\qquad

ABBOTSLEIGH

AUGUST 2010

YEAR 12
ASSESSMENT 4

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time -2 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided with this paper.
- All necessary working should be shown in every question.

Total marks - 84

- Attempt Questions 1-7.
- All questions are of equal value.
- Answer each question in a separate writing booklet.

Outcomes assessed

Preliminary course

PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives which require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC course

HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving binomials, projectiles, simple harmonic motion,or exponential growth and decay
HE4 uses the relationship between functions, inverse functions and their derivatives
HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form
Harder applications of the Mathematics course are included in this course. Thus the Outcomes from the Mathematics course are included.

Outcomes from the Mathematics course
 Preliminary course

P2 provides reasoning to support conclusions that are appropriate to the context
P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
P5 understands the concept of a function and the relationship between a function and its graph
P6 relates the derivative of a function to the slope of its graph
P7 determines the derivative of a function through routine application of the rules of differentiation
P8 understands and uses the language and notation of calculus
HSC course
H2 constructs arguments to prove and justify results
H3 manipulates algebraic expressions involving logarithmic and exponential functions
H4 expresses practical problems in mathematical terms based on simple given models
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
H6 uses the derivative to determine the features of the graph of a function
H7 uses the features of a graph to deduce information about the derivative
H8 uses techniques of integration to calculate areas and volumes
H9 communicates using mathematical language, notation, diagrams and graphs

Question 1 (12 marks)

(a) The interval $A B$, where A is $(-3,-4)$ and B is $(5,-1)$, is divided internally in the ratio $3: 2$ by the point $P(x, y)$. Find the values of x and y.
(b) Differentiate $\log _{e}\left(x^{3}+1\right)$ with respect to x.
(c) Simplify $\frac{12^{2 n} \times\left(3^{n}\right)^{-2}}{2^{4 n}}$
(d) Evaluate $\int_{0}^{3} \frac{d x}{9+x^{2}}$
(e) Solve the inequality $\frac{x+4}{x-1} \leq 6$
(a) State the domain and range of $y=2 \cos ^{-1} \frac{x}{3}$
(b) Find the coefficient of x^{5} in the expansion of $(3+2 x)^{7}$
(c) Find $\int \frac{x}{\sqrt{1+x}} d x$ using the substitution $x=u^{2}-1$
(d) Evaluate $\int_{0}^{\frac{\pi}{6}} \cos ^{2} 3 x d x$
(e) (i) Show there is a root of $e^{x}-3 \cos x=0$ between $x=0$ and $x=1$.
(ii) Take $x=1$ as the first approximation and use 1 application of Newton's method to find the root correct to 2 decimal places.
(a) $A B C$ is an isosceles triangle with $A B=A C$. A line parallel to $B C$ is drawn to meet $A B$ and $A C$ in D and E respectively. Copy this diagram into your answer booklet and mark on this information. Prove that $B C E D$ is a cyclic quadrilateral.

Not to scale
(b) (i) Express $12 \cos \theta+16 \sin \theta$ in the form $R \cos (\theta-\alpha)$ where $R>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$.
(ii) Hence or otherwise solve $12 \cos \theta+16 \sin \theta=10$ for $0 \leq \theta \leq 2 \pi$. Give your answer correct to 2 decimal places.
(c) If $3 x^{3}-4 x^{2}+a x+b$ is divided by $x^{2}-1$ there is no remainder. Find the values of a and b.
(d) Prove that $\frac{\sin A+\sin 2 A}{1+\cos A+\cos 2 A}=\tan A$
(a) Two of the roots of $3 x^{3}-4 x^{2}-35 x+12=0$ are $x=-3$ and $x=4$. Find the third root.
(b) Let $S(n)=\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\ldots \ldots \ldots . .+\frac{1}{(3 n-2)(3 n+1)}$
(i) Prove by induction that $S(n)=\frac{n}{3 n+1}$ for all integers $n \geq 1$.
(ii) Find $\lim _{n \rightarrow \infty} S(n)$.
(c) Let $y=\frac{2-\sin \theta}{\cos \theta}$ for $0 \leq \theta \leq \frac{\pi}{4}$
(i) Show that $\frac{d y}{d \theta}=\sec ^{2} \theta(2 \sin \theta-1)$
(ii) Hence or otherwise find the minimum value of $\frac{2-\sin \theta}{\cos \theta}$ for $0 \leq \theta \leq \frac{\pi}{4}$
(iii) Find the maximum value of $\frac{2-\sin \theta}{\cos \theta}$ for $0 \leq \theta \leq \frac{\pi}{4}$
(a) In the circle below, $A T$ and $B S$ are tangents. The diameter $B C$ produced meets $A T$ at T.

