Name:	
. vanie.	

Form:....

ASCHAM SCHOOL MATHEMATICS EXAMINATION FORM 6 - 3 UNIT 1999

July 1999

Time allowed: 2 hours

- * All questions should be attempted
- * All necessary working must be shown
- * All questions are of equal value
- * Marks may not be awarded for careless or badly arranged work.
- * Write your name on each booklet clearly marked:
 - Question 1, Question 2, etc.
- * Begin each question in a new booklet.
- * Approved calculators may be used.
- * Copies of diagrams for all questions are provided on pages
 - 11-14 in order to save time. You may use them but you must staple them into your booklets.

Question 1 Marks:

(a) Find the acute angle, to the nearest degree, between the lines y = 3x + 1and y = -x + 6

(b) Solve the inequality
$$\frac{1}{x+1} < 3, x \neq -1$$

- (c) Find the coordinates of the point P which divides the interval AB with end points A(-1, 2) and B(3, -5) internally in the ratio 2:3.
- (d) Use the substitution u = t + 1 to evaluate $\int_{0}^{1} \frac{t}{\sqrt{t+1}} dt$
- (e) Two circles touch externally at E.

(A copy of the diagram above is on page 10.) AB and CD intersect at E. LM is a common tangent at E Prove that AC is parallel to DB. 3

2

3

A post HD stands vertically at one corner of a rectangular field ABCD. (a) The angles of elevation of the top *H* of the post from the nearest corners A and C respectively are 30° and 45° .

(A copy of the diagram above is on page 13.)

- If AD = a units, find the length of BD in terms of a. (i)
- (ii) Hence find the angle of elevation of H from the corner B to the nearest minute.

(b) Taking
$$x = -\frac{\pi}{6}$$
 as a first approximation to the root of the equation 4
 $2x + \cos x = 0$, use Newton's method once to show that a better
approximation to the root of the equation is $\frac{-\pi - 6\sqrt{3}}{30}$

(c)(i)Find the domain and range of
$$f^{-1}(x) = \sin^{-1}(3x-1)$$
2(ii)Sketch the graph of $y = f^{-1}(x)$ 2

(iii) Find the equation representing the inverse function f(x) and state the domain and range.

Marks:

3

2

- (a) (i) Express $3\sin x \sqrt{3}\cos x$ in the form $A\sin(x \alpha)$, where A > 0 and $0 \le \alpha \le \frac{\pi}{2}$. 3
 - (ii) Determine the minimum value of $3\sin x \sqrt{3}\cos x$. 1
 - (iii) Solve $3\sin x \sqrt{3}\cos x = \sqrt{3}$ for $0 \le x \le 2\pi$.
- Newton's Law of cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding temperature. This rate can be expressed by the differential equation:

$$\frac{dT}{dt} = -k(T - T_0),$$

where T is the temperature of the body, T_0 is the temperature of the surroundings, t is the time in minutes and k is a constant.

- (i) Show that $T = T_0 + Ae^{-kt}$, where A is a constant, is a solution of 2 the differential equation $\frac{dT}{dt} = -k(T - T_0)$.
- (ii) A cup of tea cools from 85° C to 80° C in 1 minute at a room

5

temperature of 25°C. Find the temperature of the cup of tea after a further 4 minutes have elapsed. Answer to the nearest degree. Marks:

(a)	The points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$.	3
	Show the equation of the normal to the parabola at P is $x + pv = 2ap + ap^3$.	

- (b) Write down the equation of the normal to the parabola at Q. The3 normals intersect at N. Find the coordinates of N.
- (c) Show the equation of the chord PQ is $y ap^2 = \left(\frac{p+q}{2}\right)(x-2ap)$ and determine the condition necessary for PQ to be a focal chord.
- (d) If PQ is a focal chord and N is the intersection of the normals, find the equation of the locus of N.
- (e) (A copy of the diagram above is on page 11.)
 On the diagram above, the tangent and normal are drawn at *P*.
 Mark clearly on your own diagram the points *Q* and *N* which correspond to *P*.

