

ASCHAM SCHOOL

YEAR 12
 MATHEMATICS EXTENSION 1 TRIAL EXAMINATION 2015

GENERAL INSTRUCTIONS

5 minutes reading time.
Working time: 2 hours.
Use black or blue pen.
A table of standard integrals is provided separately.
Approved calculators and templates may be used.

Total Marks - 70

Section A - Multiple Choice
 (1 mark each)

Attempt Questions 1 to 10.
Allow approximately 15 minutes.
Select answers on the separate multiple choice sheet provided.
Write your BOS number on the multiple choice sheet.

Section B - Questions 11 - 14 (15 marks each)
Allow 1 hour 45 minutes.
Start each question in a new booklet.
If you use a second booklet for a question, place it inside the first.
Label extra booklets for the same question as, for example, Q11-2 etc.
Write your BOS number and question number on each booklet.

Ascham School Mathematics Extension 1 Trial 2015 ©

Blank page

Section A - Multiple choice (10 marks)

(Mark the correct answer on the sheet provided.)

1. The interval $A B$ between $A(2,-1)$ and $B(-6,3)$ is divided internally by the point P in the ratio $1: 3$. The correct coordinate of P is given by:
A) $\left(\frac{1 \times 2+3 \times-6}{1+3}, \frac{1 \times-1+3 \times 3}{1+3}\right)$
B) $\left(\frac{1 \times 2-3 \times-6}{1-3}, \frac{1 \times-1-3 \times 3}{1-3}\right)$
C) $\left(\frac{1 \times-6+3 \times 2}{1+3}, \frac{1 \times 3+3 \times-1}{1+3}\right)$
D) $\left(\frac{1 \times-6-3 \times 2}{1-3}, \frac{1 \times 3-3 \times-1}{1-3}\right)$
2. Find $\int \frac{1}{\sqrt{16-9 x^{2}}} d x$.
A) $\sin ^{-1}\left(\frac{x}{4}\right)+C$
B) $\sin ^{-1}\left(\frac{3 x}{4}\right)+C$
C) $\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{4}\right)+C$
D) $\frac{1}{4} \sin ^{-1}\left(\frac{3 x}{4}\right)+C$
3. What is the natural domain of $f(x)=\log _{e}\left(\cos ^{-1} x\right)$?
A) $0<x \leq 1$
B) $-1<x \leq 1$
C) $0 \leq x<1$
D) $-1 \leq x<1$
4. Which of the following is a valid solution to the differential equation $\frac{d P}{d t}=-k(P-M)$, where k and M are constants?
A) $P=M e^{k t}$
B) $P=M e^{-k t}$
C) $P=M+e^{k t}$
D) $P=M+e^{-k t}$
(Section A continues on the next page...)
5.

Which is the correct relation for the intervals in the diagram above?
A) $P A \times A B=P D \times D C$
B) $P A \times D C=P D \times A B$
C) $P A \times P B=P D \times P C$
D) $P A \times P C=P D \times P B$
6. Which of the following is the correct function for the graph below?

A) $y=-\sin ^{-1}\left(\frac{x}{3}\right)$
B) $y=-\cos ^{-1}\left(\frac{x}{3}\right)$
C) $y=-\sin ^{-1}(3 x)$
D) $y=-\cos ^{-1}(3 x)$
(Section A continues on the next page...)
7. For which function are the values $x=2$ and $x=4$ suitable starting values for estimating a zero using the method of "halving the interval"?
A) $f(x)=x-5$
B) $f(x)=x^{2}-5$
C) $f(x)=x^{3}-5$
D) $f(x)=x^{4}-5$
8. The velocity v of a particle moving in a straight line is given by $v^{2}=6+4 x-2 x^{2}$, where x is the displacement from a fixed point. Given that the particle is in simple harmonic motion, what is the centre of motion?
A) $x=-2$
B) $x=-1$
C) $x=1$
D) $x=2$
9. A particle moving on a straight line is depicted by the following velocity-time graph. What distance does it travel in the first 5 seconds of motion?