(i) Copy or trace the diagram into your answer booklet. If $\angle A T C=x$ and $\angle T C A=y$, show that $x+2 y=270^{\circ}$.
(ii) Show $\angle A B S=y$
(b) After t minutes the number of bacteria N in a culture is given by $N=\frac{900}{1+b e^{-c t}}$ for some constants $b>0$ and $c>0$. Initially there are 300 bacteria in the culture and the number of bacteria is initially increasing at a rate of 20 per minute.
(i) Show that $\frac{d N}{d t}=\frac{c N}{900}(900-N)$.
(ii) Show that $b=2$ and $c=0.1$.
(iii) Show that the maximum rate of increase in the number of bacteria occurs when $N=450$.

Question 6 (12 marks)

Start a new booklet

(a) The diagram shows the point $P\left(2 a p, a p^{2}\right)$ which moves along the parabola $x^{2}=4 a y$. The tangent at P meets the x axis at R and the y axis at T.

(i) Show that the equation of the tangent at P is $y=p x-a p^{2}$.
(ii) Find the coordinates of R and T in terms of p.
(iii) Q is the vertex of the rectangle $O R Q T$. Use the coordinates of Q to find the equation of the locus of Q.
(b) The diagram shows a golf ball being hit from a tee in the ground with velocity $V \mathrm{~ms}^{-1}$ at an angle of α to the horizontal. The position of the ball at time t seconds is given by the parametric equations

$$
\begin{align*}
& x=V t \cos \alpha \tag{1}\\
& y=V t \sin \alpha-\frac{1}{2} g t^{2} \tag{2}
\end{align*}
$$

where $g m s^{-2}$ is the acceleration due to gravity (You are NOT required to derive these.)

(i) A golfer hits the ball with initial velocity of $75 \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal. Given that $g=10 \mathrm{~ms}^{-1}$, find the greatest height reached by the ball.
(ii) The Cartesian equation of the path of the ball is given by $y=x \tan \alpha-\frac{g x^{2} \sec ^{2} \alpha}{2 V^{2}}$. (You are NOT required to derive this.)

A second golfer hits with the same initial velocity of $75 \mathrm{~ms}^{-1}$ and is aiming for a hole in one. The hole is located on a hill 50 metres above the tee. The hole is 150 metres horizontally from the tee. Using the Cartesian equation, or otherwise, calculate at which angle/s she needs to hit the ball so it will land directly in the hole. (Use $g=10 \mathrm{~ms}^{-1}$ and answer to the nearest degree).
(a) $\quad A$ and B are points on one bank of a straight river. C is a tree on the opposite bank. $\angle A B C=\alpha, \angle C A B=\beta$ and $A B=100$ metres. The width of the river is w metres.

Show $w=\frac{100}{\cot \alpha+\cot \beta}$
(b) In the expansion of $(1+a x)^{n}$ in ascending powers of x, the first three terms are $1,-45 x$ and $900 x^{2}$. Find the values of a and n.
(c) Find y if $\left(\frac{d y}{d x}\right)^{2}=\frac{9}{9-x^{2}} \quad$ and $y=2 \pi$ when $x=3$.
(d) (i) Prove $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$
(ii) Hence or otherwise show that $\int_{0}^{t} \sin (\theta x) \cos (\theta(t-x)) d x=\frac{1}{2} t \sin (\theta t)$

