \frac{1}{a} \sin ax, a = 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a = 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a = 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, a = 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a = 0$$

$$\int \frac{1}{x^{2} + x^{2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{(x^{2} - a^{2})}} dx = \ln x \left\{ x + \sqrt{(x^{2} - a^{2})} \right\}.$$

$$\int \frac{1}{\sqrt{(x^{2} - a^{2})}} dx = \ln x \left\{ x + \sqrt{(x^{2} - a^{2})} \right\}.$$

Question 1

- (a) Differentiate extan x
- (b) Find the primitive function of $\frac{x}{1-4x^2}$
- (c) Find the primitive function of $\frac{1}{\sqrt{1-4x^2}}$
- (d) Use the substitution $u = e^x \div 2$ to evaluate

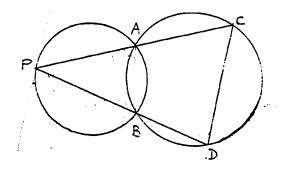
$$\int_0^{\log e^4} \frac{e^{2x}}{e^x + 2} dx$$

Question 2

⁴ (2) Sketch, showing all essential features,

$$y = 3\sin^{-1}2x$$

- (b) Find the exact value of $tan(cos^{-1} \frac{\sqrt{3}}{2})$
- (c) Write down the inverse function of $y = 3 + e^x$ in the form y = g(x) and state the range and domain of g(x).
- (d) (i) Swetch the curve $v = 1 + \sin x$ for $0 \le x \le 2\pi$
 - (ii) Calculate the volume generated when the arc of $y=1-\sin x$ between x=0 and $x=\frac{3\pi}{2}$ is rotated about the x-axis.


Question 3

(a) Prove by induction that

$$\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

(b) In the expansion $(1 \div x)(a - bx)^{12}$ the coefficient of x^8 is zero. $(a \ne 0, b \ne 0)$ Find in its simplest form, the ratio $\frac{a}{b}$

(c)

Copy this diagram into your booklet. In the diagram PAC and PBD are straight lines. Prove that CD is parallel to the tangent at P.

Question 4

(a) Find
$$\lim_{x \to 0} \frac{\sin 2x}{3x}$$

(b) Find the general solution of the equation $\sin 2x = \cos x$ (Answer in racians)

It is given that the rate of decrease of temperature of a body hotter than surrounding air is proportional to the temperature difference. If A is the air temperature, and T the temperature of the body after t minutes, then

$$\frac{dT}{dt} = -k(T - A)$$

(i) Show that if I is the initial temperature of the body, then the following function satisfies this condition:

$$T = A + (I - A).e^{-kt}$$

(ii) An ingo of pig-iron, initially at a temperature of 1500°C, is allowed to cool in the open air, where the temperature is 20°C. If it cools to 1200°C in five minutes, find the temperature of the ingot after one hour, to four significant figures.

Question 5

- (a) Find the co-ordinates of the point P, dividing the interval AB externally in the ratio 3:2. A is (-2,5) and B is (1,3)
- (b) The tangent at P(2ap,ap²) on the parabola $x^2 = 4$ ay meets the x-axis at C.
 - (i) Prove that the equation of the tangent at P is $y = px ap^2$
 - (ii) Find the co-ordinates of C
 - (iii) Find the co-ordinates of M, the midpoint of PC
 - Show that the locus of M is the parabola $2x^2 = 9ay$ and find the co-ordinates of its focus.
- (c) A particle moves with simple harmonic motion and has a speed of 5cm/sec when passing through the centre Q of its path. The period is π secs. Find the speed of the particle when it is 2cm from Q.

Question 6

(a) Use one application of Newton's method to find a solution, which is more accurate than x = 1, to the equation,

$$x - tan^{-1}2x = 0$$

(give your answer correct to 1 decimal place)

- (b) If α , β , γ are the roots of $x^3 5x 4 = 0$
 - (i) evaluate $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$
 - (ii) form the equation with roots 2α, 2f, 2γ
- (c) When $f(x) = x^3 + ax^2 + bx + c$ is divided by (x 3) the remainder is 30. If $(x^2 4)$ is a factor of f(x), find a, b and c.

Question 7

- (a) A cat sitting on top of a wall 3.2m high, spots a mouse on the ground, below her, 4m from the foot of the wall, the cat jumps horizontally from the top of the wall with an initial speed of 6m/sec. Taking acceleration due to gravity as 10m/sec² and ignoring air friction,
 - (i) find how long the c2t takes to reach the ground
 - (ii) show that the cat misses the mouse and determine the extent of the miss
 - (iii) find the speed with which the cat strikes the ground
- (b) Find the maximum and minimum values of

$$\frac{2 - \sin \theta}{\cos \theta} \qquad \text{for } 0 \le \theta \le \frac{\pi}{4}$$