Ascham School

Year 12

Mathematics Extension 1 Trial Examination 2014

General Instructions

5 minutes reading time.
Working time 2 hours.
Use black or blue pen.
A table of standard integrals is provided on the back page.
Approved calculators and templates may be used.
Total Marks - 70
Section 1 - MULTIPLE CHOICE (1 mark each)

- Attempt Questions 1-10.
- Allow approximately 15 minutes.
- Answers on the separate sheet provided.
- Write your name/BOS number, teacher's name.

Section 2- Question 11-14 (15 marks each)

- Allow 1 hour 45 minutes.
- Start each question in a new booklet.
- If you use a second booklet for a question, place it inside the first.
- Write your name/BOS number, teacher's initials and question number on each booklet.

Blank page

Section 1 Multiple choice

(Mark the correct answer on the sheet provided)

1. The tan of the angle between the two lines $2 x-y=4$ and $y=-4 x$ is
(A) $\frac{2}{9}$
(B) $\frac{6}{-7}$
(C) $\frac{-2}{9}$
(D) $\frac{6}{7}$
2. The point that divides the interval joining $\mathrm{A}(-2,3)$ to $\mathrm{B}(5,4)$ externally in the ratio of $2: 3$ is,
(A) $\left(\frac{4}{5}, 3 \frac{2}{5}\right)$
(B) $\left(3 \frac{1}{5},-\frac{1}{5}\right)$
(C) $(-16,1)$
(D) $(19,21)$
3. $\frac{d}{d x}(\sec x)$ is
(A) $\sqrt{1+\tan ^{2} x}$
(B) $\sec x \tan x$
(C) $-\operatorname{cosec} x \cot x$
(D) $\tan ^{2} x$
4. The equation of the graph below is:

(A) $\quad y=2 \cos \left(x+\frac{\pi}{6}\right)+1$
(B) $y=2 \cos 4\left(x-\frac{\pi}{6}\right)+1$
(C) $y=4 \sin 2\left(x-\frac{\pi}{12}\right)-1$
(D) $\quad y=3 \cos \left(2 x+\frac{\pi}{6}\right)-1$
5. Solve the inequality $\frac{-2}{x-3} \leq 1$
(A) $x \leq 1$ or $x \geq 3$
(B) $1 \leq x \leq 3$
(C) $x=3$ or 1
(D) $x \leq 1$ or $x>3$,
6. Which of the following is not true about the function $y=\left|x^{2}-9\right|+2$?
(A) The graph is continuous everywhere
(B) $\quad f(-3)=2$
(C) $\quad f(x) \geq 2$ for all values of x
(D) $f^{\prime}(x)=2 x$ for all $x>0$
7. The acceleration of a particle moving in a straight line is given by $\ddot{x}=-4 x-16$, where its displacement from a fixed point O is $x \mathrm{~m}$. The motion is simple harmonic. What is the centre of the motion and the period?
(A) centre $=-4$ and period $=\pi$
(B) centre $=4$ and period $=\pi$
(C) centre $=-2$ and period $=\pi$
(D) \quad centre $=2$ and period $=2 \pi$
8. How many solutions does the equation $\sin 2 \theta=\cos \theta$ have in the domain $0 \leq \theta \leq 2 \pi$
(A) 2
(B) 3
(C) 4
(D) 5
9.

To find the area of the shaded region in the diagram shown, four different students proposed the following calculations.
i) $\int_{0}^{1} e^{2 x} d x$
ii) $e^{2}-\int_{0}^{1} e^{2 x} d x$
iii) $\int_{1}^{e^{2}} e^{2 y} d y$
iv) $\int_{1}^{e^{2}} \frac{\ln x}{2} d x$

Which of the following is correct?
(A) ii) only
(B) ii) and iii) only
(C) i) ii) iii) and iv)
(D) ii) and iv) only

Turn over to the last multiple choice question
10. The graph of the function $y=f(x)$ is shown below

Which of the following could be the graph of the derivative function $y=f^{\prime}(x)$?
(A)

(B)

(C)
(D)

End of Multiple choice. Question 11 begins on the next page

Question 11 Begin and label a new booklet.

