\qquad

ABBOTSLEIGH

AUGUST 2008

YEAR 12 ASSESSMENT 4

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time - 2 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided with this paper.
- All necessary working should be shown in every question.

Total marks - 84

- Attempt Questions 1-7.
- All questions are of equal value.
- Answer each question in a separate writing booklet.

Outcomes assessed

Preliminary course

PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives which require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC course

HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving binomials, projectiles or exponential growth and decay
HE4 uses the relationship between functions, inverse functions and their derivatives
HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form
Harder applications of the Mathematics course are included in this course. Thus the Outcomes from the Mathematics course are included.

Outcomes from the Mathematics course Preliminary course

P2 provides reasoning to support conclusions that are appropriate to the context
P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
P5 understands the concept of a function and the relationship between a function and its graph
P6 relates the derivative of a function to the slope of its graph
P7 determines the derivative of a function through routine application of the rules of differentiation
P8 understands and uses the language and notation of calculus

HSC course

H2 constructs arguments to prove and justify results
H3 manipulates algebraic expressions involving logarithmic and exponential functions
H4 expresses practical problems in mathematical terms based on simple given models
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
H6 uses the derivative to determine the features of the graph of a function
H7 uses the features of a graph to deduce information about the derivative
H8 uses techniques of integration to calculate areas and volumes
H9 communicates using mathematical language, notation, diagrams and graphs
a) Solve for $x: \quad 3^{x+1}=2$, expressing your answer correct to two
decimal places.
b) State the domain and range of the function $g(x)=\frac{1}{2} \cos ^{-1} \frac{x}{2}$
c) Using the remainder theorem, or otherwise, fully

3
factorise $6 x^{3}+17 x^{2}-4 x-3$
d) Use the substitution $u=2-x^{2}$ to find $\int \frac{x}{\left(2-x^{2}\right)^{3}} d x$
e) Solve the inequality: $\frac{2 x-5}{x-4} \geq x$ 3
a) Find $\frac{d}{d x}\left(3 x^{2} \cos ^{-1} x\right)$
b) Evaluate exactly: $\cos ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}\left(-\frac{1}{2}\right)$
c) Find, in degrees and minutes, the acute angle between the lines
d) Given $(1+2 x)^{6}(1-x)^{4}$, find the coefficient of x^{3}
e) Use the method of mathematical induction to prove that

$$
2^{2 n}+8 \text { is divisible by } 6, \quad n \geq 1
$$

a) Use the Table of Standard Integrals to show that $\int_{6}^{15} \frac{d x}{\sqrt{x^{2}+64}}=\log _{e} 2$
b)

WXYZ is a quadrilateral inscribed in a circle with centre $\mathrm{O} . \angle \mathrm{XWZ}=32^{\circ}$.
Find, giving reasons, the size of:
i) $\angle \mathrm{XOZ} 1$
ii) $\quad \angle \mathrm{XYZ}$
c) Find the roots of $4 x^{3}-4 x^{2}-29 x+15=0$, given that the difference 3 between two of the roots is the value of the third root.
d) The population of Nottingtown first reached 25000 on January $1^{\text {st }} 2000$. Nottingtown's population is predicted to increase according to the equation

$$
\frac{d N}{d t}=k(N-8000)
$$

Where t represents the time in years after the population first reached 25000 .
On January $1^{\text {st }} 2005$, the population of Nottingtown was 29250.
i) Show that $N=8000+A e^{k t}$ where A is a constant, is a solution to the above equation
ii) Calculate the values of A and k.
a) Water is poured into a cone of radius 15 cm and height 15 cm .

The water is poured in at a constant rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The depth of the water at t seconds is $h \mathrm{~cm}$.

i) The shaded area, S, represents the surface of the water as the cone is filled. 3 Given r is the radius of area S, show that the radius is increasing at $\frac{12}{\pi r^{2}} \mathrm{cms}^{-1}$.
ii) Hence, calculate the rate at which the surface area, S, of the water is changing when the depth of the water is 5 cm .
b) The graph below shows the derivative of $y=2 \tan ^{-1} x$

i) Where does $y=2 \tan ^{-1} x$ have the greatest slope and what is its value?

