\qquad

Student Number:

\qquad
Teacher's Name: \qquad

ABBOTSLEIGH

2012
 HIGHER SCHOOL CERTIFICATE Assessment 4

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Make sure your HSC candidate Number is on the front cover of each booklet.
- Start a new booklet for Each Question
- Answer the Multiple Choice questions on the answer sheet provided.

Total marks - (70)

- Attempt Sections 1 and 2
- All questions are of equal value

Section 1

Pages 2-6

10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section 2

Pages 7-13

60 marks

- Attempt Questions 11-14
- Allow about 1 hr and 45 minutes for this section

Outcomes to be assessed:

Mathematics

Preliminary :
A student
P1 demonstrates confidence in using mathematics to obtain realistic solutions to problems
P2 provides reasoning to support conclusions which are appropriate to the context
P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
P5 understands the concept of a function and the relationship between a function and its graph
P6 relates the derivative of a function to the slope of its graph
P7 determines the derivative of a function through routine application of the rules of differentiation
P8 understands and uses the language and notation of calculus
HSC :

A student

H1 seeks to apply mathematical techniques to problems in a wide range of practical contexts
H2
H3
H4
H5

H7 uses the features of a graph to deduce information about the derivative
H8 uses techniques of integration to calculate areas and volumes
H9 communicates using mathematical language, notation, diagrams and graphs

Mathematics Extension 1

Preliminary:

A student

PE1 appreciates the role of mathematics in the solution of practical problems
PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives which require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HSC :

A student
HE1 appreciates interrelationships between ideas drawn from different areas of mathematics
HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving projectiles.
HE4 uses the relationship between functions, inverse functions and their derivatives
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form.

SECTION I

10 marks
Attempt Questions 1 - 10
Use the multiple-choice answer sheet
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
(A)
\bigcirc
(B)
(C) \bigcirc
(D) \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
(A)
(B)
(C) \bigcirc
(D) \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.
(A)

(B)
ζ
correct
(C)
C)
(D) \qquad

1. The derivative of $e^{3 x} \cos 3 x$ is
(A) $-3 e^{3 x} \sin 3 x$
(B) $e^{3 x}(\cos 3 x-3 \sin 3 x)$
(C) $-9 e^{3 x} \sin 3 x$
(D) $3 e^{3 x}(\cos 3 x-\sin 3 x)$
2. The solution to $\frac{x^{2}-9}{x} \geq 0$ is
(A) $-3 \leq x<0 ; x \geq 3$
(B) $-3 \leq x \leq 3$
(C) $x \leq-3$ or $x \geq 3$
(D) $-3 \leq x \leq 3 ; x \neq 0$
3. The solution to $2 \sin ^{2} \theta-\sin \theta=0$ for $0 \leq \theta \leq \pi$ is
(A) $\theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi$
(B) $\quad \theta=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi$
(C) $\theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
(D) $\theta=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
4. Given $f(x)=2 \sec x$ for $0 \leq x \leq \frac{\pi}{2}$, then $f^{-1}(x)=$
(A) $2 \cos ^{-1}\left(\frac{1}{x}\right)$
(B) $2 \cos ^{-1} x$
(C) $\cos ^{-1}\left(\frac{2}{x}\right)$
(D) $\cos ^{-1}\left(\frac{1}{2 x}\right)$
5. The angle between the lines $2 x+y=4$ and $x+y=2$, to the nearest degree, is
(A) 18°
(B) 25°
(C) 45°
(D) 72°
6. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$
(A) 0
(B) Undefined
(C) $\frac{3}{5}$
(D) $\frac{5}{3}$
7. $P(x, y)$ divides $A B$ externally in the ratio $2: 3$ where $A(-1,2)$ and $B(3,5)$. Find P.
(A) $(11,11)$
(B) $\left(\frac{3}{5}, \frac{16}{5}\right)$
(C) $(-3,-4)$
(D) $(-9,-4)$
8. $\int \sec 2 x \tan 2 x d x=$
(A) $-\frac{1}{2} \cos ^{3} 2 x+c$
(B) $\frac{1}{2} \tan ^{2} 2 x+c$
(C) $\frac{1}{2} \sec 2 x+c$
(D) $\frac{1}{2} \sec ^{2} 2 x+c$
9. How many ways can 8 people, each with a different name, be arranged around a circular table if Jill must sit between Jack and Peter?
(A) 120
(B) 240
(C) 720
(D) 1440
10. In the diagram below, $\theta=\angle A P B$ and $O A=3 \mathrm{~m}, A B=1 \mathrm{~m}$. Which equation is correct?