a) Differentiate with respect to x
(i) $\cos ^{-1}(3 x)$
(ii) $\tan ^{2} 3 x$
b) Evaluate $\int_{0}^{3} y \sqrt{y+1} d y$ using the substitution $\mathrm{u}=\mathrm{y}+1$
c) $\quad \alpha, \beta, \gamma$ are the roots of $2 x^{3}-x^{2}+5 x+2=0$

Evaluate $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$
d) Find the general solution of $\tan \left(x-\frac{\pi}{3}\right)=\sqrt{3}$
e) Prove by induction that $5^{n}-3^{n}$ is even if n is a positive integer.
f) The volume of water in a hemispherical bowl of radius 10 cm is given by

$$
v=\frac{\pi}{3} x^{2}(30-x)
$$

where $x \mathrm{~cm}$ is the depth of the water at any time t. The bowl is being filled at a constant rate of $3 \pi \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the depth increasing when the depth is 5 cm .

Question $12 \quad$ Begin and label a new booklet.

a) (i) Sketch the graph of $y=\frac{x^{2}-1}{x^{2}+1}$

Hence find the value(s) of k such that $k=\frac{x^{2}-1}{x^{2}+1}$ has
(ii) 1 solution
(iii) 2 solutions
(iv) 0 solutions
b) (i) State the domain and range of $y=3 \sin ^{-1}(1-x)$
(ii) Find the gradient of $y=3 \sin ^{-1}(1-x)$ when $x=1$
(iii) Sketch $y=3 \sin ^{-1}(1-x)$
c) The angle of elevation to the top of a lighthouse, X , from a ship A due south of it is θ. From a ship B due east of the lighthouse the angle of elevation to the top of the lighthouse is ϕ. The distance between the ships is d metres.

(i) Show that the height of the top of the lighthouse above sea level is given by

$$
\begin{equation*}
h=\frac{d \tan \theta \tan \phi}{\sqrt{\tan ^{2} \theta+\tan ^{2} \phi}} \tag{3}
\end{equation*}
$$

(ii) If a chart shows that the top of the lighthouse is 115 m above sea level and the ships' captains measure the angles of elevation to be 18° and $23^{\circ} 15^{\prime}$, find the distance between the ships.

Question 13 Begin and label a new booklet.

15 marks

a) A vessel is being filled at a variable rate and the volume of liquid in the vessel at any time t is given by $V=A\left(1-e^{-k t}\right)$
(i) Show that $\frac{d V}{d t}=k(A-V)$
(ii) Find the full volume i.e. $\lim _{t \rightarrow \infty} V$
(iii) If one quarter of the vessel is filled in 10 minutes, what fraction is filled in the next 10 minutes?

Question 13 continues on the next page.
b) $\quad \mathrm{AB}$ and AC are two equal chords of a circle, whose centre is the point O and whose radius is r. The angle BAC is denoted by θ.

(i) Show that the triangles AOB and AOC are congruent.
(ii) Prove that obtuse $\angle B O C=2 \pi-2 \theta$
(iii) Write down an expression for the area of each triangle in terms of r and θ.
(iv) Find an expression for the area of minor sector BOC in terms of r and θ.
(v) If the area bounded by the two chords AB, AC and the minor arc BC is equal to half of the area of the circle, show that

$$
\begin{equation*}
\theta+\sin \theta=\frac{\pi}{2} \tag{2}
\end{equation*}
$$

(vi) Show that $\theta=0.8$ is an approximate solution to the equation in (v) and use one application of Newton's Method to find a better approximation, correct to 2 decimal places.