2
ii) What x values correspond to $y^{\prime}=\frac{1}{3}$
iii) Deduce the limiting sum bounded by the gradient function, 2 the x-axis and $-\infty<x<\infty$
a) Differentiate $y=2^{x}$ with respect to x.
b) A particle moves in a straight line with an acceleration given by

$$
\frac{d^{2} x}{d t^{2}}=9(x-2)
$$

where x is the displacement in metres from the origin, O, after t seconds. Initially the particle is 4 metres to the right of O and has velocity, $v=-6$.
i) Show that $v^{2}=9(x-2)^{2}$

2
ii) Find an expression for v and hence find x as a function of t
iii) Explain whether the velocity of the particle is ever zero
c)

QR is the diameter of the circle. The tangent to the circle at P meets QR produced to S . T is situated on QR such that PR bisects $\angle \mathrm{TPS}$.

COPY OR TRACE THE DIAGRAM ONTO YOUR PAGE

i) \quad Give a reason why $\angle \mathrm{RPS}=\angle \mathrm{PQR}$
ii) Hence, show that $\mathrm{PT} \perp \mathrm{QR}$
a) Consider the function $y=x(x-2)^{2}, x \leq a$ where a is a constant.
i) Find the values of a, given that the inverse function, $y=f^{-1}(x)$ exists. 2
ii) State the domain of $y=f^{-1}(x)$
b) Show that $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin ^{2} 3 x d x=\frac{1}{2}\left(\frac{\pi}{12}-\frac{1}{6}\right)$
c) A golfer hits a ball so that it clears a tree which is 6 metres in height and with a horizontal distance of 20 metres (assuming the ground is level). If the selected club produces an angle of elevation of 40° (given $g=10 \mathrm{~ms}^{-2}$),
i) Write an expression for y, the vertical distance travelled. $\mathbf{1}$
ii) Write an expression for x, the horizontal distance travelled.

1
iii) Hence, determine the equation of the flight path (in terms of x and y).
iv) Calculate the speed at which the golf ball must leave the ground to ensure it just clears the tree.
a) Find: $\int_{0}^{1.25} \frac{5 d x}{\sqrt{25-16 x^{2}}}$

2
b) Given that a root for the equation $e^{x}-x-2=0$ is close to $x=1.2$, 2 use one application of Newton's Method to find a second approximation for this root, correct to 2 decimal places.

Question Seven continued over page...
c) The point $\mathrm{A}\left(3 a t,-a t^{2}\right)$ is a variable point on the parabola $x^{2}=-9 a y$.

The normal at A meets the line $x=-a t$ at point B .
Point C lies on the normal and divides interval $A B$ externally in the ratio 2:3.

i) Show that the equation of the normal to the parabola at A is

$$
3 x-2 t y=2 a t^{3}+9 a t
$$

ii) Deduce the coordinates of B
iii) Determine the coordinates of C
iv) Show that the locus of C is a parabola

TABLE OF STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& \int e^{a x} d x= \\
& =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \\
& =\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \\
& =-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \\
& =\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \\
& =\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \\
& =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

yr 12 Extension the Trial HSC 2008 SOLuTions $q u / d)$
Question One
a)

$$
\begin{aligned}
3^{x+1} & =2 \\
\log 3^{x+1} & =\log 2 \\
(x+1) \log 3 & =\log 2 . \\
x+1 & =\frac{\log 2}{\log .3} \\
x+1 & =0.63 \ldots \\
x & =-0.369 \ldots \\
\therefore x & =-0.37 \quad(2 d p .)
\end{aligned}
$$

b) $g(x)=\frac{1}{2} \cos ^{-1} \frac{x}{2}$

$$
\begin{aligned}
\Delta: & -1 \leq \frac{x}{2} \leq 1 \\
\therefore & -2 \leq x \leq 2 \\
R: & 0 \leq y \leq \pi / 2
\end{aligned}
$$

c)

$$
\begin{aligned}
P(x) & =6 x^{3}+17 x^{2}-4 k-3 \\
P(-3) & =6 \times(-3)^{3}+17 \times(-3)^{2}-4 x-3-3 \\
& =-162+153+12-3 \\
& =0
\end{aligned}
$$

