Ascham School Mathematics Extension 1 Trial 2008 + Solutions Copyright.

ASCHAM SCHOOL 2008

MATHEMATICS EXTENSION 1: YEAR 12 TRIAL EXAMINATION

TIME ALLOWED:	2	HOURS	PLUS	5	MINUTES'
	READING TIME				
EXAMINATION DATE:	Mo	ONDAY 28	3 July		

INSTRUCTIONS

ALL QUESTIONS MAY BE ATTEMPTED. ALL QUESTIONS ARE OF EQUAL VALUE (12 MARKS). ALL NECESSARY WORKING MUST BE SHOWN. MARKS MAY NOT BE AWARDED FOR CARELESS WORK. APPROVED CALCULATORS AND TEMPLATES MAY BE USED.

COLLECTION

START EACH QUESTION IN A NEW BOOKLET. IF YOU USE A SECOND BOOKLET FOR A QUESTION, PLACE IT INSIDE THE FIRST. WRITE YOUR NAME, TEACHER'S NAME AND QUESTION NUMBER ON EACH BOOKLET.

Standard Integrals

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

Question 1

(a) Evaluate
$$\int_{0}^{1} \frac{dx}{\sqrt{4-x^{2}}}$$
.

(b) Solve the inequality
$$\frac{1}{x^2} \ge 4$$
.

(c) Find the derivative of $e^{\sin 3x}$. 2

(d) Evaluate
$$\int_{\frac{1}{2}}^{1} 4t(2t-1)^3 dt$$
 by using the substitution $u = 2t-1$.

(e) Use the *t*-results to show that
$$\cot \theta + \tan \frac{1}{2}\theta = \cos ec\theta$$
. 2

Question 2 Begin a new booklet.

(a) Find all solutions to the equation
$$\cos \theta = -\frac{1}{2}$$
.

(b) (i) On the same diagram sketch the graphs of
$$y = |x-2|$$
 and $y = \frac{1}{2}x - 1$.

(ii) By using (i) or otherwise, determine the value of *c* such that the equation $|x-2| = \frac{1}{2}x + c$ has exactly 2 solutions.

(c) Consider the graph of \ddot{x} versus x shown below, where \ddot{x} is acceleration and x is displacement for a particle P moving along the x-axis.

(i)	Explain why the equation relating \ddot{x} and x is given by $\ddot{x} = -4x$.	1
(ii)	Explain why P is moving in simple harmonic motion.	1
(iii)	From the graph, find the amplitude of the motion.	1
(iv)	Find the period of the motion.	1
(v)	Find the equation of the motion in the form $x = a \sin(nt + \varepsilon)$ if	2
	$x = 2.5$ when $t = 0$. Assume $-\frac{\pi}{2} \le \varepsilon \le \frac{\pi}{2}$.	2
	2 2	1

1

Question 3 Begin a new booklet.

(a) (i) State the domain of $y = \ln(1-x)$. Hence sketch the graph of $y = \ln(1-x)$. 2

A particle *P* moves along the *x*-axis with velocity *v* cm/s and displacement *x* cm at *t* seconds, according to the equation $v = -e^{-x}$.

(ii) Derive an equation for x in terms of t, given that when t = 0, x = 0. Hence show $x = \ln(1-t)$.

(iii) Find the time interval over which P moves.1(iv) With reference to part (i) or otherwise, explain why the particle is1speeding up for all t in the domain.1

Consider the points *A*, *B* and *C*, lying on the circle, with tangents drawn from *A* and *B*, meeting at *P*. AC//BP. Copy the diagram.

(i) Prove $AB = BC$.	2
(ii) Prove $\angle ABC = \angle APB$.	3

Diagram not to scale.

Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. Copy the diagram.