(A) $\theta=\tan ^{-1}\left(\frac{1}{x}\right)-\tan ^{-1}\left(\frac{3}{x}\right)$
(B) $\theta=\tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(\frac{3}{x}\right)$
(C) $\theta=\tan ^{-1}\left(\frac{1}{\sqrt{9-x^{2}}}\right)$
(D) $\theta=\tan ^{-1}(3-x)$

End of Section I

SECTION 2

Total Marks - 60
Attempt Questions 11-14
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Express $\frac{{ }^{10} C_{k}}{{ }^{9} C_{k}}$ in simplest form.
(b) A tennis team of 4 men and 4 women is to be selected from 6 men and 7 women.
(i) Find the number of ways in which this can be done.
(ii) It was decided that two particular women must be selected together or not selected at all. How many teams could be selected in these circumstances?
(c) Find $\int \cos ^{2} 3 x d x$
(d) Using the substitution $u=\log _{e} x$, evaluate $\int_{1}^{e} \frac{\log _{e} x}{3 x} d x$
(e) Find the term independent of x in the expansion of $\left(x-\frac{1}{2 x^{3}}\right)^{20}$
(f) Given the roots of $x^{3}-x^{2}+4 x-2=0$ are α, β and γ, evaluate
(i) $\alpha \beta \gamma$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.

End of Question 11

(a) The angle of elevation of a tower, $P Q$, from a point X due south of it is observed to be 70°. From another point Y, due east of X, the angle of elevation is 58°.

Given $X Y=100 \mathrm{~m}$, find the height h of the tower $P Q$ to the nearest metre.
(b) Consider the function $f(x)=x-3+\log _{e} x$.
(i) Show that there is a root between $x=1$ and $x=3$
(ii) Using the first approximation of the root $x_{1}=2$, use Newton's method to estimate the second approximation of this root.
Round your answer to 2 decimal places.
(c) For the expansion of $(1+3 x)^{p}(1-2 x)^{q}$ find an expression for the coefficient of x^{2}.
(d) Consider the function $y=x \cos ^{-1} x$
(i) Find $\frac{d y}{d x} \quad \mathbf{2}$
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\sqrt{3}}{2}} \cos ^{-1} x d x \quad 3$
(e) Using $\tan \frac{x}{2}=t$, or otherwise, prove that $\frac{2}{1+\cos x}=\sec ^{2}\left(\frac{x}{2}\right)$
(a)

Let $P\left(2 p, p^{2}\right)$ be a point on the parabola $x^{2}=4 y$, and let S be the focal point $(0,1)$.
The tangent to the parabola makes an angle of β with the x-axis.
The angle between $S P$ and the tangent is θ. Assume $p>0$ as indicated.
(i) Show that $\tan \beta=p$
(ii) Show that the gradient of $S P$ is $\frac{1}{2}\left(p-\frac{1}{p}\right)$
(iii) Show that $\tan \theta=\frac{1}{p}$
(iv) Show that the value of $\theta+\beta$ is $\frac{\pi}{2}$
(v) Find the coordinates of P when $\theta=\beta$
(b) Let $P(x)=x^{3}+a x^{2}+b x-18$

Find the values of a and b if $(x+2)$ is a factor of $P(x)$, and -24 is the remainder when $P(x)$ is divided by $(x-1)$.
(c) (i) Show that $\sqrt{3} \sin x+\cos x=2 \sin \left(x+\frac{\pi}{6}\right)$
(ii) Hence or otherwise sketch at least one period of the graph of $y=\sqrt{3} \sin x+\cos x$. Clearly show all x-intercepts and the amplitude. (Note: One period $=$ one complete wave length)
(iii) Using your graph, or otherwise, find the general solution of the equation $\sqrt{3} \sin x+\cos x=0$

End of Question 13

(a) Find the exact value of $\cos \left(\sin ^{-1} \frac{3}{4}\right)$
(b) In the diagram below, $A B$ is the diameter of the circle, centre O, and $B C$ is tangential to the circle at B. The line $A D$ intersects the circle at E and $B C$ at D. The tangent to the circle at E intersects $B C$ at F.
Let $\angle E B F=\alpha$ and $\angle E D F=\beta$.