$\therefore x+3$ is a factor

$$
\begin{array}{r}
\frac{6 x^{2}-x-1}{6+3} \begin{array}{l}
6 x^{3}+17 x^{2}-4 x-3 \\
6 x^{3}+18 x^{2} \\
-x^{2}-4 x \\
-x^{2}-3 x
\end{array} \\
\frac{-x-3}{0}
\end{array}
$$

$$
\begin{aligned}
\therefore 6 x^{3}+17 x^{2}-4 x-3 & =(x+3)\left(6 x^{2}-x-1\right) \quad \frac{-x-3}{0} \\
& =(x+3)(3 x+1)(2 x-1)
\end{aligned}
$$

$$
\begin{aligned}
u & =2-x^{2} \\
\frac{d u}{d x} & =-2 x
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x d x=\frac{-d u}{2} \\
& \begin{aligned}
\int \frac{x}{\left(2-x^{2}\right)^{3}} & =\frac{-1}{2} \int \frac{d u}{u^{3}} \\
& =-\frac{1}{2} \int u^{-3} d u \\
& =-\frac{1}{2} \frac{u^{-2}}{-2}+C \\
& =\frac{1}{4\left(2-x^{2}\right)^{2}}+C
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \quad \frac{2 x-5}{x-4} \geqslant x \quad \therefore x \neq 4 \\
& (x-4)^{2} \times \frac{(2 x-5)}{x-4} \geqslant x(x-4)^{2} \\
& (x-4)(2 x-5) \geqslant x(x-4)^{2} \\
& 0 \geqslant x(x-4)^{2}-(x-4)(2 x-5) \\
& 0 \geqslant(x-4)[x(x-4)-2 x+5] \\
& 0 \geqslant(x-4)\left(x^{2}-6 x+5\right) \\
& 0 \geqslant(x-4)(x-5)(x-1) \\
& \text { if } x=2 \quad 0 \geqslant(-2)(-3)(1) \\
& \quad 0 \neq 6
\end{aligned}
$$

qu (e) cont id...
$\therefore x \leq 1$ and $4<x \leq 5$ (since. $x \neq 4$)
Question two
a)

$$
\begin{aligned}
\frac{d}{d x}\left(3 x^{2} \cos ^{-1} x\right) & =6 x \cos ^{-1} x+3 x^{2} \cdot \frac{-1}{\sqrt{1-x^{2}}} \\
& =6 x \cos ^{-1} x-\frac{3 x^{2}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

b)

$$
\begin{aligned}
\cos ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}\left(-\frac{1}{2}\right) & =\frac{\pi}{3}+\sin ^{-1} \frac{1}{2} \\
& =\frac{\pi}{3}+\frac{\pi}{6} \\
& =\frac{\pi}{2}
\end{aligned}
$$

c)
d)