Marks:

1

4

(a) The graph of $x = -a \cos nt$ for $0 \le t \le \frac{2\pi}{n}$ is drawn below. (A copy of the 2

diagram above is on page 12.) Label axes and show intercepts accurately.

(b) On a certain day the depth of water in a harbour at low tide at 4:30 am is 5 metres. At the following high tide at 10:45 am the depth is 15 metres. Assuming the rise and fall of the surface of the water to be simple harmonic, find between what times during the morning a ship may safely enter the harbour if the minimum depth of $12\frac{1}{2}$ metres of water is required.

(c) Given that
$$\sin^{-1} x$$
, $\cos^{-1} x$ and $\sin^{-1}(2-x)$ have values for $0 \le x \le \frac{\pi}{2}$

- (i) show that $\sin(\sin^{-1} x \cos^{-1} x) = 2x^2 1$
- (ii) Hence, or otherwise, solve the equation $\sin^{-1} x \cos^{-1} x = \sin^{-1}(2 x)$

6

3

O is the centre of the circle, BPQ is a straight line ORQ is perpendicular to AOB as (a) shown below.

(A copy of the diagram above is on page 14.) Prove that:

	(i) A, O, P, Q are concyclic, and	3
	(ii) $\angle OPA = \angle OQB$.	2
ł	Prove by using mathematical induction that $5'' \ge 1 + 4n$, for $n > 1$, $n \in J^+$.	4

The cubic equation $2x^3 - x^2 + x - 1 = 0$ has roots α , β , and γ . Evaluate (c)

- $\alpha\beta + \beta\gamma + \alpha\gamma$ (i)
- (ii) $\alpha\beta\gamma$

(b)

(iii)
$$\alpha^2 \beta^2 \gamma + \beta^2 \gamma^2 \alpha + \alpha^2 \gamma^2 \beta$$

(d) The equation
$$2\cos^3\theta - \cos^2\theta + \cos\theta - 1 = 0$$
 has roots $\cos a$, $\cos b$ and $\cos c$.
Using appropriate information from (c) above prove that

$$\sec a + \sec b + \sec c = 1$$

1

1

1

A softball player hits the ball from ground level with a speed of 20 ms⁻¹ and an angle of elevation α . It flies toward a high wall 20 m away on level ground.

(a) Taking the origin at the point where the ball is hit, derive expressions for

the horizontal and vertical components x and y of displacement at time t seconds. Take $g = 10 \text{ ms}^{-2}$.

(b)	Hence find the equation of the path of the ball in flight in terms of	1
	x, y and α .	

(c) Show that the height h at which the ball hits the wall is given by $h = 20 \tan \alpha - 5(1 + \tan^2 \alpha)$.

(d) Using part (c) above, show that the maximum value of *h* occurs 2 when $\tan \alpha = 2$.

(e) Find (i) this maximum height *h*, 6

(ii) the speed and the angle at which the ball hits the wall in this case.

Marks:

3

,

 $\frac{1999}{1=30+2} \frac{34}{m_1 = 3} \frac{1}{y=1-x} \frac{(4)c(ha)}{m_2 = -1}$ LAEL=ZALE (Zw ald. segm.) 2 ZAEL=ZMEB (verd. opp. 2%) + ZBDE=ZMEB (Zin all, segm) + . LACE=ZBDE + Bud. / Ar= -Q1. (e) CAEL=ZALE $\frac{1}{1}$ $\frac{1}$ $= \left| \frac{3+1}{1+3(-1)} \right|$ $d = 63^{\circ}26'$:21 = 63° (neurent deg.) $\Rightarrow x + 1 < 3(x + 1)^{2}$ $= 3(x^{2} + 2x + 1)$ $3x^{2} + 5x + 2 > 0$ $\frac{1}{1} < 3$ (3x+2)(x+1) > 0x<-1 er x>-2 2) 3,-5 2:3 $\mathbb{P}\left(\frac{2\times3-3\times1}{5}\right) \xrightarrow{2\times5+3\times2} \right) \checkmark$ $P(\frac{2}{5}, \frac{-4}{5})$ $\int \frac{1}{\sqrt{t+1}} dt \qquad u = t+1$ t = u-1 $2, \qquad du = dt$ il t=0 u=1 il t=1 u=2 $= \left(\frac{M-1}{\sqrt{n}} du \right)$ $=\int (u^2 - u^2) du$ $= \left(\frac{4\sqrt{2}}{\sqrt{2}} - \frac{2\sqrt{2}}{\sqrt{2}}\right) - \left(\frac{1}{2} - 2\right)$ $=\frac{4-2\sqrt{2}}{3}$ (or)