A) 2.5 units
B) 3 units
C) 5 units
D) 6.5 units
(Section A continues on the next page...)

Ascham School Mathematics Extension 1 Trial 2015 (C)
10. Given that α, β and γ are the roots of $x^{3}-3 x^{2}-5 x+6=0$, what is the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$?
A) -1
B) 4
C) 14
D) 19
(End of Section A. Question 11 begins on the next page.)

Section B (60 marks)

Question 11 (Begin and label a new booklet.)
a) Find the acute angle between the lines $x-2 y+1=0$ and $y=5 x-4$. Give your answer in radians correct to two decimal places.
b) Solve the inequality $\frac{3 x+2}{x-2}>1$.
c) Use Newton's method to find a better approximation to the root of $\log _{e} x-\sin x=0$, given that the root is near $x=2 .(x$ is a radian $)$ Give your answer to 2 decimal places.
d) Let $P(x)=(x+1)(x-3) Q(x)+a(x+1)+b$, where $Q(x)$ is a polynomial and a and b are real numbers.

When $P(x)$ is divided by $(x+1)$, the remainder is -11 .
When $P(x)$ is divided by $(x-3)$, the remainder is 1 .
i) What is the value of b ?
ii) What is the remainder when $P(x)$ is divided by $(x+1)(x-3)$?
e) Prove by mathematical induction that

$$
\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\ldots+\frac{1}{4 n^{2}-1}=\frac{n}{2 n+1}
$$

for positive integers n.

Question 12 (Begin and label a new booklet.)
a) Evaluate $\int_{0}^{\frac{\pi}{8}} \cos ^{2} x d x$
b) $\quad F B$ is a tangent touching a circle at $A . C E$ is the diameter, O is the centre and D lies on the circumference. $\angle B A E=36^{\circ}$.

i) Find the size of $\angle A C E$, giving reasons.
ii) Find the size of $\angle A D C$, giving reasons.
c) i) Show that the equation of tangent at point $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$ is given by $p x-y-a p^{2}=0$.
ii) S is the focus of the parabola and T is the point of intersection of the tangent and the y-axis.

Prove that $S P=S T$.
iii) Hence show that $\angle S P T$ is equal to the acute angle between the tangent and the line through P parallel to the axis of the parabola.
d) Sand is poured at a rate of 2 cubic metres per minute. It forms a conical pile, with the angle at the apex of the cone equal to 60°. The height of the pile is h metres, and the radius of the base is r metres.

i) Show that $r=\frac{h}{\sqrt{3}}$.
ii) Show that V, the volume of the pile, is given by $V=\frac{\pi h^{3}}{9}$.
iii) Hence find the rate at which the height of the pile is increasing when the height of the pile is 3 metres.

Question 13 (Begin and label a new booklet.)
a) i) Find $\frac{d}{d x}\left(x \tan ^{-1} x\right)$
ii) Hence evaluate $\int_{0}^{1} \tan ^{-1} x d x$
b) A particle is moving on a straight line with its displacement described by $x=\cos 2 t+\sin 2 t$, where t is in seconds.
i) Show that the particle is in simple harmonic motion, namely its acceleration has the form $\ddot{x}=-n^{2} x$.
ii) State the period of motion.
iii) By expressing $\cos 2 t+\sin 2 t$ in the form $R \cos (2 t-\alpha)$, find the amplitude of the motion.
iv) Hence or otherwise find the value of t at the first moment that the particle is stationary.
c) A tree $B T$ is observed directly across a creek with an angle of elevation of 43° from the ground. After walking 100 metres along the bank from A to C, the same tree now has an angle of elevation of 11°.

i) Show that the creek has a width of $\frac{h}{\tan 43^{\circ}}$.
ii) Find the height of the tree to 2 decimal places.