$$
\begin{aligned}
(1+2 x)^{6}(1-x)^{4} & =\left(\sum_{r=1}^{b}\left(\begin{array}{l}
6
\end{array}\right) r^{r}(2 x)^{6-r}\right)\left(\sum_{r=1}^{4}\left(l^{4}\right)(-x)^{4-r}\right) \\
& =\left(\sum_{r=1}^{6}\binom{6}{r}(2 x)^{6-r}\right)\left(\sum_{r=1}^{4}\left(l^{4}\right)(-x)^{4-r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{6}{3}(2 x)^{3} \times\binom{ 4}{4}(-x)^{0}+\binom{6}{4}(2 x)^{2} \times\binom{ 4}{3}(-x)^{\prime}+ \\
& \binom{6}{5}(2 x)^{\prime} \times\binom{ 4}{2}(-x)^{2}+\binom{6}{6}(2 x)^{0}(4)(-x)^{3} \\
& \text { coefficient } \\
& 8 \times\binom{ 6}{3} \times\binom{ 4}{4}-4 \times\binom{ 6}{4}\binom{4}{3}+2\left(\frac{6}{5}\right)(4)-\binom{4}{2}\left(\begin{array}{l}
4
\end{array}\right) \\
& =
\end{aligned}
$$

e). Test $n=1$,

$$
\begin{aligned}
2^{2}+8 & =12 \\
& =6 \times 2
\end{aligned}
$$

\therefore divisible by 6
\therefore tue for $n=1$
test. $n=2, \quad 2^{2 \times 2}+8=2^{4}+8$

$$
\begin{aligned}
& =16+8 \\
& =24
\end{aligned}
$$

$$
=24
$$

$$
=6 \times 4
$$

\therefore churible by 6
\therefore tue for $n=2$
Assume. true for $n=k$,
$2^{2 k}+8=6 M$ where His a positive integer
Prove twi for $1=k+1$,
$2^{2(k+1)}+8=69$ where P is a positive integer

$$
\begin{array}{rlrl}
\text { LIS } & =2^{2(k+1)}+8 & \\
& =2^{2 k} \cdot 2^{2}+8 & \\
& =(6 M-8) \cdot 4+8 & \sin c e & 2^{2 k}+8=6 M \\
& =24 M-32+8 & \therefore 2^{2 k}=6 M-8 \\
& =24 M-24 & \\
& =68(4 M-4) \\
& =6 P \\
& =\text { RUS }
\end{array}
$$

Question three
a)

$$
\begin{aligned}
\int_{6}^{15} \frac{d x}{\sqrt{x^{2}+64}} & =\left[\ln \left(x+\sqrt{x^{2}+64}\right)\right]_{6}^{15} \\
& =\ln \left(15+\sqrt{1^{2}+64}\right)-\ln \left(6+\sqrt{6^{2}+64}\right) \\
& =\ln (15+17)-\ln (6+10) \\
& =\ln 32-\ln 16 \\
& =\ln \frac{32}{16} \\
& =\ln 2 \text { as required. }
\end{aligned}
$$

b) i) $\begin{aligned} \angle \mathrm{XOZ} & =32 \times 2 \text { (} \text { (at centre is trice } \angle \text { at } \\ & =64^{\circ}\end{aligned}$ $=64^{\circ} \quad$ cramperence on same arc)
ii)

$$
\begin{aligned}
& \angle x y z=180-32 \quad \text { (opposite } \quad \text { i's of cyclic grad. } \\
& \text { wxyz, supplementary) }
\end{aligned}
$$

Since true for $n=1$ and $n=2$ and proved twee for $n=k$ and $n=k+1$, statement is true for all $n \geqslant 1$.

Qu 3 contd...
c) $4 x^{3}-4 x^{2}-29 x+15=0$.

Let the roots be α, β and $\alpha-\beta$

$$
\begin{aligned}
\alpha+\beta+\alpha-\beta & =\frac{-b}{a} \\
& =\frac{+4}{4} \\
2 \alpha & =1 \\
\therefore \alpha & =\frac{1}{2}
\end{aligned}
$$

$$
\alpha \beta(\alpha-\beta)=\frac{-d}{a}
$$

$$
\frac{1}{2} \beta\left(\frac{1}{2}-\beta\right)=\frac{-15}{4}
$$

$$
\frac{1}{4} \beta-\frac{1}{2} \beta^{2}=-\frac{15}{4}
$$

$$
\beta-2 \beta^{2}=-15
$$

$$
0=2 \beta^{2}-\beta-15
$$

$$
\begin{aligned}
& 0=(2 \beta+5)(\beta-3) \\
& \beta=-5,3
\end{aligned}
$$

$$
\beta=-\frac{5}{2}, 3^{3}
$$

\therefore roots are $\frac{1}{2}, 3,-\frac{5}{2}$

Qu 3 contd...
d) i)