-Bud / ACE is alternate to /BDE .; ACI DB 1/2 Q.2. (a_i) $g_{in} \Delta ADH AD=DH=a$ $g_{in} \Delta HDC 4an 30^\circ = \frac{a}{R}$ \therefore DC = a $\sqrt{3}$ $\ln \Delta BDC \quad BD^2 = Dc^2 + CB^2$ $= (\sqrt{3})^{2} + \alpha^{2}$ $=4a^2$. BD = 2a V (1) In (1) HDB $\frac{HD}{BD} = 4an HBD$ 2 = Jan HBD . LHBD = 26°341 (to nearest minute) $\frac{d}{dn} (2\pi t (252) = 2 - 4in x$ $f(\frac{\pi}{6}) = 2 + 4ni\frac{\pi}{6}$ = 2 + 2 $= \frac{5}{2}$ $f(\frac{\pi}{6}) = \frac{3}{2} - \frac{5}{15}$ $= -\frac{\pi}{6} - \frac{3}{3}(\frac{\pi}{3} + \frac{2\pi}{15})$ $= \frac{3}{2} - \frac{5}{3}$ $= \frac{3}{6}(\frac{3}{5} - \frac{2\pi}{5})$ $= \frac{3}{6}(\frac{3}{5} - \frac{2\pi}{5})$ $= \frac{3}{6}(\frac{3}{5} - \frac{2\pi}{5})$ $= \frac{3}{6}(\frac{3}{5} - \frac{2\pi}{5})$

14 = 100 - (30 - 1)Dismain of f(y): $-1 \leq 3x - 1 \leq 1$ $0 \leq 3x \leq 2$ Range of f(x): $-\frac{1}{2} \leq y \leq \frac{1}{2}$ Range of f(x)The stand $y = \sin^2 (3x - 1)$ is the inverse function of for) $\sin y = 3x - 1 = is$ the inverse of f(x)Sinsc = 3y-1 y= 3+ 3 minx is fix) -avid large DSys 3 + 35mx - J365x = Amn(x-d) = A since wood - A cose wind $\frac{A}{A} \cos \alpha = \frac{\sqrt{3}}{3} \quad \text{if } A \cos \alpha = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}} \quad \text{if } \alpha = \frac{\lambda}{6}$ Azminia + Acossa = 9+3 : A2= 12, A=2V3 · · 3 sin 2 - 13 cosx = 2/3 sin (21 - =) 1in. value = -2/3 * 213 Kin(x-1) = 13 Sin (K-3) = 2 ハー安= 岳, む, 空、、、 エ= 安 の ス。

Q3 (6)(1) T=To+Ae kt i.e. T-To=Ae $\frac{dJ}{dt} = -kAe^{-kt}$ $= -k(T - T_0)^{-k}$ (ii) 85= 25 + Ae° ... A = 60. $T = 25 + 60 e^{6t}$ 80=25 + 60 c - 2 - 2 · e = 55 $-k = ln \frac{11}{12} \left(ur k = ln \frac{12}{11} \right)$ $-k = ln \frac{12}{11} \left(ur k = ln \frac{12}{11} \right)$ $-r T = 25 + 60 e^{-ln \frac{12}{11}} = -r 12$ when t=5 T= $25+60e^{-5Cn_{H}^{2}}$ =64 T=61° after a further 4 minutes. $\frac{dy}{dx} = \frac{\pi}{2a} \qquad a4 \quad \pi = 2ap$ $U.4(a) \quad x^2 = 4ay$ -----gradient of normal = -to~ Eqn: $y = ap^{2} = -\frac{1}{2}(2c - 2ap)$ $py = -ap^{3} = -x + 2ap$

k j

J.