Question 14 begins on the next page

Question $14 \quad$ Begin and label a new booklet.
 15 marks

a)

Show that the volume generated when the area bounded by the curve $y=\sin x$ (for $0<x<2 \pi)$ and the line $y=0.5$ is rotated about the x-axis is given

$$
\begin{equation*}
\frac{\pi}{4}[x-\sin 2 x]_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \quad \text { Do not evaluate this. } \tag{4}
\end{equation*}
$$

b) A particle is projected from a horizontal plane at an angle of elevation of 30° with a speed of $100 \mathrm{~m} / \mathrm{s}$. Taking $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, find
(i) the equation of the trajectory (i.e. the Cartesian equation of the particles path).
(ii) the range of the projectile and the time of flight

c) The normal to the parabola $x^{2}=4 a y$ at points $\mathrm{P}\left(2 a p, a p^{2}\right)$ and $\mathrm{Q}\left(2 a q, a q^{2}\right)$ intersect at R. The chord PQ varies in such a way that for all positions of P and Q , the chord PQ when produced passes through the fixed point $\mathrm{C}(0,-2 a)$.
(i) Find the equation of the chord PQ
(ii) show that $p q=2$
(iii) Find the equations of the normal at both P and Q and hence find the coordinates of R
(iv) Show that R lies on the parabola

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0
\end{aligned}
$$

$$
\int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0
$$

$$
\int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0
$$

$$
\int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0
$$

$$
\int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

NOTE: $\ln x \quad=\log _{e} x, \quad x>0$

Solutions to the Ascham 2014 Ext. 1 Trial
Sechun 1.
al

$$
\begin{aligned}
\tan \theta & =\left|\frac{2--4}{1+2 x-4}\right| \\
& =\left|\frac{6}{-7}\right| \\
& =6 / 7
\end{aligned}
$$

D

Q?.

$$
\begin{aligned}
& (-2,3)(5,4) \\
& -2: 3 \\
& \left(\frac{-10-6}{1}, \frac{9-8}{1}\right) \\
& =(-16,1)
\end{aligned}
$$

$c \checkmark$

QB. B.

QU. A
BS.

$$
\begin{aligned}
\frac{-2}{x-3} & \leq 1 \\
-2(x-3) & \leq(x-3)^{2} \\
-2 x+6 & \leq x^{2}-6 x+9 \\
0 & \leq x^{2}-4 x+3 \\
0 & \leq(x-3)(x-1) \\
x & \leq 1 \text { or } x>3
\end{aligned}
$$

$x \neq 3$ as $\frac{-2}{x-3}$ is then undefined.
26. D
$Q 7$

$$
\begin{aligned}
\ddot{x} & =-4(x+4) \\
\ddot{x} & =-n^{2}(x--4)
\end{aligned}
$$

$$
=\pi
$$

A.

QB

Qq DJ
QuO B
Qll a)

$$
\text { i) } \begin{aligned}
d / d x \cos ^{-1}(3 x) & =\frac{-1}{\sqrt{1-9 x^{2}}} \times 3 \\
& =\frac{-3}{\sqrt{1-9 x^{2}}}
\end{aligned}
$$

ii) $d / d x \tan ^{2} 3 x$

$$
\begin{aligned}
& =2 \tan 3 x \times \sec ^{2} 3 x \times 3 \\
& =6 \sec ^{2} 3 x \tan 3 x
\end{aligned}
$$

G)

$$
\begin{array}{rlr}
\left.\begin{array}{rl}
u=y+1 \\
y=u-1 & \\
\text { and } d u=d y & \text { when } y=3 \\
y=0 & u=4 \\
y=1
\end{array}\right] \frac{1}{2} \\
\therefore \quad \int_{0}^{3} y \sqrt{y+1} d y= & \int_{1}^{4}(u-1) u^{1 / 2} d u \quad 1 / 2 \\
= & \int_{1}^{4} u^{3 / 2}-u^{1 / 2} d u \\
= & {\left[\frac{2 u^{5 / 2}}{5}-\frac{2 u^{3 / 2}}{3}\right]_{1}^{4} 1 / 2} \\
= & \left(\frac{64}{5}-\frac{16}{3}\right)-\left(\frac{2}{5}-\frac{2}{3}\right) \\
= & 62 / 5-14 / 3 \\
= & 7 \frac{11}{15} \\
& (14 / 15)
\end{array}
$$

c).