$$
\begin{aligned}
L H S & =\frac{d N}{d t} \\
& =\frac{d}{d t}\left(8000+A e^{k t}\right) \\
& =A k e^{k t} \\
\text { DHS } & =k(N-8000) \\
& =k\left(8000+A e^{k t}-8000\right) \\
& =A k e^{k t} \\
\therefore \angle H S & =\text { HS } .
\end{aligned}
$$

ii) when $t=0, N=25000$

$$
\begin{aligned}
25000 & =8000+A e^{0} \\
\therefore A & =25000-8000 \\
& =17000
\end{aligned}
$$

when $t=5, N=29250$

$$
\begin{aligned}
29250 & =8000+17000 e^{5 k} \\
21250 & =17000 e^{5 k} \\
1.25 & =e^{5 k} \\
5 k & =\ln 1.25 \\
k & =\frac{1}{5} \ln 1.25
\end{aligned}
$$

Question Four

$$
\text { a) } \begin{aligned}
i) \frac{d V}{d t} & =12 \mathrm{~cm}^{3} / \mathrm{s} \\
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi r^{3} \\
\frac{d V}{d r} & =\pi r^{2} \\
\frac{d V}{d t} & =\frac{d V}{d r} \cdot \frac{d r}{d t} \\
12 & =\pi r^{2} \cdot \frac{d r}{d t} \\
\therefore \frac{d r}{d t} & =\frac{12}{\pi r^{2}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \delta=\pi r^{2} \\
& \begin{aligned}
& \frac{d s}{d r}=2 \pi r \\
&=2 \pi \times 5 \\
&=10 \pi \\
& \frac{d s}{d t}=\frac{d s}{d r} \cdot \frac{d r}{d t} \\
&=10 \pi \times \frac{12}{\pi r^{2}} \\
&=\frac{120}{r^{2}} \\
& \text { When } \\
& \frac{d s}{d t}=\frac{120}{5^{2}}=4.8 \mathrm{~cm}^{2} / \mathrm{s} .
\end{aligned} .
\end{aligned}
$$

Qu 4 contd...
b) i) by inspection at $x=0, \frac{d y}{d x}=2$
ii)

$$
\begin{aligned}
& y=2 \tan ^{-1} x \\
& \frac{d y}{d x}=2 \cdot \frac{1}{1+x^{2}} \\
& \frac{1}{3}=\frac{2}{1+x^{2}} \\
& 6=1+x^{2} \\
& x^{2}=5 \\
& \therefore x= \pm \sqrt{5}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{2 d x}{1+x^{2}} & =2 \int_{0}^{\infty} \frac{2 d x}{1+x^{2}} \\
& =4 \int_{0}^{\infty} \frac{d x}{1+x^{2}} \\
& =4\left[\tan ^{-1} x\right]_{0}^{\infty} \\
& =4 \times \pi / 2 \\
& =2 \pi
\end{aligned}
$$

Question Five
a)

$$
\begin{aligned}
& y=2^{x} \\
& \frac{d y}{d x}=\ln 2 \cdot 2^{x}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =9(x-2) \\
\frac{d}{d x}\left(\frac{1}{2} 2^{2}\right) & =9(x-2) \\
\frac{1}{2} v^{2} & =9 \int x-2 d x \\
\frac{1}{2} r^{2} & =9\left(\frac{x^{2}}{2}-2 x\right)+C
\end{aligned}
$$