Question 14 (Begin and label a new booklet.)
a) By using the substitution $u=x^{2}-5$, or otherwise, find $\int \frac{x^{3}}{\sqrt{x^{2}-5}} d x$.
b) Show that $\frac{1-\tan x}{1+\tan x}=\frac{1-2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}$
c) A cricketer hits the ball from ground level with a speed of $20 \mathrm{~m} / \mathrm{s}$ and an angle of elevation of α. It flies towards a high wall 20 metres away.
Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

i) Given that the horizontal and vertical displacements at time t are, respectively (do not need to derive these):

$$
\begin{gathered}
x=20 t \cos \alpha \\
y=-5 t^{2}+20 t \sin \alpha
\end{gathered}
$$

Show that the value of h, the height up the wall at which the ball will collide, is given by $h=-5 \sec ^{2} \alpha+20 \tan \alpha$.
ii) Show that the maximum value of h is obtained when $\tan \alpha=2$.
iii) Assuming $\tan \alpha=2$, find the speed at which the ball will hit the wall.

Ascham School Mathematics Extension 1 Trial 2015 (C)
d) i) State any discontinuities, if any exist, of the function $f(x)=\frac{1+e^{x}}{1-e^{x}}$.
ii) It is given that $f^{\prime}(x)=\frac{2 e^{x}}{\left(1-e^{x}\right)^{2}}$.

Sketch $y=f(x)$, showing all important features.

2015
Ext 1 Trial Solutions

| Section A. Q1.C | Q2.C | Q3.D | Q4.D | Q5.C |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Q6.A | Q7.B | Q8.C | Q9.D | Q10.D |

Q11. a)

$$
\begin{array}{ll}
x-2 y+1=0 & y=5 x-4 \\
2 y=x+1 & m_{2}=5 \\
y=\frac{x}{2}+\frac{1}{2} & \\
m_{1}=\frac{1}{2} &
\end{array}
$$

$$
\begin{aligned}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\frac{1}{2}-5}{1+\frac{5}{2}}\right| \\
& =\frac{9}{7}
\end{aligned}
$$

$$
=\left|\frac{\frac{1}{2}-5}{1+\frac{5}{2}}\right|: \sqrt{ }
$$

$$
\theta=52.125^{\circ} \ldots
$$

$$
\div 0.91^{c} \text { to } 2 d . p . \quad 1 /
$$

b). $\frac{3 x+2}{x-2}>1$

Disc: $x=2$.
Solutions $3 x+2=x-2$

$$
\begin{aligned}
2 x & =-4 \\
x & =-2 \quad y
\end{aligned}
$$

$$
\therefore x<-2, x>2 .
$$

$$
\begin{array}{rlrl}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{i}\right)}, 1 / & \\
f(2) & \approx-0.21615 \ldots & x_{2} & =2-\frac{-0.21615}{0.91614} \\
f^{\prime}(x) & =\frac{1}{x}-\cos x & & =2.2359 \ldots \\
f^{\prime}(2) & =0.91614 \ldots \sqrt{ } \quad & & \approx 2.24 \text { to 2d.p. }
\end{array}
$$

\qquad

> c)
d) i) $P(-1)=-11$ by remainder theorem.

$$
\begin{aligned}
\therefore \quad-11 & =0+0+b \\
b & =-11
\end{aligned}
$$

ii)

$$
\begin{aligned}
& P(3)=1 \\
& P(3)=0+4 a+b \\
& 1=4 a+b \quad y \\
& 1=4 a-11 \\
& 4 a=12 \quad a=3
\end{aligned}
$$

