ASCHAM SCHOOL MATHEMATICS EXAMINATION FORM 6-3 UNIT 1999

* All questions should be attempted
* All necessary working must be shown
* All questions are of equal value
* Marks may not be awarded for careless or badly arranged work.
* Write your name on each booklet clearly marked:

Question 1, Question 2, etc.

* Begin each question in a new booklet.
* Approved calculators may be used.
* Copies of diagrams for all questions are provided on pages

11-14 in order to save time. You may use them but you must staple them into your booklets.

Question 1 Marks:

(a) Find the acute angle, to the nearest degree, between the lines $y=3 x+1$ and $y=-x+6$
(b) Solve the inequality $\frac{1}{x+1}<3, x \neq-1$
(c) Find the coordinates of the point P which divides the interval AB with end points $\mathrm{A}(-1,2)$ and $\mathrm{B}(3,-5)$ internally in the ratio 2:3.
(d) Use the substitution $u=t \div 1$ to evaluate $\int_{0}^{1} \frac{t}{\sqrt{t+1}} d t$
(e) Two circles touch externally at E.

(A copy of the diagram above is on page 10.)
$A B$ and $C D$ intersect at E. $L M$ is a common tangent at E Prove that $A C$ is parallel to $D B$.

Question 2

(a) A post $H D$ stands vertically at one comer of a rectangular field ABCD . The angles of elevation of the top H of the post from the nearest corners A and C respectively are 30° and $45^{\prime \prime}$.
(A copy of the diagram above is on page 13.)
(i) If $A D=a$ units, find the length of BD in terms of a. 2
(ii) Hence find the angle of elevation of H from the corner B to the 1 nearest minute.
(b) Taking $x=-\frac{\pi}{6}$ as a first approximation to the root of the equation $2 x+\cos x=0$, use Newton's method once to show that a better approximation to the root of the equation is $\frac{-\pi-6 \sqrt{3}}{30}$
(c) (i) Find the domain and range of $f^{-1}(x)=\sin ^{-1}(3 x-1) \quad 2$
(ii) Sketch the graph of $y=f^{-1}(x)$.
(iii) Find the equation representing the inverse function $f(x)$ and state the domain and range.

Question 3

Marks:

(a) (i) Express $3 \sin x-\sqrt{3} \cos x$ in the form $A \sin (x-\alpha)$, where $A>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$.
(ii) Determine the minimum value of $3 \sin x-\sqrt{3} \cos x$.
(iii) Solve $3 \sin x-\sqrt{3} \cos x=\sqrt{3}$ for $0 \leq x \leq 2 \pi$.
(b) Nexton's Law of cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding temperature. This rate can be expressed by the differential equation:

$$
\frac{d T}{d t}=-k\left(T-T_{1}\right)
$$

where T is the temperature of the body, T_{n} is the temperature of the surroundings, t is the time in minutes and k is a constant.
(i) Show that $T=T_{n} \div A e^{-k y}$, where A is a constant, is a solution of the differential equation $\frac{d T}{d t}=-k\left(T-T_{0}\right)$.
(ii) A cup of tea cools from $85^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 1 minute at a room
temperature of $25^{\circ} \mathrm{C}$. Find the temperature of the cup of tea after a further 4 minutes have elapsed. Answer to the nearest degree.

Question 4

Marks:

(a) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. Show the equation of the normal to the parabola at P is $x+p y=2 a p+a p^{3}$.
(b) Write down the equation of the normal to the parabola at Q. The normals intersect at N. Find the coordinates of N.
(c) Show the equation of the chord $P Q$ is $y-a p^{2}=\left(\frac{p+q}{2}\right)(x-2 a p)$ and determine the condition necessary for $P Q$ to be a focal chord.
(d) If $P Q$ is a focal chord and N is the intersection of the normals, find the equation of the locus of N.
(e) (A copy of the diagram above is on page 11.)

On the diagram above, the tangent and normal are drawn at P.
Mark clearly on your own diagram the points Q and N which correspond to P.