(i) Copy the diagram into your writing booklet.
(ii) Prove that $\angle F E D=\frac{\pi}{2}-\alpha$
(iii) Prove that $B F=F D$
(c) Use mathematical induction to prove that, for all positive integers $n \geq 1$,

$$
3.2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\ldots . .+3^{n} \cdot 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)
$$

(d)

The diagram shows the path of a projectile launched at an angle of elevation, α, with an initial speed of $40 \mathrm{~m} / \mathrm{s}$ from the top of a 50 metre high building and lands on the ground 200 metres from the base of the building. The acceleration due to gravity is assumed to be $10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Given $\frac{d^{2} x}{d t^{2}}=0$ and $\frac{d^{2} y}{d t^{2}}=-10$, show that $x=40 t \cos \alpha$ and $y=-5 t^{2}+40 t \sin \alpha+50$, where x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds after launching.
(ii) If the projectile is launched at an angle of elevation of 45°, find the maximum height it reaches above the ground.
(iii) Find two possible values for α.

Give your answers to the nearest degree.

END OF PAPER

THIS PAGE IS BLANK

FORMULA SHEET ON BACK

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1, x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \quad \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

YEAR 12
EXTENSION 12012
ASSESSMENT 4 SOLUTIONS
Section 1

1. C
2. A
3. B
4. C
5. A
6. D
7. D
8. C
9. B
10. B

Working

$$
\text { 1. } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x} & =\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \cdot \frac{3}{5} \\
& =\frac{3}{5} \times 1 \\
& =\frac{3}{5}
\end{aligned}
$$

2. $x\left(x^{2}-9\right) \geqslant 0, \quad x^{5} \neq 0$

$$
x(x-3)(x+3) \geqslant 0
$$

$$
-3 \leqslant x<0, x \geqslant 3
$$

3. $\sin \theta(2 \sin \theta-1)=0$
$\sin \theta=0$ or $\sin \theta=\frac{1}{2} \quad(0 \leqslant \theta \leqslant \pi)$

$$
\theta=0, \pi \quad \theta=\frac{\pi}{6}, \pi-\frac{\pi}{6}
$$

$$
\therefore \theta=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi
$$

4

$$
\begin{gathered}
y=2 \sec x \quad \therefore f^{-1}: x=2 \sec y \\
\therefore \cos y=\frac{2}{x} x=\frac{2}{\cos y} \\
y=\cos ^{-1}\left(\frac{2}{x}\right)
\end{gathered}
$$

5.

$$
\begin{aligned}
m_{1} & =-2 \quad m_{2}=-1 \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \quad \therefore \theta=\tan ^{-1}\left(\frac{1}{3}\right) \\
& =\left|\frac{-2+1}{1+2}\right| \\
& =\frac{1}{3}
\end{aligned}
$$

6. $y=e^{3 x} \cos 3 x$

$$
\begin{aligned}
y^{\prime} & =\cos 3 x \cdot 3 e^{3 x}+e^{3 x} \cdot-3 \sin 3 x \\
& =3 e^{3 x}(\cos 3 x-\sin 3 x)
\end{aligned}
$$

$$
\text { 7. } A(-1,2){ }_{-2: 3} B(3,5)
$$

$$
P=\left(\frac{3 x-1+3 x-2}{-2+3}, \frac{3 x^{2}+5 x-2}{-2+3}\right)
$$

$$
=(-9,-4)
$$

8. From table of standard integrals, th integral down jag. where $a=2$
9. Place Jill, then 2 ways of placing Jack + Peter. Ten 5! ways to place others
so $2 \times 5!=240$
10. In $\triangle B O P, \tan \angle B P O=\frac{4}{x}$

$$
\therefore \angle B P O=\tan ^{-1}\left(\frac{4}{x}\right)
$$

In $\triangle A O P, \tan \angle A P O=\frac{3}{x}$

$$
\begin{aligned}
& \therefore \angle A P O=\tan ^{-1}\left(\frac{3}{x}\right) \\
\theta= & \angle B P O-\angle A P O \\
= & \tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(\frac{3}{x}\right)
\end{aligned}
$$