END OF PAPER

Thathematics Extenuion 1 Trial 2010 Rolutions

1. a) $A(-3,-4) \quad B(5,-1)$

$$
\begin{aligned}
& \quad \begin{array}{l}
3: 2 \\
x=\frac{3 \times 5+2 \times-3}{3+2} ; y=\frac{3 x-1+2 \times-4}{3+2} \\
\therefore x=\frac{9}{5}, y=\frac{-11}{5}
\end{array}, l
\end{aligned}
$$

b) $f^{\prime}(x)=\frac{3 x^{2}}{x^{3}+1}$
c)

$$
\begin{aligned}
\frac{12^{2 n} \times\left(3^{n}\right)^{-2}}{2^{4 n}} & =\frac{2^{4 n} \times 3^{2 n} \times 3^{-2 n}}{2^{4 n}} \\
& =1 /
\end{aligned}
$$

d) $\int_{0}^{3} \frac{d x}{9+x^{2}}=\left[\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)\right]_{0}^{3}$

$$
\begin{aligned}
& =\frac{1}{3}\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\
& =\frac{1}{3}\left(\frac{\pi}{4}-0\right) \\
& =\frac{\pi}{12}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \frac{x+4}{x-1} \leqslant 6, x \neq 1 \\
& (x-1)^{2} \frac{(x+4)}{x} \leqslant 6(x-1)^{2} \\
& 6(x-1)^{2}-(x-1)(x+4) \geqslant 0 \\
& (x-1)[6(x-1)-(x+4)] \geqslant 0 \\
& (x-1)(5 x-10) \geqslant 0 \quad 1 \quad 1 \\
& \therefore x<1 \text { or } x \geqslant 2
\end{aligned}
$$

OR Solve $\frac{x+4}{x-1}=6, x \neq 1$

$$
\begin{aligned}
& x+4=6 x-6 \\
& x=2 \\
& \frac{\Omega}{x} \quad \therefore x<100 x \geqslant 2
\end{aligned}
$$

2. a)

$$
\begin{aligned}
& y=\cos ^{-1} x:-1 \leqslant x \leqslant 1 \\
& 0 \leqslant y \leqslant \pi \\
& \therefore y=2 \cos ^{-1} \frac{x}{3} \\
& D:-1 \leqslant \frac{x}{3} \leqslant 1 \quad \therefore-3 \leqslant x \leqslant i \\
& R: \quad 0 \leqslant y \leqslant 2 \pi
\end{aligned}
$$

b)

$$
\begin{aligned}
\text { Term } & =\binom{7}{5} 3^{2}(2 x)^{5} \\
\therefore \text { Coeff } & =21 \times 9 \times 32 \\
& =6048
\end{aligned}
$$

c)

$$
\begin{aligned}
& x=u^{2}-1 \\
& \frac{d x}{d u}=2 u \\
& \therefore d x
\end{aligned}=2 u d u \quad \begin{aligned}
& \sqrt{1+x}=\sqrt{u^{2}}=u \\
& \begin{aligned}
\therefore \int \frac{x}{\sqrt{1+x}} d x & =\int \frac{\left(u^{2}-1\right) 2 x}{x} \\
& =\pi\left(\frac{u^{3}}{3}-u\right) \\
& =2\left[\left(\frac{\sqrt{x+1}}{3}\right)^{3}-\sqrt{x+1}+c\right.
\end{aligned}
\end{aligned}
$$

d)

$$
\begin{align*}
\int_{0}^{\frac{\pi}{6}} \cos ^{2} 3 x d x & =\frac{1}{2} \int_{0}^{\frac{\pi}{6}}(\cos 6 x+1) d x \tag{1}\\
& =\frac{1}{2}\left[\frac{\sin 6 x}{6}+x\right]_{0}^{\frac{\pi}{6}} \tag{2}\\
& =\frac{1}{2}\left(0+\frac{\pi}{6}-(0+0)\right) \\
& =\frac{\pi}{12}
\end{align*}
$$

