ABBOTSLEIGH

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

MATHEMATICS

3 UNIT

1999

Time allowed: Two hours (Plus 5 minutes reading time)

Directions to candidates:

<u>ئ</u>

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied.
- Board-approved calculators may be used.
- Answer each question in a SEPARATE Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

3

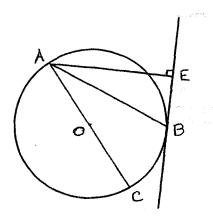
3

3

3

Q1.	(a)	Let A(-5,12) and B(4,9) be two points in the number plane. Find the coordinates of P which divides the interval AB externally in the ratio $5:2$.	2
	(b)	Find the size of the acute angle between the lines $y = 2x + 3$ and $y = 4x + 1$. (Answer to the nearest minute).	2
	(c)	Express $f(x) = x^3 + 3x^2 - 10x - 24$ as a product of three linear factors.	3
	(d)	Evaluate $\int_{1}^{3} \frac{dx}{\sqrt{9-x^2}}$	3

(e) Two points A and B are placed on a circle and AC is a diameter. AE is 2 perpendicular to the tangent at B.



õ

- (i) Draw the diagram on your paper.
- (ii) Prove AB bisects $\angle CAE$.

- Q2. Start a new booklet
- (a) Solve for x : $x \ge \frac{4}{x}$
- (b) For $y = -3\sin^{-1}\frac{x}{2}$
 - (i) State the domain and range.
 - (ii) Sketch the curve.

(c) Using the substitution
$$u = 9 - x^2$$
, evaluate $\int_{0}^{3} x \sqrt{9 - x^2} dx$

(d) The area bounded by the curve $y = \sin x$ between x = 0 and $x = \frac{\pi}{2}$ is rotated about the x-axis. Find the volume of the solid of revolution.

4

4

4

4

Q3. Start a new booklet

- (a) Express $3\cos x + 4\sin x$ in the form $A\cos(x-\alpha)$ where A > 0. Hence, or otherwise, solve $3\cos x + 4\sin x = -3$ for $0 \le x \le 360^{\circ}$.
- (b) Find the greatest coefficient in the expansion $(3 + 4x)^{16}$ (leave in index form)
- (c) A point P moves on the curve $y = x^3$ in such a way that its x coordinate is changing at a constant rate of 2 units/sec. When x = 1, at what rate is
 - (i) the y coordinate changing?
 - (ii) the gradient changing?

Q4. Start a new booklet

(a) Find x and y if
$$\frac{4x}{16} = 8^{x+y}$$
 and $2^{2x+y} = 128$. 3

(b) If
$$x = 2 - \cos t$$
 and $y = 2t + 2\sin t$,

- (i) find $\frac{dx}{dt}$ and $\frac{dy}{dt}$
- (ii) Hence or otherwise, find $\frac{dy}{dx}$ in terms of $\frac{t}{2}$.
- (c) A particle is oscillating in simple harmonic motion such that its displacement 5 x metres from the origin is given by the equation $\frac{d^2x}{dt^2} = -9x$ where t is time in seconds.
 - (i) Show that $x = a \cos (3t+\alpha)$ is a solution of motion for this particle (a and α are constants).
 - (ii) When t = 0, v = 3 m/s and x = 5 m. Show that the amplitude of the oscillation is $\sqrt{26}$ metres.
 - (iii) What is the maximum speed of the particle?

3

Q5. Start a new booklet

- (a) α , β , γ are the roots of the equation $2x^3 + 3x^2 4 = 0$
 - Find
 - (i) $\alpha + \beta + \gamma$
 - (ii) $\alpha \beta \gamma$
 - (iii) $\alpha^2 + \beta^2 + \gamma^2$
- (b) For the function $y = x^2 2x + 1$, find the largest possible domain such that this function has an inverse. Find the equation of this inverse and state its range.
- (c) For the parabola $x^2 = 12y$, find
 - (i) the equation of the tangent at the point P (6p, $3p^2$) on the parabola.
 - (ii) the coordinates of the point T where the tangent meets the x axis.
 - (iii) Show that N, the midpoint of PT, has coordinates $(\frac{9p}{2}, \frac{3p^2}{2})$.
 - (iv) Find the equation of the locus of N.

Q6. Start a new booklet

- (a) Find $\lim_{x\to 0} \frac{\sin 3x}{5x}$
- (b) The daily growth of a colony of insects is 10% of the excess of the population over 1.2 x 10⁶.
 ie dN/dt = 0.1 (N 1.2 x 10⁶).