Question 5

(a) The graph of $x=-a \cos n t$ for $0 \leq t \leq \frac{2 \pi}{n}$ is drawn below. (A copy of the diagram above is on page 12.) Label axes and show intercepts accurately.

(b) On a certain day the depth of water in a harbour at low tide at 4:30 am is 5 metres. At the following high tide at 10:45 am the depth is 15 metres.
Assuming the rise and fall of the surface of the water to be simple harmonic, find between what times during the morning a ship may safely enter the harbour if the minimum depth of $12 \frac{1}{2}$ metres of water is required.
(c) Given that $\sin ^{-1} x, \cos ^{-1} x$ and $\sin ^{-1}(2-x)$ have values for $0 \leq x \leq \frac{\pi}{2}$
(i) show that $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$
(ii) Hence, or otherwise, solve the equation $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(2-x)$

Question 6

Marks:
(a) O is the centre of the circle. $B P Q$ is a straight line $O R Q$ is perpendicular to $A O B$ as shown below.

(A copy of the diagram above is on page 14.)
Prove that:
(i) A, O, P, Q are concyclic, and 3
(ii) $\angle O P A=\angle O Q B$.
(b) Prove by using mathematical induction that $5^{\prime \prime} \geq 1+4 n$, for $n>1, n \in J^{+}$
(c) The cubic equation $2 x^{3}-x^{2}+x-1=0$ has roots α, β, and γ. Evaluate
(i) $\alpha \beta+\beta \gamma+\alpha \gamma$
(ii) $\alpha \beta \gamma$1
(iii) $\alpha^{2} \beta^{2} \gamma+\beta^{2} \gamma^{2} \alpha+\alpha^{2} \gamma^{2} \beta$
(d) The equation $2 \cos ^{3} \theta-\cos ^{2} \theta+\cos \theta-1=0$ has roots $\cos a, \cos b$ and $\cos c$. 2

Using appropriate information from (c) above prove that

$$
\sec a+\sec b+\sec c=1
$$

Question 7

Marks:
A softball player hits the ball from ground level with a speed of $20 \mathrm{~ms}^{-1}$ and an angle of elevation α. It flies toward a high wall 20 m away on level ground.
(a) Taking the origin at the point where the ball is hit derive expressions for

the horizontal and vertical components x and y of displacement at time t seconds. Take $g=10 \mathrm{~ms}^{-2}$.
(b) Hence find the equation of the path of the ball in flight in terms of $x . y$ and. α.
(c) Show that the height h at which the ball hits the wall is given by

$$
h=20 \tan \alpha-5\left(1+\tan ^{2} \alpha\right)
$$

(d) Using part (c) above, show that the maximum value of h occurs when $\tan \alpha=2$.
(e) Find
(i) this maximum height h,
(ii) the speed and the angle at which the ball hits the wall in this case.

$$
\begin{aligned}
& 1999 \\
& 3 \cup \text { TRIAL (docliand) } \\
& y=3 x+2 \quad m_{1}=3 \quad y=1-x \quad m_{2}=-1 \\
& \tan \alpha=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{3+1}{1+3(-1)}\right| \\
& =2 x \quad \therefore \alpha=63^{\circ} 26^{\prime} \\
& =63^{\circ}-(\text { meanex } \text { deg. }) \\
& \frac{1}{c+1}<3 \\
& \Rightarrow \quad \begin{aligned}
x+1 & <3(x+1)^{2} \\
& =3\left(x^{2}+2 x+1\right)^{2}
\end{aligned} \\
& 3 x^{2}+5 x+2>0 \\
& (3 x+2)(x+1)>0>1 \\
& x<\frac{-1}{2} \text { or } x>-\frac{1}{2} \frac{2}{3} \\
& \text { 2) }{ }_{2: 3}^{3,-5} \\
& P\left(\frac{2 \times 3-3 \times 1}{5}, \frac{2-5+3 \times 2}{5}\right) \\
& P\left(\frac{3}{5},-\frac{4}{5}\right) \\
& \begin{array}{lll}
\int_{0}^{1} \frac{1}{\sqrt{t+1}} d t & \begin{array}{l}
u=t+1 \\
t=u-1
\end{array} & \text { if } t=0 \\
d=1 \quad u=1 \\
=\int_{1}^{2} \frac{u-1}{\sqrt{u}} d u=2
\end{array} \\
& =\int_{1}^{2}\left(x^{\frac{1}{2}}-u^{-\frac{1}{2}}\right) d u \\
& =\left[\frac{2 u^{2 / 2}}{3}-2 u^{1 / 2}\right]_{1}^{2}, \\
& =\left(\frac{4 \sqrt{2}}{3}-2 \sqrt{2}\right)-\left(\frac{1}{3}-2\right) \\
& =-\frac{2 \sqrt{2}}{3}+\frac{4}{3} \\
& =\frac{4-2 \sqrt{2}}{3} \text { (aR) }
\end{aligned}
$$