$$
\begin{aligned}
& \alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2} \\
= & \alpha \beta \gamma(\alpha+\beta+\gamma) \quad 1 / 2 \\
= & -\frac{2}{2}\left(-\frac{1}{2}\right) \quad 1 / 2 \\
= & -1 \times \frac{1}{2} \\
= & -\frac{1}{2} .1 / 2
\end{aligned}
$$

d)

$$
\begin{array}{rl}
x-\frac{\pi}{3} & =\frac{\pi}{3}+k \pi \\
k & x=\frac{1 / 2}{3}+k \pi
\end{array}
$$

2). Step 1. prove true for $n=1$

$$
\begin{aligned}
5^{n}-3^{n} & =5-3 \\
& =2 \text { whiten } s \text { even }: \text { true. }
\end{aligned}
$$

Step 2. Assume $s^{k}-3^{k}$ is even for $n=k$ \& assume $S^{k}-3^{k}=2 M$ for some integer M To prove $S^{k+1}-3^{k+1}=2 p$ for some integer P]

$$
\begin{aligned}
& 5^{k+1}-3^{k+1}=5 \times 5^{k}-3 \times 3^{k} \\
&=3\left(5^{k}-3^{k}\right)+2 \times 5^{k} V_{2} \\
&=3 \times 2 M+2 \times 5^{k}\left(l_{y} \text { assumphin }\right) / 1 / 2 \\
&=2\left(3 M+5^{k}\right) \quad \begin{array}{l}
\text { whee } M
\end{array} \\
& \text { integer in in } s^{k} 1 / 2
\end{aligned}
$$

$\therefore 5^{k+1}-3^{k+1}$ is even as it has is common factor if 2 .

Step 3 By steps 1 and 2 and the process of mathematical induction the result is proven
f)

$$
\begin{aligned}
v= & \pi / 3 x^{2}(30-x) \\
= & 10 \pi x^{2}-\pi / 3 x^{3} \\
d v / d t & =3 \pi \quad d x / d t=? \quad \text { when } x=5 \\
d x / d t & =d x / d v \times d v / d t \\
v & =10 \pi x^{2}-\pi / 3 x^{3} \\
\therefore d v / d x & =20 \pi x-\pi x^{2} \quad 1 / 2 \\
d x / d v & =\frac{1}{\pi x(20-x)} \quad 1 / 2 \\
\therefore d x / d t & =\frac{1}{4 x(20-x)} \times 3 \pi \\
& =\frac{3}{x(20-x)} \\
& =\frac{3}{5 \times 15} \\
& =\frac{1}{25}
\end{aligned}
$$

\therefore depth is inveasing at $\frac{1}{25}(\mathrm{~cm} / \mathrm{Min} \mathrm{V} / 2$

Quesinoa 12
a! i)

$$
y=\frac{x^{2}-1}{x^{2}+1}=\frac{(x-1)(x+2)}{x^{2}+1}
$$

when $x=0 \quad y=-1 \quad 1 / 2$ costs $x=1$ or $-1 \frac{1}{2}$

$\operatorname{in} x \rightarrow \infty$ y $\longrightarrow 1^{-}$
Functon is zeve.
ii) $k=-1$
iii) $\quad-1<k<1$
(v) $k<-1$ or $k \geqslant 1$
b) $\quad y=3 \sin ^{-1}(1-x)$

Domai

$$
\begin{aligned}
-1 & \leq 1-x \\
-2 & \leq-x \leq 0 \\
2 \geqslant x & \geqslant 0
\end{aligned}
$$

Range $-\frac{\pi}{2} \leqslant \sin ^{-1}(1-x) \leqslant \pi / 2$

$$
\therefore \quad-\frac{3 \pi}{2} \leq 3 \sin ^{-1}(1-x) \leq 5 \pi / 2
$$

b $\quad-\frac{3 \pi}{2} \leqslant y \leq 3 \pi / 2$

$$
\begin{aligned}
& \text { Q12 (in } \quad y^{\prime}=3 \frac{1}{\sqrt{1-(1-x)^{2}}} \times-1 \quad 1 / 2 \\
& =\frac{-3}{\sqrt{1-\left(1-2 x+x^{2}\right)}} \quad 1 / 2 \\
& =\frac{-3}{\sqrt{2 x-x^{2}} \cdot 1 / 2}=\frac{-3}{1}=-31 / 2 \\
& \text { ii) }
\end{aligned}
$$

c).