initially, $x=4$ and $v=-6$

$$
\begin{aligned}
& \frac{1}{2}(36)=9(8-2 \times 7)+c \\
& 18=9 \times 0+c \\
& \therefore c=18 \\
& \frac{1}{2} v^{2}=9\left(\frac{x^{2}}{2}-2 x\right)+18 \\
& v^{2}=9 x^{2}-36 x+36 \\
& \therefore v^{2}=9\left(x^{2}-4 x+4\right) \\
& \left.\therefore v^{2}-2\right)^{2} \text { required }
\end{aligned}
$$

ii) from i) $r^{2}=9(x-2)^{2}$

$$
\therefore r= \pm 3(x-2)
$$

tut $t=0, x=4, r=-6$

$$
\text { so } r=-3(x-2)
$$

$$
\begin{aligned}
& \frac{d x}{d t}=-3(x-2) \\
& \frac{d t}{d x}=\frac{-1}{3(x-2)} \\
& d t=\frac{1}{3} \int \frac{-d x}{x-2} \\
& t=\frac{-1}{3} \ln (x-2)+C
\end{aligned}
$$

$t=0, x=4$

$$
\begin{aligned}
& 0=-\frac{1}{3} \ln (4-2)+c \\
& \theta=-\frac{1}{3} \ln 2+c \\
& \therefore c=\frac{1}{3} \ln 2 \\
& t=-\frac{1}{3} \ln (x-2)+\frac{1}{3} \ln 2 \\
& t=\frac{1}{3} \ln \left(\frac{2}{x-2}\right)
\end{aligned} \quad \begin{aligned}
& 3 t=\ln \frac{2}{x-2} \\
& e^{3 t}=\frac{2}{x-2} \\
& x-2=\frac{2}{e^{3 t}} \\
& x=2+2 e^{-3 t} \\
& \therefore x=2\left(1+e^{-3 t}\right)
\end{aligned}
$$

Qu 5 contd...
b) iii)
from (ii) $r=-3(x-2)$
if $r=0, \quad 0=-3(x-2)$

$$
\begin{aligned}
& \therefore=x-2 \\
& \therefore x=2
\end{aligned}
$$

from (ii) abs, $x=2\left(1+e^{-3 t}\right)$
if $x=2, \quad 2=2\left(1+e^{-3 t}\right)$

$$
\begin{aligned}
& 1=1+e^{-3} \\
& 0=e^{-3 t}
\end{aligned}
$$

but $e^{-3 t} \neq 0 \quad \therefore r \neq 0$.
alternate method the graph of $x=2\left(1+e^{-3 t}\right)$
has an. asymptote at $x=2$
so $x \neq 2, r \neq 0$.
qu s contd...
$\angle R P S=\angle P Q R$ (alternate segment therm)
c) i) the angle between tangent to circle and choral drown from pt of contact is equal to angle in alternate segment
ii) $\quad \angle R P S=\angle T P R$ (given $P R$ bisects $\angle S P P_{T}$)

$$
\therefore \angle P Q R=\angle T R R \text { (from (i) }
$$

$\angle Q P R=90^{\circ}(\angle$ in semi-arcle is right $\angle)$
$\therefore \angle Q P T+\angle T P R=90^{\circ}$ (adjacent angles)
$\therefore \angle P P T+\angle P Q T=90^{\circ} \quad(\angle P Q T, \angle P Q R$ AAMCL $\angle)$
$\therefore \angle P T P=90^{\circ}$ (\angle sum of $\triangle P Q T$)
$\therefore P T \perp Q R$.
or $\quad \begin{aligned} \angle R P S & =\angle T P R \quad \text { (given PR Bisects } \angle S P T \text {) } \\ & =x\end{aligned}$
$=x$
$\begin{aligned} \therefore \angle P Q R & =\angle T P R \quad \text { (from (i)) } \\ = & =r \text { (}\end{aligned}$
$\begin{aligned} \angle Q R & =x \\ \angle Q P R & =90^{\circ}\left(\angle \text { in semi-arcle is might } \angle{ }^{\prime} d\right) \\ \angle T P Q & =90-x\end{aligned}$
$\therefore \angle T P Q=90-x$