SECTION 2
II. (a)

$$
\begin{aligned}
\frac{{ }^{10} C_{k}}{{ }^{9} C_{k}} & =\frac{10!}{k!(10-k!)} \div \frac{9!}{k!(9-k)!} \\
& =\frac{10!}{k!(10-k)(9-k)!} \times \frac{k!(9 k}{9!} \\
& =\frac{10}{10-k}
\end{aligned}
$$

(b) (i) $\frac{5!}{2!}=60$
(ii) $\frac{3 \times 4 \times 3 \times 2 \times 1}{2!}=36$
II. (C) $\int \cos ^{2} 3 x d x$

$$
\begin{aligned}
& =\frac{1}{2} \int(1+\cos 6 x) d x \\
& =\frac{1}{2}\left(x+\frac{1}{6} \sin 6 x\right)+c
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int_{1}^{3} \frac{\log _{e} x}{3 x} d x \\
= & \int_{0}^{\ln 3} \frac{u}{3} d u \\
= & {\left[\frac{4^{2}}{6}\right]_{0}^{\ln 3} } \\
= & \frac{(\ln 3)^{2}}{6}
\end{aligned}
$$

$$
u=\log _{e} x
$$

$$
d y=\frac{1}{x} d x
$$

$$
\text { When } x=3, u=\ln 3
$$

$$
\text { When } x=1,4=0
$$

(e) General term ${ }^{20} C_{k} x^{20-k}\left(-\frac{1}{2 x^{3}}\right)^{k}$

$$
={ }^{20} C_{k} x^{20-k} \times x^{-3 k} \times\left(-\frac{1}{2}\right)^{k}
$$

independent of x means x°

$$
\begin{aligned}
\therefore \quad 20-k-3 k & =0 \\
k & =5
\end{aligned}
$$

\therefore term is ${ }^{20} C_{5}\left(-\frac{1}{2}\right)^{5}=-484.5$
(f) (i) $\frac{-d}{a}=\frac{--2}{1}=2$
(ii)

$$
\begin{aligned}
\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} & =\frac{\frac{4}{1}}{2} \\
& =2^{2}
\end{aligned}
$$

$12(a)$ In $\triangle P Q X, \tan 70^{\circ}=\frac{h}{X Q}$

$$
\therefore x Q=\frac{h}{\tan 70^{\circ}}
$$

In $\triangle P Q Y, \tan 58^{\circ}=\frac{h}{Q Y}$

$$
\therefore Y Q=\frac{h}{\tan 58^{\circ}}
$$

$Q y^{2}=Q x^{2}+100^{2} \quad$ since $\angle Q x y=90^{\circ}$

12 (a) (continued)

$$
\begin{aligned}
\therefore 100^{2} & =\left(\frac{h}{\tan 58^{\circ}}\right)^{2}-\left(\frac{h}{\tan 70^{\circ}}\right)^{2} \\
10000 & =h^{2}\left(\frac{1}{\tan ^{2} 58^{\circ}}-\frac{1}{\tan ^{2} 70^{\circ}}\right) \\
h^{2} & =\frac{10000}{0.257987375} \ldots \\
h & =\sqrt{38761.58661} \ldots \\
& =196.879 \ldots \\
& =197 \mathrm{~m} \text { (to nearest metre) }
\end{aligned}
$$

(b) $f(x)=x-3+\log _{e} x$

$$
\begin{aligned}
(i) f(1) & =1-3+0 \\
& =-2<0 \\
f(3) & =3-3+\log _{e} 3 \\
& =\log _{e} 3>0
\end{aligned}
$$

\therefore root lies btwre $1+3$ as function changes sign
(ii) $f^{\prime}(x)=1+\frac{1}{x}$