W

Siminat $\angle B=\frac{h}{\tan \phi} \quad 1 / 2$

$$
\begin{gathered}
\therefore d^{2}=\left(\frac{h}{\tan \theta}\right)^{2}+\left(\frac{h}{\tan \phi}\right)^{2} \quad 1 / 2 \\
\therefore d^{2} \operatorname{Tan}^{2} \theta \operatorname{Tn}^{2} \phi=h^{2} \tan ^{2} \phi+h^{2} \tan \theta \quad 1 / 2 \\
\therefore h^{2}=\frac{d^{2} \tan ^{2} \theta \tan ^{2} \phi}{\operatorname{Tan}^{2} \phi+\tan ^{2} \theta} \quad \sqrt{2} \\
\therefore h=\frac{d \tan \theta \operatorname{Tan} \phi}{\sqrt{\tan ^{2} \phi+\tan ^{2} \theta}} \quad 1 / 2(h>0) \quad 3 / 3
\end{gathered}
$$

ii)

$$
\begin{array}{rlr}
\therefore \quad 115 & =\frac{d \tan 18 \tan 23^{\circ} 15^{\prime}}{\sqrt{\tan ^{2} 18+\tan ^{2} 23^{\circ} 15^{\prime}}} \quad 1 / 2 \\
d & =443.75228 \cdots \\
& =443.75 \mathrm{~m}(\text { to } 2 d) \quad 1 / 2 \quad 1 / 1
\end{array}
$$

13a)
i)

$$
\begin{aligned}
& v=A\left(1-e^{-k t}\right) \\
& d v / d t=A \times-e^{-k t} x-k
\end{aligned}
$$

lat $1-e^{-k t}=\frac{V}{A}$

$$
\begin{aligned}
\therefore \quad-e^{-k t} & =\frac{V}{A}-1 \quad \frac{1}{2} \\
\therefore \quad d V / d t & =A \times\left(\frac{V}{A}-1\right) \times-k \quad \frac{1}{2} \\
& =-k(V-A) \quad 1 / 2 \\
& =k(A-V) \quad \longleftarrow \text { This line: } \quad \frac{2}{2}
\end{aligned}
$$

ii)

$$
\begin{align*}
\lim _{t \rightarrow \infty} V & =\lim _{t \rightarrow \infty} A\left(1-e^{-k t}\right) \\
& =A \tag{1}
\end{align*}
$$

iii) at $t=0 \quad v=A\left(1-e^{0}\right)$

$$
=0
$$

Foll volume is A

$$
\begin{aligned}
& \therefore \quad \frac{1}{4} A=A\left(1-e^{-10 k}\right) \quad 1 / 2 \\
& \text { ie } \quad e^{-10 k}=3 / 4 \\
&-10 k=\ln 3 / 4 \\
& k=-\frac{1}{10} \ln 3 / 4 \\
& 1 / 2
\end{aligned}
$$

At $t=20$

$$
\begin{aligned}
20 & =A\left(1-e^{-20 k}\right) \\
& =A\left(1-e^{-20 x-\frac{1}{10}} \ln 3 / 4\right. \\
& =A\left(1-e^{2 \ln 3 / 4}\right) \\
& =A\left(1-e^{\ln 9 / 16}\right) \\
& =A(1-9 / 16) \\
& =\frac{7}{16} A
\end{aligned}
$$

\therefore fraction filled in next 10 minutes $=\frac{7}{16} A-\frac{1}{4} A$ $=$
b) i)