Remainder is

Qile) let $n=1 . \quad \frac{1}{3}=\frac{1}{2 \times 1+1}$

$$
\frac{1}{3}=\frac{1}{4 \times 1^{2}-1} \quad \text { true for } n=1
$$

Assume for $n=k, \quad \frac{1}{3}+\frac{1}{15}+\ldots+\frac{1}{4 k^{2}-1}=\frac{k}{2 k+1}$
RTP for $n=k+1 \quad \frac{1}{3}+\frac{1}{15}+\ldots+\frac{1}{4 k^{2}-1}+\frac{1}{4(k+1)^{2}-1}=\frac{k+1}{2(k+1)+1}$

$$
\begin{array}{rlrl}
\angle H S & =\frac{k}{2 k+1}+\frac{1}{4(k+1)^{2}-1} \quad \text { by assumption } \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+2-1)(2 k+2+1)} \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)} & R H s=\frac{k+1}{2(k+1)+1} \\
& =\frac{k+1}{2 k+3} & =\frac{k+1}{2 k+3}
\end{array}
$$

$$
\therefore \angle H S=R H S
$$

\therefore Statement true for $n=1,2, \ldots$ all positive integers n by mathematical induction.

Q12. a) $\int_{0}^{\frac{\pi}{8}} \cos ^{2} x d x$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\frac{\pi}{8}} 1+\cos 2 x d x \\
& =\frac{1}{2}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{8}} \\
& =\frac{1}{2}\left(\frac{\pi}{8}+\frac{1}{2} \cdot \frac{1}{\sqrt{2}}\right)-\frac{1}{2}(0) \\
& =\frac{\pi}{16}+\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

b) 1) $\angle A C E=\angle E A B$ - (angle in alternate segment).

$$
=36^{\circ}
$$

ii) $\angle C A E=90^{\circ}$-(angle in semicircle)
$\therefore \angle C E A=180-36090$-(angle sum of triangle)

$$
=54^{\circ}
$$

$\begin{aligned} \angle C D A & =\angle C E A \text { - Cargles standing on same are } \\ & =54^{\circ}\end{aligned}$

$$
=54^{\circ} \text { are equal }
$$

c) i)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d p}{d x / d \rho} \\
& =\frac{2 a p}{2 a} \quad \text { Eq tangent: } y-a p^{2}=p(x-2 a p) \\
& =p \quad y-a p^{2}=p x-2 a \rho^{2} \\
& y=p x-a p^{2} \\
& p x-y-a p^{2}=0
\end{aligned}
$$

ii) $S:(0, a)$

$$
\begin{aligned}
& \text { T: } x=0, \quad-y-a p^{2}=0 \quad y=-a p^{2} \\
& \therefore T\left(0,-a p^{2}\right) \\
& S p=\sqrt{(2 a p)^{2}+\left(a p^{2}-a\right)^{2}} \\
&=\sqrt{4 a^{2} p^{2}+a^{2} p^{4}-2 a^{2} p^{2}+a^{2}} \\
&=\sqrt{a^{2}\left(p^{4}+2 p^{2}+1\right)} \\
&=\sqrt{a^{2}\left(p^{2}+1\right)^{2}} \\
& S p=a\left(p^{2}+1\right) \cdot S p>0 . \\
& S T=\left(a--a p^{2}\right) \\
&=a \rho^{2}+a \\
& \therefore S p=S T
\end{aligned}
$$

iii)

$$
\angle S P T=\angle S T P
$$

-Chase $\angle s$ of isosceles Δ are equal)

$$
\begin{gathered}
\angle T P M=\angle S T P \text { (a)temate } \\
\angle \text { equal } \\
\text { STA } \\
\therefore \angle S P T=\angle T P M
\end{gathered}
$$

as required.

Q(2d)
i)

$$
\begin{array}{r}
\tan 30=\frac{r}{h} \\
r=\frac{h}{\sqrt{3}}
\end{array}
$$

ii)