Let $x_{1}=2$

$$
\begin{aligned}
\therefore x_{2} & =2-\frac{f(2)}{f^{\prime}(2)} \\
& =2-\frac{(2-3+\ln 2)}{1+\frac{1}{2}} \\
& =2+0.204 \ldots \\
& =2.20 \text { to 2d.p. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) }(1+3 x)(5-2 x)^{p} \\
& =(1+3 x)\left({ }^{p} c_{0} 5^{p}(-2 x)^{0}+{ }^{p} c_{1} 5^{p-1}(-2 x)^{1}\right. \\
& =(1+3 x)\left({ }^{p} c_{0} 5^{p}-2^{p} c_{1} 5^{p-1} x+4^{p} c_{2} 5^{p-2} 5^{p-2} x^{2}+\right. \\
& \therefore \text { coeff of } x^{2} \text { is } 4{ }^{p} c_{2} 5^{p-2}-6^{p} c_{1} 5^{p}
\end{aligned}
$$

12(d) $y=x \cos ^{-1} x$
(i)

$$
\begin{aligned}
\frac{d y}{d x} & =\cos ^{-1} x \cdot 1+x \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\cos ^{-1} x-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

(ii) From (i):

$$
\begin{aligned}
& \int \cos ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}}=x \cos ^{-1} x \\
& \therefore \int_{0}^{\frac{\sqrt{3}}{2}} \cos ^{-1} x=\left[x \cos ^{-1} x\right]_{0}^{\frac{\sqrt{3}}{2}}+\int_{0}^{\frac{\sqrt{3}}{2}} \frac{\sqrt{3}}{\sqrt{1-x^{2}}} x \\
& =\left(\frac{\sqrt{3}}{2} \cos ^{-1} \frac{\sqrt{3}}{2}-0\right)+\int_{0}^{\frac{\sqrt{3}}{2}}\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\
& =\frac{\sqrt{3}}{2} \times \frac{\pi}{6}-\frac{1}{2} \int_{0}^{\frac{3}{2}} x\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\
& =\frac{\pi \sqrt{3}}{12}-\frac{1}{2}\left[\frac{\left(1-x^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}}\right]_{0}^{\frac{\sqrt{3}}{2}} \\
& =\frac{\pi \sqrt{3}}{12}-\left[\left(1-\frac{3}{4}\right)^{\frac{1}{2}}-(1)^{\frac{1}{2}}\right] \\
& =\frac{\pi \sqrt{3}}{12}-\frac{1}{2}+1 \\
& =\frac{\pi \sqrt{3}+6}{12}
\end{aligned}
$$

(e) Using $\tan \frac{x}{2}=t$,

$$
\begin{aligned}
L H S & =\frac{2}{1+\cos x} \\
& =\frac{2}{1+\frac{1-t^{2}}{1+t^{2}}} \\
& =\frac{2\left(1+t^{2}\right)}{1+t^{2}+1-t^{2}} \\
& =1+t^{2} \\
& =1+\tan ^{2}\left(\frac{x}{2}\right) \\
& =\sec ^{2}\left(\frac{x}{2}\right) \\
& =\text { dHS }
\end{aligned}
$$

12 (e) (alt method)
let $x=2 \theta$

$$
\begin{aligned}
& \therefore \text { LH }=\frac{2}{1+\cos 2 \theta} \\
&=\frac{2}{1+2 \cos ^{2} \theta-1} \\
&=\frac{2}{2 \cos ^{2} \theta} \\
&=\sec ^{2} \theta \\
&=\sec ^{2} \frac{x}{2} \\
&=\operatorname{RHS}^{2} \\
& \begin{aligned}
13 \cdot(a) \quad x^{2}= & 4 y \quad\left(2 p, p^{2}\right)
\end{aligned} \\
&=(0,1)
\end{aligned}
$$

(i) $y=\frac{x^{2}}{4}$

$$
\frac{d y}{d x}=\frac{x}{2}
$$

\therefore grad. of tangent at $P=\frac{2 p}{2}$

$$
=p
$$

Since $\beta=L$ boon tangent t x axis $\tan \beta=\operatorname{grad}$. of tangent at P

$$
=p
$$

(ii)

$$
\begin{aligned}
m_{s p} & =\frac{p^{2}-1}{2 p-0} \\
& =\frac{p^{2}}{2 p}-\frac{1}{2 p} \\
& =\frac{1}{2}\left(p-\frac{1}{p}\right)
\end{aligned}
$$

(iii) $\theta=$ angle btw $S P$ a tang. at P

$$
\begin{aligned}
\therefore m_{1} & =\frac{1}{2}\left(p-\frac{1}{p}\right) \quad m_{2}=p \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\frac{1}{2} p-\frac{1}{2 p}-p}{1+\frac{p^{2}}{2}-\frac{1}{2}}\right| \\
& =\left|\frac{-\frac{1}{2 p}\left(1+p^{2}\right)}{\frac{1}{2}\left(p^{2}+1\right)}\right|=\frac{1}{p}
\end{aligned}
$$