$$
\begin{aligned}
\angle \Pi^{2} Q+\angle P Q T+\angle P T Q & =180^{\circ} \quad(\angle \sin \text { of } \triangle) \\
M-x+x+\angle P T Q & =180^{\circ} \\
\angle P T Q & =180-x-(90-x) \\
& =180-x-90+x \\
& =90^{\circ}
\end{aligned}
$$

$$
\therefore P T \perp Q R
$$

Question Six
a) i) $y=x(x-2)^{2}$

The inverse funciction $y=f^{-1}(x)$ exists if the graph $y=f(x)$ is ene-to-ore.
A horizontal line can be drain to cut the graph at mare than 1 pt.
One towing pt is $(2,0)$
The other is found by finding a stat pt

$0=(3 k-2)(n-2)$

$$
k=\frac{2}{3}, 2 .
$$

$\therefore y=f^{-1}(x)$ exits if $a \leq \frac{2}{3}$.
ii)

$$
\text { i) } \begin{aligned}
\Delta \cdot \operatorname{for} y & =f(x) \quad x \leqslant \frac{2}{3} \\
R: f\left(\frac{2}{3}\right) & =\frac{2}{3}\left(\frac{2}{3}-2\right)^{2} \\
& =\frac{32}{27} \\
\therefore \Delta: \text { for } y & =f^{-1}(x) \text { is } x \leqslant \frac{32}{27 .}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cdot \operatorname{sn}^{2} 3 x d x=\frac{1}{2} \int_{\frac{\pi}{4}}^{1}-\cos 6 x d x \text {. } \\
& \cos 2 x=1-2 \sin ^{2} k \\
& \begin{array}{l}
\cos 2_{k}=1-2 \sin ^{2} x \\
\cos 6 x=1-2 \sin ^{2} 3 x
\end{array} \\
& \begin{aligned}
2 \sin { }^{2} 3^{2} & =1-\cos 6 x \\
\sin ^{2} 3 x &
\end{aligned} \\
& \sin ^{2} 3 x=\frac{1}{2}(1-\cos t x) \\
& =\frac{1}{2}\left[x-\frac{1}{6} \sin 6 x\right]_{\frac{\text { 寺 }}{}}^{\frac{\pi}{3}}
\end{aligned}
$$

$$
\begin{aligned}
y & =x(x-2)^{2} \\
& =x\left(x^{2}-4 x+4\right) \\
& =x^{3}-4 x^{2}+4 x \\
y^{\prime} & =3 x^{2}-9 x+4 \\
& =(3 x-2)(x-2) \\
y^{\prime} & =0
\end{aligned}
$$

gu e 6 cont ld...
c) i) $y=r t \sin 40^{\circ}-5 t^{2}$
ii) $x=r \cos 40^{\circ}$
iii) from ii) $t=\frac{x}{v \cos 40^{\circ}}$

$$
\begin{aligned}
y & =r \cdot \frac{x}{r \cos 40^{\circ}} \cdot \sin 40^{\circ}-5\left(\frac{x}{r \cos 40^{\circ}}\right)^{2} \\
& =x \tan 40^{\circ}-\frac{5 x^{2}}{r^{2} \cos ^{2} 40^{\circ}} \\
& =x \tan 40^{\circ}-\frac{5 x^{2}}{r^{2}}\left(\sec ^{2} 40^{\circ}\right) \\
\therefore y & =x \tan 40^{\circ}-\frac{5 x^{2}}{r^{2}}\left(1+\tan ^{2} 40^{\circ}\right)
\end{aligned}
$$

iv)