(i) Show that the equation of the tangent l to the parabola at the point P2 is $y = px - ap^2$. (ii) The tangent at P and the line through Q parallel to the y-axis intersect at 2 *T*. Show that the coordinates of *T* are $(2aq, 2apq - ap^2)$. 1 (iii) Find the coordinates of M, the midpoint of PT. (iv) Hence or otherwise find the Cartesian equation of the locus of M1 when pq = -1. (b) Salinity is a major problem confronting the environment. The quantity of salt Q kg in a reservoir of water after t days can be modelled by the equation $O = 1000(1 - e^{-0.01t}).$ ί. -0.01t(

(i) Show that
$$Q = 1000(1 - e^{-0.01t})$$
 satisfies the differential equation
 $\frac{dQ}{dt} = 0.01(1000 - Q).$
2

(ii) What is the initial quantity of salt in the reservoir?1(iii) Find the rate at which the salt is changing after 10 days.1(iv) What will happen to the salt in the reservoir as time goes on?1(v) Sketch the equation
$$Q = 1000(1 - e^{-0.01t})$$
.1

Question 5 Begin a new booklet.

domain $0 \le x \le 1$.

- (a) Use one application of Newton's method to find an approximation to the root of $\cos x + \sin x x = 0$, nearest to x = 1.2. 3
- (b) (i) Express $\sin x \cos x$ in the form $R \sin(x \alpha)$, where R > 0 and $2 = 0 \le \alpha \le \pi$. (ii) Hence solve the constinue constant 1 for $0 \le \alpha \le 2\pi$.
 - (ii) Hence solve the equation $\sin x \cos x = 1$, for $0 \le x \le 2\pi$.
- (c) (i) For what values of x is $\sin^{-1} x$ defined?1(ii) Find the maximum value of 2x(1-x).2(iii) Find the range of the function f given by $f(x) = \sin^{-1} \{2x(1-x)\}$ with2

A surveyor estimates the height h m of a mesa in the desert by taking two readings. Standing due South of the foot F of the mesa at point S, the angle of elevation to the top of the mesa is 9°, whereas from point W, due west of the foot of the mesa, the angle of elevation is 15° to the top of the mesa. The surveyor knows that the distance from S to W is 1200 m.

Copy the diagram.

(i) Show that
$$h^2 (\cot^2 9^\circ + \cot^2 15^\circ) = 1200^2$$
.

(ii) Hence find the height of the mesa correct to two significant figures.

- (b) Prove by induction that $\frac{1}{x-1} \frac{1}{x} \frac{1}{x^2} \dots \frac{1}{x^n} = \frac{1}{x^n(x-1)}$, for all positive **4** integers *n* and $x \neq 0, 1$.
 - (c) A goose is flying horizontally along at a speed of *S* m/s and at an altitude of *H* m when it passes a goose hunter below lying at (0,0) with a goose rifle. Simultaneously, the hunter shoots a bullet up at an angle θ from the horizontal with a velocity *V* m/s hoping to shoot the goose. Assume the acceleration due to gravity is *g* m/s².

(i) Explain why x = St describes the distance the goose has flown after t seconds.

You may assume the equations of motion $x = Vt \cos \theta$ and $y = Vt \sin \theta - \frac{gt^2}{2}$ describe the horizontal and vertical distances of the bullet after *t* seconds.

Assume that the bullet hits the goose.

- (ii) Explain why $S = V \cos \theta$. 1
- (iii) Hence show that $H = -\frac{gt^2}{2} + St \tan \theta$.
- (iv) Hence show that there are two possible occasions when the bullet can shoot the goose if $S^2 \tan^2 \theta > 2gH$.

1

1

2

1

Question 7 Begin a new booklet

(a) A sector maintains a constant area of 50π cm², while the radius *r* cm and angle at the centre θ change. Find the rate at which the radius is changing given that $\frac{d\theta}{dt} = \frac{\pi}{5}$ radian/second, when the radius is 10cm. 4

(b) (i) Prove that
$$y = \frac{1}{x}$$
 is concave up for all $x > 0$. 3

(ii) Sketch
$$y = \frac{1}{x}$$
 for $x > 0$.

Suppose 0 < a < b and consider the points $A\left(a, \frac{1}{a}\right)$ and $B\left(b, \frac{1}{b}\right)$ on the graph of $y = \frac{1}{x}$.

(iii) Find the coordinates of the point *P* that divides the line segment *AB* in the ratio 2:1. 2

(iv) With reference to areas and by careful argument,

deduce that
$$\ln \frac{b}{a} < \frac{b^2 - a^2}{2ab}$$
.