In $\triangle S$ AOB and $A O C$

$$
\begin{aligned}
& B O=A O=C O=r \quad(\text { radii }) \\
& B A=A C \text { (given) } \\
\therefore & \triangle A O B \equiv \triangle A O C \quad(S 35) .
\end{aligned}
$$

ii) Reflex $\angle B O C=2 \theta$ (angle at the centre is twice the ingle at the circumfence, standing on the some ave

$$
\therefore \text { obtuse } \angle B O C=2 \pi-2 \theta . \leftarrow \text { Give. }
$$

iii) Area of each $\Delta=\frac{1}{2} r^{2} \sin (\pi-\theta) \checkmark \frac{1}{1}$
v)

$$
\begin{aligned}
\text { Area of Minor sector } & =\frac{2 \pi-2 \theta}{2 \pi} \pi r^{2} \quad 1 / 2 \\
& =\frac{\pi-\sigma}{\pi} \times \pi r^{2} \\
& =(\pi-\theta) r^{2} \cdot 1 / 2 \quad 1 / 1
\end{aligned}
$$

v) Shaded Area $=(\pi-\theta) r^{2}-2 \times \frac{1}{2} r^{2} \sin (\pi-\theta) \frac{1}{2}$

$$
\therefore \frac{1}{2} \pi r^{2}=(\pi-\theta) r^{2}-r^{2} \sin (\pi-\theta)
$$

$$
\begin{aligned}
& \frac{1}{2} \pi r^{2}=\pi r^{2}-\theta r^{2}-r^{2} \sin (\pi-\theta) \\
& 0=\frac{1}{2} \pi-\theta-\sin (\pi-\theta) \\
& \text { ii } \theta+\sin (\pi-\theta)=\pi / 2 \quad 1 / 2
\end{aligned}
$$

e) $\theta+\sin \theta=\pi / 2 \operatorname{Given}_{\text {Given }} \sin c e \sin (\pi-\theta)=\sin \theta$
vi) let $\theta=0.8$
let $y=\theta+\sin \theta-\pi / 2$

$$
\begin{aligned}
\therefore \quad y & =0.8+\sin 0.8-\pi / 2 \\
& =-0.05344 \ldots \\
& \approx 0
\end{aligned}
$$

\therefore There is a root close to $\theta=08$

$$
\begin{array}{ll}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} & f(x)=\theta+\sin \theta-\frac{\pi}{2} \\
f^{\prime}(x)=1+\cos \theta \\
1 / 2
\end{array}
$$

then

$$
\text { let } \begin{aligned}
x_{0} & =0.8 \\
x_{1} & =0.8-\frac{0.8+\sin 0.8-\pi / 2}{1+\cos 0.8} \\
& =0831496 \ldots \\
& =0.83(\text { to } 24) \quad \sqrt{2}
\end{aligned}
$$

Q14 a)
)

$$
\text { Volume }=\int \pi y^{2} d x
$$

$\sin x=0.5$
\therefore required volume $=\pi \int_{\pi / 6}^{5 \pi / 6} y_{1}{ }^{2}-y_{2}{ }^{2} d x$

$$
=\pi \int_{\pi / 6}^{5 \pi / 6} \sin ^{2} x-(0.5)^{2} d x
$$

$$
x=\pi / 6 \text { or } 5 \pi / 6
$$

$$
\begin{aligned}
& =\pi \int_{\pi / 6}^{5 \pi / 6} \sin ^{2} x-\frac{1}{4} d x \\
& =\pi \int_{\pi / 6}^{5 \pi / 6} \frac{1}{2}(1-\cos 2 x)^{-\frac{1}{4}} d x
\end{aligned}
$$

$$
\begin{aligned}
\cos 2 \theta=1-2 \sin ^{2} \theta & =\pi \int_{\pi / 6}^{5 \pi / 6} \frac{1}{4}-1 / 2 \cos 2 x d x \\
\therefore \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) & =\pi / 2 \\
& =\pi\left[\frac{1}{4} x-\frac{1}{2} \times \frac{\sin 2 x}{2}\right]_{\pi / 6}^{5 \pi / 6} 1 / 2 \\
& =\pi / 4[x-\sin 2 x]_{\pi / 6}^{5 \pi / 6} \text { shown. }
\end{aligned}
$$

b)