$$
\begin{aligned}
& x=20 \mathrm{~m}, y=6 \mathrm{~m} \\
& 6=20 \tan 40^{\circ}-\frac{5\left(20^{2}\right)}{v^{2}}\left(1+\tan ^{2} 40^{\circ}\right) \\
& 6=20 \tan 40^{\circ}-\frac{2000}{r^{2}}\left(1+\tan ^{2} 40^{\circ}\right) \\
& \frac{2000}{r^{2}}\left(1+\tan ^{2} 40^{\circ}\right)=20 \tan 40^{\circ}-6 \\
& \frac{2000\left(1+\tan ^{2} 40^{\circ}\right)}{20 \tan 40^{\circ}-6} \quad v^{2} \\
& \therefore v=17.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

question Seven
a)

$$
\begin{aligned}
\int_{0}^{125} \frac{5 d x}{\sqrt{25-16 x^{2}}} & =\left[\frac{5}{4} \sin ^{-1} \frac{4 x}{5}\right]_{0}^{1.25} \\
& =\frac{5}{4}\left(\sin ^{-1} \frac{4}{5} \times 1.25-\sin ^{-1} 0\right)=\frac{5}{4} \times \frac{\pi}{2}=\frac{5 \pi}{8}
\end{aligned}
$$

$$
\begin{aligned}
& e^{x}-x-2=0 \\
f(x) & =e^{x}-x-2 \quad f(1-2)=e^{i-2}-3.2 \\
f^{\prime}(x) & =e^{x}-1 \quad f^{\prime}(1-2)=e^{1.2}-1 \\
a_{2} & =a_{1}-\frac{f\left(a_{1}\right)}{f^{\prime}\left(a_{1}\right)} \quad \text { where } a_{1}=1.2 \\
& =1.2-\frac{\left(e^{1-2}-3.2\right)}{\left(e^{1.2}-1\right)} \\
& =1.148 . . \\
a_{2} & =1.15 \quad \text { (2dp.) }
\end{aligned}
$$

qu 7 continued...
c) i)

$$
\begin{aligned}
& x^{2}=-9 a y \\
& y=\frac{-x^{2}}{9 a} \\
& y^{\prime}=\frac{-2 x}{9 a}
\end{aligned}
$$

at $A, x=3$ at

$$
\begin{gathered}
m_{T}=\frac{-6 a t}{9 a}=\frac{-2 t}{3} \\
\therefore m_{N}=\frac{3}{2 t} \\
y-y_{1}=m\left(x-x_{1}\right) \\
y+a t^{2}=\frac{3}{2 t}(x-3 a t) \\
2 t_{y}+2 a t^{3}=3 x-9 a t \\
N: 3 x-2 t_{y}=2 a t^{3}+9 a t
\end{gathered}
$$

ii) at $B, x=-a t$
subst.' $x=$-at into en in (i)

$$
\begin{array}{r}
3(-a t)-2 t y=2 a t^{3}+9 a t \\
-2 t y=2 a t^{3}+12 a t \\
y=-a t^{2}-6 a \\
\therefore B\left(-a t,-a t^{2}-6 a\right)
\end{array}
$$

qu 7 c) continued...
ii)

$$
\begin{aligned}
& x=\frac{3 a t+3+-a t x-2}{-2+3} \quad y=\frac{3 x-a t^{2}+-2\left(-a t^{2}-6 a\right)}{-2+3} \\
& =\frac{q a t+2 a t}{1} \\
& =-3 a t^{2}+2 a t^{2}+12 a \\
& \therefore x=11 \text { at } \\
& y=12 a-a t^{2} \\
& \therefore C\left(11 a t, 12 a-a t^{2}\right)
\end{aligned}
$$

iv) from iii)

$$
\begin{aligned}
& x=11 a t \\
& t=\frac{x}{11 a} \\
& y=12 a-a\left(\frac{x}{11 a}\right)^{2} \\
& =12 a-\frac{a \cdot x^{2}}{121 a^{2}} \\
& y-12 a=\frac{-x^{2}}{121 a} \\
& 121 a(y-12 a)=-x^{2} \\
& \therefore x^{2}=-121 a(y-12 a)
\end{aligned}
$$

\therefore the lows of C is a parabola.