SOLUTIONS	
ASCHAM TRIAL EXT MATHS Yr12	2008 SOLUTION'S 4
$I.a) \int_0^{1/2} \frac{dx}{\sqrt{4-x^2}} = \left(am^{-1}\frac{x}{2}\right)_0^{1/2}$	2 conto b) i) 5 3 1= 12 12
$2 = 4ii - \frac{1}{2} - sii - \frac{0}{2}$	
b) $\frac{1}{x^2} \ge 4^2$, $x \ne 0$	-3 -2 -1 0 1 2 3 4 X
$\begin{array}{c} 4 \geqslant x (2) \\ -4 \leq x \leq \frac{1}{2} , x \neq 0 \end{array}$	y=12.
c) d (e sin3x) = 3(0.3x e 1)	ii) c>-1 as intersects twice.
$d = \begin{pmatrix} 4 + (24) \\ 4 + (24) \end{pmatrix}^{3} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	c)i) $m = \frac{20}{5}$
$\frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{2}$	ii) SHM since in form $\ddot{x} = -n^2 x$
$= \int \frac{2(u+1)(u)}{2} \frac{du}{dt} = \int \frac{1}{2(u+1)(u)} \frac{du}{dt} = \int $	iii)-52 x 45 .: Amplitude = Switt.
$= \int_{0}^{\infty} \frac{u^{2} + u^{2} du}{u^{2}} du$ $= \int_{0}^{\infty} \frac{u^{2} + u^{2} du}{u^{2}} du$	$\frac{1}{1}$ iv) $\frac{1}{2\pi}$ $\frac{2\pi}{n}$ = 2π
$\begin{bmatrix} 5 & +\frac{1}{4} \end{bmatrix}_{o}$ $= 1 + \frac{1}{4} = 0$	$= \frac{2}{11} \qquad (1)$
$= \frac{4}{20}$	$2.5 = 5 \sin(2t + \varepsilon)$ $2.5 = 5 \sin(2t + \varepsilon)$
e) $\cot\theta + \tan\frac{1}{2}\theta = \frac{1}{\tan\theta} + \tan\frac{1}{2}\theta$	$\frac{5}{2} = Am \left(2 \times 0 + \epsilon \right)$ $\frac{1}{2} = Am \epsilon \qquad (2)$
$= \frac{1-t^2}{2t} + t t = \tan \frac{\theta}{2}$	$z = \frac{\pi}{6}$: $z = 5 \sin\left(2t + \frac{\pi}{2}\right)$
$= \frac{1-t^2+2t^2}{2t}$	vi) Max speed: it = 10 cos(2t+1)
$= \frac{1+t^2}{2t} \qquad (2)$: Max Speed = 10. ()
$=\frac{1}{\sin\theta}$	3.a) i) $y = \ln(1-x) = \ln(-(x-1))$
$= cont c t . q \in D.$	
$2 a) cos \theta = \frac{1}{2} \qquad (2) \\ \theta = 2\pi n \pm \frac{2\pi}{3} n \in \mathbb{Z}$	
	· . Vi

* Aschum Taine Extension | MAAHS Sournows
$$Y_{R}/2$$
 2008 contil
3 contil a) ii) $v = -e^{-x}$ t=0 x=0
 $dx = -e^{-x}$
 $dt =$

11

Ascenario Rince MATHS EAT | Sourrows YA12 2008 could
S a) bat
$$f(x) = cox + sin x - x$$

 $f(x) = -sin x + cox x - 1$
 $f(12) = con(2 + an)(2 - 12 = 0.04)316R | 1200
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - 12 = -1576170)$
 $f(12) = -an(12 + co)(2 - an(12 + co)(2 - 12 = -157770)$
 $f(13) f(12) = -an(12 + co)(2 - an(12 + co)(2 - 12 = -157770)$
 $f(13) f(12) = -an(12 + co)(2 - an(12 + co)(2 - 12 = -157770)$
 $f(13) f(12) = -an(12 + co)(2 - an(12 + co)(2 - an(12$$

Ascidam TAIAL EXT I MATHS YK 12 2008 Solutions conditions

$$f = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=$$