Q1. (e)

$$
\begin{aligned}
& \begin{array}{l}
\angle H E L=\angle A L E \\
\angle A E L=\angle M E B
\end{array} \quad \begin{array}{l}
\angle n v \text { ald. segm. }) \\
\text { verd } \\
\angle B
\end{array} \\
& \angle B D E=\angle M E B \quad(\angle \text { in } a \dot{C l}, \text { segm }) N / 2 \\
& \therefore \angle A C E=\angle B D E \hbar
\end{aligned}
$$

Bud $\angle A C E$ is alternate to $\angle B D E \quad \therefore A C \| D B 1 / 2$
Q.2. (a) ${ }^{\text {i }}$) In $\triangle A D H$

$$
A D=D H=a
$$

In $\triangle H D C \quad \tan 30^{\circ}=\frac{a}{D C}$

$$
\therefore D C=a \sqrt{3}
$$

In $\triangle B D C$

$$
\begin{aligned}
B D^{2} & =D C^{2}+C B^{2} \\
& =(a \sqrt{3})^{2}+a^{2} \\
& =4 a^{2} \\
\therefore B D & =2 a
\end{aligned}
$$

(ii) In $\triangle H D B$

$$
\begin{aligned}
& \frac{H D}{B D}=A a n+1 \hat{B D} D \\
& \frac{D}{2 a n}=\tan H \hat{B} D
\end{aligned}
$$

$\therefore \angle H B D=26^{\circ} 34!$ (to neares 1 minute)
fl) $\frac{d}{a x}(2 x+\cos x)=2-\sin x$

$$
\begin{array}{rlrl}
f\left(-\frac{\pi}{6}\right) & =2+\sin \frac{\pi}{6} & z_{1}=-\frac{\sqrt{6}}{6}-\frac{3 \sqrt{3}-\sqrt{2}}{3} \times \frac{x^{1}}{5} \\
& =2+2 \\
& =\frac{5}{3} \\
f\left(-\frac{\sqrt{6}}{6}\right) & =\frac{\sqrt{3}}{2}-\frac{\pi}{3} \\
& & =\frac{-\pi}{6}-\frac{-3 \sqrt{3}}{15}+\frac{2 \pi}{5} \\
& =\frac{3 \sqrt{3}-2 \pi}{6} & & =\frac{-\pi}{30}-6 \sqrt{3}
\end{array}
$$

$y=\sin ^{-1}(3 x-1)$
Domain of $\begin{aligned} f(x):-1 & \leqslant 3 x-1 \leqslant 1 \\ 0 & \leqslant 3 x \leqslant 2\end{aligned}$ $0 \leq 3 x \leq 2$
Range of $f^{-1}(x) \quad-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2} \quad \frac{\pi}{2}$