2.e) i)

$$
\begin{aligned}
& f(x)=e^{x}-3 \cos x \\
& f(0)=e^{0}-3 \cos 0=-2 \\
& f(1)=e^{1}-3 \cos 1 \doteq 1.097
\end{aligned}
$$

Opposite ugis
\therefore Curve cuts x-axis betwoen $x=0, x=1$
\therefore root betioen $x=0, x=1$

$$
\begin{aligned}
& f(x)=e^{x}-3 \cos x \\
& y^{\prime}(x)=e^{x}+3 \sin x
\end{aligned}
$$

$$
f(1)=1.097, f^{\prime}(1)=5.2427
$$

$$
x_{\lambda}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$$
\doteqdot 1-\frac{1.097}{5.2427}
$$

$$
\doteqdot 0.79075 \ldots
$$

$$
\doteqdot 0.79(2 \alpha p)
$$

3.

Let $\angle A B C=x$
$\angle A C B=\angle A B C$ (angles affointe

$$
\therefore \angle A C B=x
$$

$$
\angle A E D=\angle A C B\binom{\text { cossesf. } \angle D}{B C \| D E}
$$

$$
\therefore \angle A E D=x
$$

$$
\therefore \angle A E D=\angle A B C
$$

$\therefore B C E D e s$ a cyclic quad (exterior $L=$ int.opfl L)

3 b) $i)$

$$
\begin{aligned}
& \cos (A-B)=\cos A \cos B+\operatorname{sen} A \sin B \\
& 12 \cos \theta+16 \sin \theta=R \cos (\theta-\alpha) \\
& \therefore R \cos \alpha=12 \quad 20 \quad \alpha \quad 16 \\
& R \sin \alpha=16 \quad 12 \\
& \therefore R=20 \text { and } \tan \alpha=\frac{16}{12} \\
& \therefore \alpha=0.9273
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 12 \cos \theta+16 \sin \theta \\
& =20 \cos (\theta-0.9273)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } 20 \cos (\theta-0.9273)=10 \\
& \text { for }-0.9273 \leqslant \theta-0.9273 \leqslant \frac{2 \pi}{-0.9273} \\
& \cos (\theta-0.9273)=\frac{1}{2} \\
& \therefore \theta-0.9273=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\
& \therefore \theta=\frac{\pi}{3}+0.9273, \frac{5 \pi}{3}+0.9273 \\
& \div 1.97,6.16(2 d p)
\end{aligned}
$$

c)

$$
\begin{aligned}
& x^{2}-1=(x-1)(x+1) \\
& P(x)=3 x^{3}-4 x^{2}+a x+b \\
& P(1)=3-4+a+b=0 \\
& \therefore a+b=1
\end{aligned}
$$

$$
\begin{gathered}
P(-1)=-3-4-a+b=0 \\
\therefore-a+b=7-(2) \\
\text { (1)+(2) } 2 b=8
\end{gathered}
$$

$\therefore a=-3$ and $b=4$

3 (d)

$$
\begin{aligned}
\angle H S & =\frac{\sin A+\sin 2 A}{1+\cos A+\cos 2 A} \\
& =\frac{\sin A+2 \sin A \cos A}{1+\cos A+2 \cos ^{2} A-1} \\
& =\frac{\sin A(1+2 \cos A)}{\cos A(1+2 \cos A)} \\
& =\tan A=\text { RUS } .
\end{aligned}
$$

4
a) $\alpha \beta \gamma=\frac{-d}{a} \quad \therefore-3 \times 4 \times \gamma=\frac{-12}{3}$
\therefore third root is $\frac{1}{3}$
b)i) $\begin{aligned} \text { b } n=1 \quad \angle H S & =\frac{1}{1 \times 4} \\ & =\frac{R}{4}\end{aligned} \quad \therefore \quad \begin{aligned} \text { RH } & =\frac{1}{(3-2)(3+1)} \quad \therefore \text { true } n=1\end{aligned}$