Normal as P $x + py = 2ap + ap^{3}$ $x + qy = 2aq + aq^{3}$ ω n Q À. (\mathcal{D}) -0) $\begin{array}{l} y(p-q) = 2a(p-q) \pm a(p^{2}-q^{3}) \\ y = 2a \pm a(p^{2}+q^{2}+pq) \\ y = a(p^{2}+q^{3}+pq+2) \end{array}$ $q = xq + pq y - 2apq + aqp^3$ $p = xp - pq y = -2apq - apq^3$ x(q-p) = apq(p-q)(p+q)n=-apg(ptg) $I(-a_{pq}(p+q), a(p^2+q^2+pq+2)) = N(X, Y)$ $m_{pq} = \frac{a_p - a_p}{2a_p - 2a_q}$ $\implies m_{pq} = \frac{\tilde{v}(p+q)(p-q)}{2\tilde{a}(p-q)}$ = ++4 1 houd $PQ: y - ap^2 = p \pm q(x - ap)$ $up. S(0, a): a - ap^2 = p \pm q(-2ap)$ a-apr = -apr - app ...pq = -1 if PO. is through 5. $X = app(p+q) \implies X - a(p+q) \implies p+q = \stackrel{\times}{\xrightarrow{}}$ 0 $Y = a(p^{2}+q^{2}+1) \implies Y = a(p^{2}+q^{2}+1) \implies p^{2}+q^{2}-X-1 \otimes$ $p^{2}+q^{2}=(p+q)^{2}+2$ @ _ _ | = X2 + 2 $X = X^2 + 3$ $V = X^{2} + Ba$ or $X^{2} = a(Y - 3a)$

95pj (b) a= 5 1/2 12 sm T= 25 /2 25 25 = 210 1/2 .5m n=415 1/2 ·、ス=-5005 45+ / where $\chi = \frac{5}{2}$ 5 =- 5 ws 45t -2= cos 45- t 察七=琴, 雪,琴,~~. t = 25, 25," The times between which she ship may enter the harbour are 8:40 am and 12:50 pm. = sin(sin x - costx) a - B) ---where and =- raind 6013 - 601 d ping = 2x2-1~ - RHS

ía) at t=0 20mind Сү 5-10 2 5-10 2 * 20 сопо 4 * 20 сопо x =0 4=0 $y = -10t + 20 \sin x$ $y = -5t^2 + 20 \tan x$ $\frac{1}{2}$ 2 x = 20 + 605a 5x 1)) Sub t = x - 2 $y = \frac{2.05 \text{max}}{2069 \text{m}} - 5 \frac{z^2}{100 \cos^2 x}$ y= x fand - 22 sec22) when x = 20, y = h: h = 20 herd - $\frac{490}{50}$ su²d h = 20 fank - 5 sec24 ~ dh = 20 suiz - 10 secitana. 10 secil (2 - Jana) = 0 for max suca=0 it Aand=2 d=63°(nianest dig) 60 63° 70° + 0 - i hin may. when tand=2 hmar=20=2-5= 5× 153. =15 metres

(G) = V (2asor)2 + (20 mind - 10t) Tefind t: 20 = Vtiosx $=\sqrt{\binom{20}{\sqrt{5}}\lambda}+\binom{20}{7}\frac{1}{7}\frac{1}{7}-10\times(5)^{2}$ 2q = 20txJ80 + (8VT-10VS)2 180+20 to the specal of ball when hits He water in its 10 miles the some - lot lan 9 - 2VS Image: A second s Tr= 20 work 0 = 6an 1 2 hits wall as 415--= +en= (15) =dan12 Wall

S.