$y=\sin ^{-1}(3 x-1)$ is the inverse function of $f(x)$
ring $=3 x-1 /$ is the inverse of $f(x)$

$$
\sin x=3 y-1
$$

$y=\frac{1}{3}+\frac{1}{3} \sin x$ is $f(x)$ -

$3 \sin x-\sqrt{3} \cos x=A \sin (x-\alpha)$
$=A \sin x \cos \alpha-A \cos x \sin \alpha$
$\frac{A \sin \alpha}{A \cos \alpha}=\frac{+\sqrt{3}}{3} \quad \therefore \tan \alpha=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}} \quad \therefore \alpha=\frac{\pi}{6}$
$A^{3} \sin ^{2} \alpha+A^{2} \cos ^{2} \alpha=9+3 \quad \therefore A^{2}=12, \quad A=2 \sqrt{3}$

$$
\therefore 3 \sin x-\sqrt{3} \cos x=2 \sqrt{3} \sin \left(x-\frac{\pi}{5}\right)
$$

in. valise $=-2 \sqrt{3}$
$2 \sqrt{3} \sin \left(x-\frac{\pi}{6}\right)=\sqrt{3}$

$$
\sin \left(x-\frac{\pi}{6}\right)=\frac{1}{2} \quad \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6} \quad \therefore x=\frac{\pi}{3} \text { or } x+\pi=2
$$

QB

$$
\begin{aligned}
T & =T_{0}+A e^{-k t} \text { ill. } T-T_{0}=A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-i\left(T-T_{0}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 85=25+A e^{\circ} \quad \therefore A=60 . \\
& T=25+60 e^{-4 t} \\
& 80=25+60 e^{-k} \\
& -e^{-2}=\frac{55}{60} \\
& -k=\ln \frac{11}{12} \quad\left(02 k=\ln \frac{12}{\pi}\right) \\
& \left.\therefore T=25+60 e^{-(\ln 2}\right) t
\end{aligned}
$$

when $t=5 \quad T=25+60 e^{-5 \ln t^{2}}$

$$
\dot{7} 64
$$

$T \div 64^{\circ}$ after a further 4 minutes.
Q.A(a) $\quad x^{2}=4 a y \quad \frac{d y}{d x}=\frac{x}{2 a} \quad$ at $x=2 a p$
\quad dy

- gradient of normal $=\frac{1}{p} \quad$
syn- $\quad y-a p^{2}=-\frac{1}{p}(x-2 a p)$
$\therefore \quad \quad \quad \quad y-a p^{3}=-x+2 a p$
$x+$ pu y- $2 a p+a p^{3} x$

Normal as P

$$
\begin{align*}
& x+p y=2 a p+a p^{3} \\
& x+q y=2 a q+a)^{3} \tag{2}\\
& y(p-q)=2 a(p-q)+a\left(p^{2}-q^{3}\right) \\
& y=2 x+a\left(p^{2}+q^{2}+p q\right) \\
& y=a\left(p^{2}+p^{2}+p q+2\right)
\end{align*}
$$

$-6)$
${ }^{n} Q$
$q x q+p q y-2 a p q+a q p^{3}$
$p-x p-p q y=-2 a p q-a p q^{3}$

$$
\begin{aligned}
x(q-p) & -a p q(p-q)(p+q) \\
x & =-a p q(p+q) \\
1\left(-a p q(p+q), a\left(p^{2}+q^{2}+p q+2\right)\right] & =N(X, Y) \\
m_{p q}=\frac{\left.q^{2} p^{2}-q^{2}\right)^{2}}{2 q^{2}-2 \alpha q} \Rightarrow m_{p q} & =\frac{1}{2(p+q)(p-q)} \\
& =\frac{p+q}{2} \cdot 1
\end{aligned}
$$

nora $P Q$: $y-a p_{2}^{2}=p+q(z-2 a p)$
up. $S(0, a)$

$$
\begin{aligned}
& a-a p^{2}=p+a(-2 p p) \\
& a-a p^{2}=-a p^{2}-a p q
\end{aligned}
$$