13(a) (Continued)
(iv) $\tan \theta=\frac{1}{p} \quad \tan \beta=p$

$$
\therefore \cot \theta=p=\tan \beta
$$

$$
\therefore \theta+\beta=\frac{\pi}{2} \text { (complementary angles) }
$$

$O R \tan (\theta+\beta)=\frac{\tan \theta+\tan \beta}{1-\tan \theta \tan \beta}$

$$
=\frac{\frac{1}{p}+p}{1-1}
$$

=undefined

$$
\therefore \theta+\beta=\frac{\pi}{2}
$$

(v) When $\theta=\beta \quad \frac{1}{p}=p$

$$
\therefore p=1, p=(2,1)
$$

$$
\text { b) } \begin{align*}
& P(x)= x^{3}+a x^{2}+b x-18 \\
& P(-2)=0 \quad \therefore-8+4 a-2 b-18=0 \\
& P(1)=-24 \therefore 1+a+b-18=-24 \\
& 4 a-2 b=26 \\
& a+b=-7 \tag{2}\\
& 2 a-b=13 \tag{3}
\end{align*}
$$

$2+(3)$

$$
\begin{aligned}
3 a & =6 \\
a & =2 \\
b & =-9
\end{aligned}
$$

$$
\begin{aligned}
& y \sqrt{3} \sin x+1 \cos x \equiv R \sin (x+\alpha) \\
& R \sin x \cos \alpha+R \cos x \sin \alpha \\
& \therefore \quad \sqrt{3}=R \cos \alpha \\
& \quad 1=R \sin \alpha
\end{aligned}
$$

$$
R^{2} \cos ^{2} \alpha+R^{2} \sin ^{2} \alpha=3+1=4
$$

$$
R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=4
$$

$$
R=2
$$

$\tan \alpha=\frac{R \sin \alpha}{R \cos \alpha}=\frac{1}{\sqrt{3}} \quad \therefore \alpha=\frac{\pi}{6}$
$\sqrt{3} \sin x+\cos x \equiv 2 \sin \left(x+\frac{\pi}{6}\right)$

13(c) (Continued)
(ii) $y=2 \sin \left(x+\frac{\pi}{6}\right)$

(iii) $x=k_{\pi}-\frac{\pi}{6}, k=$ any integer OR $x=\frac{5 \pi}{6}+k \pi, k=$ any integer
14. (a) Let $\theta=\sin ^{-1} \frac{3}{4}$

$$
\therefore \sin \theta=\frac{3}{4}
$$

$$
\therefore \cos \theta=\frac{\sqrt{7}}{4}
$$

(b)(i) $F E=F B$ (tangents from external $\therefore \angle B E F=\angle F E B=\alpha(\angle$ s opposite equal $\angle A E B=\frac{\pi}{2} \quad(\angle$ in semicircle $)$ sides
$\therefore \angle B E D=\frac{\pi}{2}$ (straight $\angle=180^{\circ}$)

$$
\begin{aligned}
\therefore \angle F E D & =\angle B^{2} D-\angle B E F \\
& =\frac{\pi}{2}-\alpha
\end{aligned}
$$

(iii) In $\begin{aligned} \triangle \bar{D} E B, \beta & =\pi-\frac{\pi}{2}-\alpha\left(\begin{array}{l}\text { sou } \\ \text { of } \angle\end{array}\right. \\ & =\frac{\pi}{2}-\alpha\end{aligned}$
\therefore : $F D=F E$ (sides opposite equal $\angle s$)
But $F E=F B$ (tangents from external

$$
\therefore F D=F B
$$

(c) $3 \cdot 2^{2}+3^{2} \cdot 2^{3}+\ldots+3^{n} \cdot 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right.$

Let $n=1$

$$
\begin{array}{rlrl}
\therefore \angle H S & =3+2^{2} \quad \text { OHS }^{5} & =\frac{12}{5} / 6 \\
& =3 \times 4 \\
& =12 & & =\frac{12}{5} \times 5 \\
& =12
\end{array}
$$