Initially, the population is 2.7×10^6 ,

- (i) Determine the population after $3\frac{1}{2}$ days.
- (ii) If a scientist checks the population each day, which is the first day on which she should notice that the original population has tripled?

6

3

2

4

Q6. (continued).....

្ទ

- (c) A ball is thrown with a velocity of $30\sqrt{3}$ m/s at an angle of 60° to the horizontal.
 - (i) Assuming negligible air resistance and letting $g = 10 \text{ ms}^{-2}$, derive the equations of motion.
 - (ii) Find the time of flight and the range.
 - (iii) If the ball had been thrown with velocity $30\sqrt{3}$ m/s at an angle of 30° to a hill which is itself inclined at 30° to the horizontal (see diagram), determine the time of flight.



Q 7. Start a new booklet

(a) Prove by mathematical induction that for all values of n

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots \frac{n}{(n+1)!} = \frac{(n+1)! - 1}{(n+1)!}$$

where n is a positive integer.

(b) (i) Show that
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 has no stationary points.

- (ii) Prove that the lines $y = \pm 1$ are asymptotes.
- (iii) Sketch the curve.
- (iv) If k is a positive constant, find the area in the first quadrant enclosed by the above curve and the three lines y = 1, x = 0 and x = k.
- (v) Prove that for all values of k, this area is always less than $\log_e 2$.

6

7

5

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(5,12 \right) \\ \left(5,12 \right) \\$$

c)
$$y = x^{3}$$
 $\frac{dx}{dt} = 2v/s$
 $\frac{dy}{dt} = 3n^{3}$
 $\frac{dy}{dt} = 3n^{3}$
 $\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dx}{dt}$
 $= 3n^{3} \times 2$
 $\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dx}{dt}$
 $= 3n^{3} \times 2$
 $\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dx}{dt}$
 $= 3n^{3} \times 2$
 $\frac{dy}{dt} = 6 \times 3n^{3}$
 $\frac{dy}{dt} = 6 \times 3n^{3}$
 $\frac{dy}{dt} = 6 \times 3n^{3}$
 $\frac{dm}{dt} = 2(1 + (2 \tan \frac{\pi}{2} - 1))$
 $\frac{dm}{dt} = 2 \tan^{3} \frac{\pi}{2}$
 $\frac{dm}{dt} = \frac{2}{2} \tan^{3} \frac{\pi}{2}$
 $\frac{dm}{dt} = 2 \times 3n^{3} \frac{\pi}{2}$
 $\frac{dm}{dt} = 2 \times$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$$

Ņ

$$\frac{d^{2}x}{dt} = -9x$$

$$\frac{d^{2}x}{dt} = -3x$$

$$\frac{d^{2}x}{dt} = -9x$$

$$\frac{d^{2}x}{dt} = -9x$$

$$\frac{d^{2}x}{dt} = -9x$$

$$\frac{d^{2}x}{dt} = -3x$$

$$\frac{d^{2}x}{dt} = -9x$$

$$\frac{d^{2}x}{dt} = -3x$$

$$\frac{d^{2}x}{dt} = -9x$$

$$\frac{d^{2}x}{dt} = -3x$$

$$P_{(kp,3p^{*})}$$

$$P_{(kp,3p^$$

$$\frac{1}{x} = 0$$

$$\frac{1}{x} = 0$$

$$\frac{1}{x} = 0$$

$$\frac{1}{x} = 0$$

$$\frac{1}{x} = 15\sqrt{3}$$

$$\frac{1}{x} = -5t^{2} + 4x5t$$

$$\frac{1}{x} = -5t^{2}$$

•

 $\frac{1}{11} + \frac{2}{11} + \frac{3}{11} + \cdots + \frac{n}{11} = \frac{(n+1)! - 1}{2}$ for all $\frac{1}{11}$

Area = $k - \int_{-\infty}^{k} \frac{e^{2} - e^{-2}}{e^{2} + e^{-2}} dx$ iv` $= k - \left[\log_{e} \left(e^{x} + e^{-n} \right) \right]^{k}$ $= k - \left[\log_{e} \left(e^{k} + e^{-k} \right) - \log_{e} \left(e^{e^{k}} + e^{-k} \right) \right]$ $=h - \left[\log_e\left(e^k + e^{-k}\right) - \log_e 2\right]$ v) $k - \int \log_e(e^k + e^{-k}) - \log_e 2$ = $\log e^{k} - \log e(e^{k} + e^{-h}) + \log e^{2}$ = $\log_e \frac{e^n}{e^n + e^{-n}} + \log_e 2$ Now loge en ten <0 herance en ten <1 max value is loge 2