Assume true $n=k$
Assume $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\cdots \frac{1}{(3 k-2)(3 k+1)}=\frac{k}{3 k+1}$
how have true $n=k+1$
ie. Crave $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\cdots+\frac{1}{(3 k-2)(3 k+1)}+\frac{1}{(3 k+1)(3 k+4)}=\frac{k+1}{3 k+4}$
$\angle H S=\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)} \quad$ (running the anmeltion)

$$
=\frac{k(3 k+4)+1}{(3 k+1)(3 k+4)}
$$

$$
=\frac{3 k^{2}+4 k k+1}{(3 k+1)(3 k+4)}
$$

$$
=\frac{(3 k+1)(k+1)}{(3 k k+1)(3 k+4)}
$$

$$
=\frac{k+1}{3 k+4}=\text { RH }
$$

\therefore True for $n=k+1$ if true for $n=k$
\therefore By principal of thathematical induction, true for all integral $n \geqslant 1$

Ac) e)

$$
\begin{aligned}
y & =\frac{2-\sin \theta}{\cos \theta}, 0 \leqslant \theta \leqslant \frac{\pi}{4} \\
\frac{d y}{d \theta} & =\frac{\cos \theta(-\cos \theta)-(2-\sin \theta) x-\sin \theta}{\cos 2 \theta} \\
& =\frac{-\cos ^{2} \theta+2 \sin \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{2 \sin ^{2}-1}{\cos ^{2} \theta} \\
& =\sec ^{2} \theta(2 \sin \theta-1)
\end{aligned}
$$

$\begin{aligned}i i) & \frac{d y}{d \theta}=0 \quad \therefore \sec ^{2} \theta=0 & \text { or } \sin \theta & =\frac{1}{2} \\ \text { no solution } & \theta & =\frac{\pi}{6} & \end{aligned} \quad\left(0 \leqslant \theta \leqslant \frac{\pi}{4}\right)$

Test | θ | 0.5 | $\pi / 6$ | 0.6 |
| :--- | :--- | :--- | :--- |
| $d \theta$ | - | 0 | + |$\quad\left(\frac{\pi}{6} \div 0.523\right)$

\therefore Minimum occurs at $=\pi / 6$
hin value is $\frac{2-\sin \pi / 6}{\cos \pi / 6}=\frac{2-\frac{1}{2}}{\sqrt{3} / 2}$

$$
\begin{aligned}
& =\frac{3}{2} \times \frac{2}{\sqrt{3}} \\
& =\sqrt{3}
\end{aligned}
$$

iii) than will occur at an endpoint

$$
\begin{aligned}
\theta=0, y=\frac{2-\sin 0}{\cos 0} \quad \theta= & \frac{\pi}{4}, y=\frac{2-\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} \\
=2 & =\frac{2-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \\
& =\frac{2 \sqrt{2}-1}{\sqrt{2}} \times \frac{\sqrt{2}}{1} \\
& =2 \sqrt{2}-1 \\
& \doteqdot 1.828 \ldots
\end{aligned}
$$

Alternative solution
5.
a) i)

In $\triangle A C T, \angle C A T=180^{\circ}-(x+y)^{\circ}$ (Angle sum of triangle
$\angle B A C=90^{\circ}$ (angle in i a reni circe)
$\angle A B C=\angle C A T=180^{\circ}-(x+y)^{\circ} \quad$ (angle between tangent r chord drawn to point of
contact equals angle in
\therefore In $\triangle A B T$, $\angle A B T+\angle B T A+\angle T A B=180^{\circ}$ (\angle sum of \triangle)

$$
\begin{aligned}
\therefore 180^{\circ}-(x+y)+x+180^{\circ}-(x+y)+90^{\circ} & =180^{\circ} \\
270^{\circ}-x-y+x-x-y & =0 \\
\therefore \quad 270^{\circ} & =x+2 y
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \angle O B S=90^{\circ}(\angle \text { between tangent and radius) } \\
& \therefore \angle A B S=\angle O B S+\angle A B O \\
&=90^{\circ}+180^{\circ}-x-y \\
& \text { In hart }(i) x=270^{\circ}-24
\end{aligned}
$$