14(c) (Continued)
Assume the for $n=k$

$$
\begin{aligned}
& \therefore 3 \cdot 2^{2}+3^{2} \cdot 2^{3}+\cdots+3^{k} \cdot 2^{k+1}=\frac{12}{5}\left(6^{k}-1\right) \\
& \text { prove tore for } n=k+1
\end{aligned}
$$

Prove true for $n=k+1$ ie Prove $3 \cdot 2^{2}+\cdots+3^{k} \cdot 2^{k+1}+3^{k+1} \cdot 2^{k+2}$

$$
=\frac{12}{5}\left(6^{k+1}-1\right)
$$

$$
L H S=\frac{12}{5}\left(6^{k}-1\right)+3^{k+1} \cdot 2^{k+2}
$$

$$
=\frac{12}{5}\left(6^{k}-1\right)+3^{k} \cdot 3 \cdot 2^{k} \cdot 2^{2}
$$

$$
=\frac{12}{5}\left(6^{k}-1+\frac{12 \cdot 6^{k}}{\frac{12}{5}}\right)
$$

$$
=\frac{12}{5}\left(6^{k}-1+5 \cdot 6^{k^{k^{5}}}\right)
$$

$$
=\frac{12}{5}\left(6 \cdot 6^{k}-1\right)
$$

$$
=\frac{12}{5}\left(6^{k+1}-1\right)
$$

$$
=\text { RHO }
$$

\therefore If time for $n=k$, then also true for $n=k+1$. Is true for $n=1 \quad \therefore$ also for $n=2$ in for $n=3$ etc for all positive integers $n \geqslant 1$.
(d) When $t=0$;

$$
\begin{aligned}
x & =0, y=50 \\
\frac{d^{2} x}{d t^{2}} & =0 \\
\frac{d x}{d t} & =\int 0 d t \\
& =c \\
\frac{d x}{d t} & =40 \cos \alpha \text { from } * \\
\therefore x & =\int 40 \cos \alpha d t \\
x & =40 t \cos \alpha+c
\end{aligned}
$$

When $t=0, x=0 \quad-c=0$

$$
\therefore x=40 t \cos \alpha
$$

14 (d) (Continued)
(ii) When the projectile lands $y=0$ and $x=200$

$$
\begin{equation*}
\therefore-5 t^{2}+40 t \sin \alpha+50=0 \tag{1}
\end{equation*}
$$ and $40 t \cos \alpha=200$

From (2) $\quad t=\frac{5}{\cos \alpha}$
Sub. in (1):

$$
\begin{aligned}
& -5\left(\frac{25}{\cos ^{2} \alpha}\right)+40 \sin \alpha\left(\frac{5}{\cos \alpha}\right)+50=0 \\
& -125 \sec ^{2} \alpha+200 \tan \alpha+50=0 \\
& -125\left(1+\tan ^{2} \alpha\right)+200 \tan \alpha+50=0 \\
& 125 \tan ^{2} \alpha-200 \tan \alpha+75=0 \\
& 5 \tan ^{2} \alpha-8 \tan \alpha+3=0 \\
& (5 \tan \alpha-3)(\tan \alpha-1)=0 \\
& \therefore \tan \alpha=\frac{3}{5} \quad \text { or } \tan \alpha=1 \\
& \alpha=31^{\circ} \text { or } \alpha=45^{\circ}
\end{aligned}
$$

(iii) Let $\alpha=45^{\circ}$
$\max y$ value when $\dot{y}=\frac{d y}{d t}=0$
$\therefore-10 t+40 \sin 45^{\circ}=0$

$$
\begin{aligned}
& \therefore-10 t+40 \sin 45^{\circ}=0 \\
& \frac{40}{\sqrt{2}}=10 t \\
& t=\frac{4}{\sqrt{2}} \times \sqrt{2} \\
&=2 \sqrt{2} \\
& \text { seconds }
\end{aligned}
$$

$$
\therefore \max . \begin{aligned}
y & =-5(2 \sqrt{2})^{2}+40(2 \sqrt{2}) \cdot \frac{1}{\sqrt{2}}+ \\
& =-40+80+50 \quad
\end{aligned}
$$

$$
=-40+80+50
$$

$$
=90 \text { metres. }
$$