$\begin{aligned} & a-a p^{2}=-a p^{2}-a p p \\ & 1 p q=-1 \text { if } p Q \text { is through } 5 .\end{aligned}$
$Y_{1}=a p q(p+q) \Rightarrow x-a(p+q) \Rightarrow p+q=\frac{x}{d}$
$Y=a\left(p^{2}+c^{2}+p q+2\right) \Rightarrow Y=a\left(p^{2}+q^{2}+1\right) \Rightarrow p^{2}+q^{2}=\frac{Y}{a}-1$
$p^{2}+q^{2}=(p+q)^{2}+2$
(8) $\frac{y}{a}-1 \times \frac{x^{2}}{a^{2}}+2$

$$
\frac{y}{a}=\frac{x^{2}}{a^{2}}+3
$$

$\checkmark Y=\frac{x^{2}}{a}+3 a$ or $X^{2}=a(Y-3 a)$

when $x=\frac{5}{2}$.

$$
1
$$

$$
\therefore x=-5 \cos \frac{4 \pi}{25} t
$$

$$
\begin{aligned}
& \frac{5}{2}=-5 \cos \frac{4 \pi}{25} t \\
& -\frac{1}{2}=\cos \frac{4 \pi}{25} t \\
& \frac{4 \pi}{25} t=\frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{8 \pi}{3}, \ldots \\
& t=\frac{15}{6}, \frac{25}{3}, \ldots
\end{aligned}
$$

\therefore The times between which the ship may enter the harbour are $8 ; 40 \mathrm{am}$ and 12:50 pm.

- (i) (i)

$$
=\sin (\alpha-\beta) \text { when }
$$

$$
=-\sin \alpha \cos \beta-\cos \alpha \sin D
$$

$$
\begin{aligned}
&=x_{x} x-\sqrt{1-x^{2}}-\sqrt{1-x_{2}} \\
&=2 x^{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& =2 x^{2}-1 \\
& =8+5
\end{aligned}
$$

1 Sub $t=\frac{x}{20 \cos \alpha} \rightarrow(2)$

$$
\begin{aligned}
& y=\frac{x \operatorname{cosin} \alpha}{20 \cos \alpha}-5 \frac{x^{2}}{8 \cos \alpha^{2}} \\
& y=x \tan \alpha-\frac{x^{2}}{80} \sec ^{2} \alpha
\end{aligned}
$$

) when $x=20, y=h$

$$
\begin{aligned}
& h=20 \tan \alpha-\frac{400}{80} \sec ^{2} \alpha \\
& h=20 \tan \alpha-5 \sec ^{2} \alpha
\end{aligned}
$$

$$
\frac{d h}{d \alpha}=20 \sec ^{2} \alpha-10 \sec \alpha \tan \alpha .
$$

$$
\because 10 \sec ^{2}(2-\tan \alpha)=0 \text { for max }
$$

$$
\sec \alpha=0 \quad \tan \alpha=2
$$

$\alpha=63^{\circ}$ (neanest deg)
$\therefore 60^{\circ} 63^{\circ} 70^{\circ}$
$\therefore 0-1$ mimay when $\tan \alpha=2$
$h_{\text {mis }}=20 \times 2-5 \times \sqrt{5}^{3}$
$=15$ melles

$4.1-(4)$
$\left.\therefore(i)^{2}=\sqrt{(d t)^{2}+(a x)^{2}}\right)^{2}$

$$
\begin{align*}
& =V\left((2 x-1 \alpha){ }^{2}+(20+4 \alpha-10 t)^{2}-\quad \text { Tefind } t,\right. \tag{16}
\end{align*}
$$

$$
\begin{aligned}
& =\sqrt{80+(2 \sqrt{5}-10 \sqrt{5})^{2}} \\
& 20=20 t_{x} \frac{1}{\sqrt{5}} \\
& =\sqrt{80}+(2 \sqrt{5}-10 \sqrt{5})^{2} \quad \cdots \quad-\sqrt{5}-i \\
& =\sqrt{80+20}
\end{aligned}
$$