In front (i) $x=270^{\circ}-2 y$

$$
\begin{aligned}
\therefore \angle A B S & =90^{\circ}+180^{\circ}-\left(270^{\circ}-2 y\right)-y \\
& =y .
\end{aligned}
$$

b) $N=\frac{900}{1+b e^{-c t}}$

$$
\begin{aligned}
& \text { i) } \\
& \begin{array}{rl:l}
N & =\frac{c N}{1+b e^{-c t}} & \\
\frac{d N}{d t} & =\frac{1+b e^{-c t} x 0-900 x-c b e^{-c t}}{\left(1+b e^{-c t}\right)^{2}} & \frac{c N}{900}(900-N) \\
& =900 c b e^{-c t} & =c 90 \\
960\left(1+b e^{-c t}\right)\left(900-\frac{c}{1+b e^{-c t}}\right) \\
& & c
\end{array} \\
& =\frac{900 c b e^{-c t}}{\left(1+b e^{-c t}\right)^{2}} \quad, \quad 1=\frac{c}{1+b e^{-c t}}\left[\frac{900\left(1+b e^{-c t}\right)-900}{1+b e^{-c t}}\right] \\
& 1=\frac{c}{1+b e^{-c t}} \times \frac{900 b e^{-c t}}{1+b e^{-c t}} \\
& \therefore \frac{d N}{d t}=\frac{c N}{400}(400-N) \\
& =\frac{900 c b e^{-c t}}{\left(1+b e^{-c t}\right)^{2}}
\end{aligned}
$$

(i)

$$
\text { (1) } \begin{aligned}
y & =\$ 0^{\circ}+\angle A B C \quad(\text { ext }<\text { of } \Delta) \\
\angle A B C & =180-(90+150-y) \\
& =y-90
\end{aligned}
$$

$\angle C A T=\angle A B C$ (\angle between tangent 4 chord drain to point of contact equals angle in the alternate segment).

$$
\therefore \text { in } \triangle A C T
$$

$$
=y-10
$$

$$
y+y-90+x=180(<\text { sunn of }\rangle)
$$

$$
\text { i.e } \quad 2 y+x=270
$$

(ii) $\angle C B S=90^{\circ}$ (tangent line t to diameter,

$$
\begin{aligned}
\angle A B C & =y-90 \quad(\text { from (i)) } \\
\therefore \angle A B S & =\angle C B S+\angle A B C \quad \text { adj angles) } \\
& =90+y-90 \\
& =y
\end{aligned}
$$

5b) (i) $N=\frac{900}{1+6 e^{-c t}}$
Aremative solution

$$
\begin{align*}
& \Rightarrow N^{\prime}+N^{\prime} b e^{-c t}=900 \\
& N b e^{-c t}=900-N \tag{1}\\
& \text { aby } 1+b e^{-c t}=\frac{900}{N} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\frac{d N}{d t} & =\frac{u^{\prime} v^{-}-v^{-} u}{v^{-2}} \\
& =\frac{\cdots c b e^{-c t}(900)}{\left(1+b e^{-c t}\right)^{2}} \\
& =\underbrace{900 c b e^{-c t}}_{\left(i+h e^{-c t}\right)\left(1+b e^{-c t}\right)} \\
& =N \frac{c b e^{-c t}}{1+b e^{-c t}} \quad\left(\text { sol (1) d }(2)^{-1} \text { here gives }\right) \\
& =C \cdot \frac{N}{400}(900-N) \\
& =\text { RHO }
\end{aligned}
$$

alfermative:

$$
\text { (i) } \begin{aligned}
N & =\frac{900}{1+b e^{-c t}} \\
1+b e^{-c t} & =\frac{900}{N} \\
b e^{-c t} & =\frac{900}{N}-1 \\
-c b e^{-c t} & =-\frac{900}{N^{2}} \frac{d N}{d t} \\
\therefore \frac{d N}{d t} & =\frac{-c b e^{-c t} N^{2}}{-900} \\
& =\frac{c N}{900}\left(N b e^{-c t}\right) \\
& =\frac{i N}{900}(900-N)
\end{aligned}
$$