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi \times\left(\frac{h^{2}}{3}\right) \times h \\
& =\frac{\pi h^{3}}{9}
\end{aligned}
$$

iii)

$$
\frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t}
$$

$$
\begin{aligned}
& \frac{d v}{d t} \\
= & 2
\end{aligned}
$$

$$
V=\frac{\pi h^{3}}{9}
$$

$$
\frac{d v}{d t}=2
$$

$$
\frac{d V}{d h}=\frac{3 \pi h^{2}}{9}
$$

at $h=3$,

$$
\begin{aligned}
3, & \frac{d V}{d h}
\end{aligned}=\frac{\pi \times 3^{2}}{3}, ~ \begin{aligned}
& 2=3 \pi \\
& 2 \pi \times \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{2}{3 \pi} \mathrm{~m} / \mathrm{min} .
\end{aligned}
$$

$$
=\frac{\pi h^{2}}{3}
$$

Q(3a) i) $\frac{d}{d x}\left(x \tan ^{-1} x\right)$

$$
=\tan ^{-1} x+\frac{x}{1+x^{2}}
$$

ii) $\therefore \int \tan ^{-1} x+\frac{x}{1+x^{2}} d x=x \tan ^{-1} x+c$

$$
\begin{aligned}
\int \tan ^{-1} x d x & +\int \frac{x}{1+x^{2}} d x=x \tan ^{-1} x+c \\
\int \tan ^{-1} x d x & =x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x \\
\int \tan ^{-1} x d x & =x \tan ^{-1} x-\frac{1}{2} \log _{e}\left(1+x^{2}\right)+c \\
\int_{0}^{1} \tan ^{-1} x & =\left[x \tan ^{-1} x-\frac{1}{2} \log _{e}\left(1+x^{2}\right)\right]_{0}^{1} \\
& =\left(1 \tan ^{1} 1-\frac{1}{2} \log _{e}(2)\right)-\left(0-\log _{e} 1\right) \\
& =\frac{\pi}{4}-\frac{1}{2} \log _{e} 2
\end{aligned}
$$

b) i)

$$
\begin{aligned}
x & =\cos 2 t+\sin 2 t \\
\dot{x} & =-2 \sin 2 t+2 \cos 2 t \\
\ddot{x} & =-4 \cos 2 t-4 \sin 2 t \\
& =-4(\cos 2 t+\sin 2 t) \\
& =-4 x \\
& \therefore \operatorname{sit} .
\end{aligned}
$$

ii) $\quad n^{2}=4, n=2, \quad T=\frac{2 \pi}{2}=\pi \mathrm{sec}$.
iii)

$$
\begin{aligned}
\text {) } \quad \begin{aligned}
\cos 2 t+\sin 2 t & =\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos 2 t+\frac{1}{\sqrt{2}} \sin 2 t\right) \\
& =\sqrt{2}\left(\cos 2 t \cos \frac{\pi}{4}+\sin 2 t \sin \frac{\pi}{4}\right) \\
& =\sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right)
\end{aligned}
\end{aligned}
$$

Amplitude: $\sqrt{2}$ units
iv)

$$
\begin{aligned}
& \dot{x}=-2 \sqrt{2} \sin \left(2 t-\frac{\pi}{4}\right) \\
& \dot{x}=0: \quad \sin \left(2 t-\frac{\pi}{4}\right)=0 \\
& 2 t-\frac{\pi}{4}=0, \pi_{2} \ldots
\end{aligned}
$$

$2 t=\frac{\pi}{4}, \frac{5 \pi}{4} \ldots \quad t=\frac{\pi}{8}$ is the first tine $\dot{x}=0$.
c) i) $\frac{h}{B A}=\tan 43$

$$
\therefore B A=\frac{h}{\tan 43^{\circ}}
$$

ii) By Bythagoras: $\quad B C=\frac{h}{\tan 1^{\circ}}$

$$
\begin{gathered}
A C^{2}+A B^{2}=B C^{2} \\
\therefore 10000+\frac{h^{2}}{\tan ^{2} 43}=\frac{h^{2}}{\tan ^{2} 11} \\
\therefore 10000=h^{2}\left(\frac{1}{\tan ^{211}}-\frac{1}{\tan ^{2} 43}\right) \\
10000=25.31646 \ldots h^{2} \\
h^{2}=394.9999 \ldots \\
h \div 19.87 \mathrm{~m} .
\end{gathered}
$$