$v=100 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \quad v \operatorname{vos} 30=\frac{v}{2}=50 \\
& =\frac{\sqrt{3} v}{2} \\
& =50 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{x}=0 \\
& \dot{x}=\frac{\sqrt{3} v}{2} \\
& x=50 \sqrt{3} t+c_{1} \\
& \frac{1}{2}
\end{aligned}
$$

$$
\ddot{y}=-10
$$

$$
\dot{y}=-10 t+c
$$

$$
=-10 t+\frac{v}{2}
$$

$$
=-10 t+50
$$

$$
y=-5 t^{2}+50 t+c_{2}
$$

at $t=0, x=0 \quad y=0$ $\sqrt{2}$

$$
\begin{array}{cc}
\therefore c_{1}=0 & \text { and } c_{2}=0 \\
\therefore x=50 \sqrt{3} t \quad y=-5 t^{2}+50 t \quad \frac{1}{2} \\
\therefore t=\frac{x}{50 \sqrt{3}} \quad 1 / 2 \\
\therefore y= & -5\left(\frac{x^{2}}{2500 \times 3}\right)+50 \times \frac{x}{50 \sqrt{3}} \quad \sqrt{2}
\end{array}
$$

$$
\begin{aligned}
y & =\frac{-x^{2}}{1500}+\frac{x}{\sqrt{3}} \quad 1 / 2 \\
(& \left.=\frac{-x^{2}}{1500}+\frac{\sqrt{3} x}{3}\right)
\end{aligned}
$$

ii) when $y=0$

$$
\begin{aligned}
0 & =-s t^{2}+s 0 t \quad x_{2} \\
& =s t(10-t) \quad y_{2} \therefore t=0 \text { or } 10
\end{aligned}
$$

\therefore particle returns to ground at $t=10 \mathrm{sec}$. $\sqrt{2}$
At this time

$$
\begin{aligned}
x & =50 \sqrt{3} t \\
& =500 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

\therefore The range is $500 \sqrt{3} \mathrm{M}$. $\sqrt[1]{2}$
c)

i) chord PQ

$$
\begin{aligned}
& y-a p^{2}=\frac{a p^{2}-\alpha q^{2}}{2 a(p-q)}(x-2 p) \quad / 2 \\
& y-a p^{2}=\frac{\alpha(p-q)(p+q)}{2 \alpha(p-q)}(x-2 a p) \\
& y-a p^{2}=\frac{p+q}{2}(x-2 a p) \quad y_{2} \quad 1 / 1
\end{aligned}
$$

ii) $(0,-2 a)$ sulastes

$$
\begin{aligned}
& \text { c. }-2 a-a p^{2}=\frac{p+q}{z} \times-k_{p} \quad 1 / 2 \\
& -2 a-a p^{2}=-a p(p+q) \\
& -2 a-\phi^{x^{2}}=-\alpha p^{\alpha^{2}}-\varphi q \\
& -2 \alpha=-p \varphi q \\
& p q=2 \quad \quad Y_{2}
\end{aligned}
$$

iii) normal at P

$$
\left.\begin{array}{l}
y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
y p-a q^{3}=-x+2 a \\
y q-a q^{3}=-x+2 a q
\end{array}\right]
$$

$$
\begin{gathered}
y(p-q)-a\left(p^{3}-q^{3}\right)=2 a(p-q) \\
y-a\left(p^{2}+p q+q^{2}\right)=2 a \\
y=2 a+a\left(p^{2}+p q+q^{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
y & =a\left(p^{2}+p q+2+q^{2}\right) \\
& =a(p+q)^{2} \\
x & =a p^{3}-y p+2 p \\
& =a p^{3}-p a(p+q)^{2}+2 a p \\
& =a p^{3}-a p\left(p^{2}+2 p q+q^{2}\right)+2 a p \\
& =-2 a p^{2} q-a p q^{2}+2 a p \\
& =-4 a p-2 a q+2 a p \\
& =-2 a p-2 a q \\
& =-2 a(p+q) \\
\therefore R \text { is } & \left(-2 a(p+q), a(p+q)^{2}\right)^{2}
\end{aligned}
$$

$3 / 3$
iv)

$$
\begin{array}{rlr}
x^{2} & =4 a^{2}(p+q)^{2} & 1 / 2 \\
& =4 a y . & 1 / 2
\end{array}
$$