₹ b) ii) $N=\frac{900}{1+b e^{-c t}}$

$$
\begin{aligned}
& t=0, N=300 \quad \therefore 300=\frac{900}{1+b e^{\circ}} \\
& 1+b=\frac{900}{300} \quad \therefore b=2 \\
& \frac{d N}{d t^{\prime}=\frac{c N}{900}(900-N)} \begin{aligned}
t=0, \frac{d N}{d t}=20 \quad \therefore 20 & =\frac{c \times 300}{900}(900-300) \quad \therefore c=0.1 \\
N=300 \quad 20 & =\frac{c}{3} \times 600 \quad \therefore
\end{aligned}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{d N}{d t} & =\frac{0.1 N}{900}(900-N) \\
& =\frac{N}{9000}(900-N)
\end{aligned}
$$

This is a concave donor quadratic function and $\frac{d N}{d t}=0$ at $N=0$ or 900 .
\therefore Max occurs when $N=450$

6 a) i) $y=\frac{x^{2}}{4 a}$

$$
\begin{aligned}
& y^{\prime}=\frac{2 x}{4 a} \\
& \text { at } P\left(2 a p, a p^{2}\right), y^{\prime}=\frac{4 a p}{4 a} \\
&=p
\end{aligned}
$$

Equation of tangent is
ii) $R: y=0$

$$
\begin{aligned}
\therefore 0 & =p x-a p^{2} \\
x & =\frac{a p^{2}}{p} \\
x & =a p
\end{aligned}
$$

$$
\begin{aligned}
& T: x=0 \\
& \therefore y=0-a p^{2} \\
& =-a p^{2} \\
& \operatorname{Rus}(a p, 0) \operatorname{Tus}\left(0,-a p^{2}\right)
\end{aligned}
$$

iii) For $Q: x=a p, y=-a p^{2}$
$\begin{aligned} & p=\frac{x}{a} \\ & y=-a\left(\frac{x}{a}\right)^{2}\end{aligned}$

$$
y=-\frac{x^{2}}{a} \quad \text { ar } \quad x^{2}=-a y
$$

6 bi) $\begin{aligned} y & =v t \sin \alpha-\frac{1}{2} g t^{2} \\ v & =75, \alpha=30^{\circ}, g=10\end{aligned}$
$\begin{aligned} \therefore y & =75 t \times \operatorname{sen} 30^{\circ} \frac{-1}{2} \times 10 t^{2}\end{aligned}$

$$
\begin{gathered}
y=\frac{75}{2} t-5 t^{2} \\
\dot{y}=\frac{75}{2}-10 t \\
\dot{y}=0 \text { for max } \\
\therefore 10 t=\frac{75}{2} \\
t=\frac{15}{4}
\end{gathered}
$$

$y_{\text {max }}=\frac{75}{2} \times \frac{15}{4}-5 \times\left(\frac{15}{4}\right)^{2}$
$=70.3125 \mathrm{~mm}$.
ii) $y=x \tan \alpha-\frac{10 x^{2} \sec ^{2} \alpha}{2 \times 75^{-2}}$

$$
\begin{aligned}
& x=150, y=50 \\
& \therefore 50=150 \tan \alpha-\frac{10 \times 150^{2} \sec ^{2} \alpha}{2 \times 75^{-2}} \\
& 50=150 \tan \alpha-20 \sec ^{2} \alpha \\
& 5=15 \tan \alpha-2\left(1+\tan ^{2} \alpha\right) \\
& 2 \tan \alpha-15 \tan \alpha+7=0 \\
& (2 \tan \alpha-1)(\tan \alpha-7)=0 \\
& \tan \alpha=\frac{1}{2} \text { or } 7 \\
& \quad \alpha=26.56 \ldots \text { or } 81.869 \ldots \\
& \therefore \text { Angles are } 27^{\circ} \text { or } 82^{\circ}
\end{aligned}
$$