$$
\begin{aligned}
& \text { Q(4a) } \int \frac{x^{3}}{\sqrt{x^{2}-5}} d x \quad \begin{array}{c}
u=x^{2}-5, x^{2}=u+5 \\
\\
=\frac{1}{2} \int \frac{2 x \cdot x^{2}}{\sqrt{x^{2}-5}} d x \\
=\frac{1}{2} \int \frac{u+5}{\sqrt{u}} d u \\
=\frac{1}{2} \int u^{\frac{1}{2}}+5 u^{-\frac{1}{2}} d u \\
=\frac{1}{2} \frac{u^{\frac{3}{2}}}{\frac{3}{2}}+\frac{5}{2} \cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+c \\
=\frac{2}{3} \frac{1}{2} u^{\frac{3}{2}}+\frac{5}{2} \cdot \frac{2}{1} u^{\frac{1}{2}}+c \\
=\frac{1}{3} u^{\frac{3}{2}}+5 u^{\frac{1}{2}}+c
\end{array} .
\end{aligned}
$$

b).

$$
\begin{aligned}
\text { LHS } & =\frac{1-\tan x}{1+\tan x} \\
& =\frac{\left(1-\frac{\sin x}{\cos x}\right) \times \cos x}{\left(1+\frac{\sin x}{\cos x}\right) \times \cos x} \\
& =\frac{\cos x-\sin x}{\cos x+\sin x} \\
& =\frac{(\cos x-\sin x)^{2}}{\cos ^{2} x-\sin ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x}{\cos ^{2} x-\sin 3 x} \\
& =\frac{1-2 \sin x \cos ^{2}}{\cos ^{3} x-\sin 2 x} \text { as required } \\
& =\text { RHS }
\end{aligned}
$$

c)

$$
\text { i) } \begin{aligned}
x & =20 t \cos \alpha \\
y & =-5 t^{2}+20 t \sin \alpha \\
x=20, \quad 20 & =20 t \cos \alpha \\
t & =\frac{1}{\cos \alpha} \\
-h & =-5 \cdot \frac{1}{\cos ^{2} \alpha}+20 \cdot \frac{\sin \alpha}{\cos \alpha} \\
h & =-5 \sec ^{2} \alpha+20 \tan \alpha
\end{aligned}
$$

ii)

$$
\begin{aligned}
& h=-5\left(\tan ^{2} \alpha+1\right)+20 \tan \alpha \\
& h=-5 \tan ^{2} \alpha+20 \tan \alpha-5
\end{aligned}
$$

let $\tan \alpha=u$

$$
h=-5 u^{2}+20 u-5
$$

max is at axis of symm: $u=\frac{-b}{2 a}=\frac{-20}{10}$

$$
=2
$$

$\max h$ is at $\tan \alpha=2$
iii) $\tan \alpha=2$

$$
\begin{aligned}
\sin \alpha & =\frac{2}{\sqrt{5}} \\
\cos \alpha & =\frac{1}{\sqrt{5}} \\
x & =20, \quad t=\frac{1}{\cos \alpha}=\sqrt{5} \\
\therefore \quad x & =20 \cos \alpha \\
& =\frac{20}{\sqrt{5}} \\
\dot{y} & =-10 t+20 \sin \alpha \\
& =-10 \sqrt{5}+\frac{40}{\sqrt{5}}=-10 \sqrt{5}+8 \sqrt{5}=-2 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
\text { speed }^{2} & =\dot{x}^{2}+\dot{y}^{2} \\
& =10\left(\frac{20}{\sqrt{5}}\right)^{2}+(-2 \sqrt{5})^{2} \\
& =80+20 \\
& =100 \\
\text { speed } & =10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

d) i) $\quad 1-B^{x}=0$

$$
e^{x}=1
$$

$$
x=0 .
$$

vertical asymptote 1 horizontal asymptotes $\sqrt{ }$

