Student Number

Ascham School

Mathematics Extension 1 Trial HSC Examination

Monday 25th July 2016 2 hours

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black pen.
- Board-approved calculators may be used.
- A Reference Sheet is provided.
- In Questions 11–14, show relevant mathematical reasoning and/or calculations.

Total marks – 70

Section I Pages 2–4 10 marks

- Use the Multiple Choice Answer Sheet provided to answer Q1-10.
- Allow about 15 minutes for this section.

Section II Pages 5–9 60 marks

- Answer Questions 11-14.
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher's initials.
- Allow about 1 hour and 45 minutes for this section.

Section I

3

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 If α , β and γ are roots of the equation $x^3 - 3x^2 + 4x + 2 = 0$, find the value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma}$.

(A) 4 (B) $\frac{1}{4}$ (C) $-\frac{2}{3}$ (D) $-\frac{3}{2}$

2 O is the centre of the circle below. Which is the correct value for θ ?

- (A) x = 0, x = 2, y = -1 (B) x = 2, x = -2, y = 1
- (C) x = 2, x = -2, y = -1 (D) x = 2, x = -2, y = 0

4

The equation of the normal to the curve $x^2 = 20y$ at the point $(10p, 5p^2)$ is:

(A)
$$x + py = 5p^3 + 10p$$
 (B) $x - py = 5p^3 - 10p$

(C)
$$px + y = 15p^2$$
 (D) $px - y + 15p^2 = 0$

5 Choose the correct value of $\lim_{x \to 0} \frac{\sin \frac{x}{2}}{3x}$.

(A)
$$\frac{1}{6}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 6

6 The angle θ satisfies $\sin \theta = \frac{1}{\sqrt{5}}$ and $\frac{\pi}{2} < \theta < \pi$. What is the exact value of $\sin 2\theta$?

(A)
$$\frac{4}{5}$$
 (B) $\frac{4}{\sqrt{5}}$ (C) $-\frac{4}{5}$ (D) $-\frac{4}{\sqrt{5}}$

7 A particle has displacement function $x = 3\cos 5t$. Its acceleration can be written as:

- (A) $\ddot{x} = 9x$ (B) $\ddot{x} = -9x$
- (C) $\ddot{x} = 25x$ (D) $\ddot{x} = -25x$
- 8 The velocity, v metres per second, of a particle moving in simple harmonic motion along the x-axis is given by the equation $v^2 = 100 16x^2$. What is the amplitude, in metres, of the motion of the particle?

(A)
$$\frac{2}{5}$$
 (B) $2\frac{1}{2}$ (C) 4 (D) 10

DIAGRAM NOT TO SCALE

10 Which of the following represents the derivative of $\cos^{-1}\left(\frac{1}{x}\right)$?

(A)
$$\frac{1}{\sqrt{x^2-1}}$$

$$(B) \qquad \frac{-1}{\sqrt{x^2 - 1}}$$

(C)
$$\frac{1}{x\sqrt{x^2-1}}$$

(D)
$$\frac{-1}{x\sqrt{x^2-1}}$$

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11–14, you should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) Find the value of k if $x^3 + 3x^2 4x + k$ is divisible by x + 2. 2
- (b) Solve the inequality $\frac{x}{x-5} \ge 2$. 3
- (c) The lines y = mx + 5 and y = -3x + 7 are inclined to each other at an angle of 45° .

(i) Show that
$$\left|\frac{m+3}{1-3m}\right| = 1$$
.

2

(d) Find the general solutions to the equation: $\sin 2\theta = \sin \theta$. 3

- (e) Consider the graph of the function $f(x) = x^2 + 2x$ for $x \le -1$.
 - (i) Find the equation of $y = f^{-1}(x)$ and state its domain. 2
 - (ii) Sketch the graphs of y = f(x) and its inverse function $y = f^{-1}(x)$ on the same number plane. 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) In the diagram, two unequal circles intersect at A and B. The line RS is tangential to the smaller circle at T. The lines TA and TB meet the larger circle at C and D respectively.

NOT TO SCALE

3

Copy the diagram into your exam booklet.

(i) State a theorem to explain why
$$\angle BAT = \angle BDC$$
. 1

(ii) Prove that $RS \parallel CD$.

(c)

(b) Consider the equation $x^2 - 9 + \log_e x = 0$.

(i)	By drawing the graph of $y = \log_e x$ and another appropriate graph on the same axes, explain why the equation has only one root.	1
(ii)	Show, using calculations, that the root of the equation lies between 2 and 3.	2
(iii)	Taking $x_0 = 2.5$ as the first approximation, use Newton's method to find a second approximation of the root correct to 2 decimal places.	2
(i)	Use the substitution $x = \sin \theta$ to show that $\int_{0}^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} dx = \int_{0}^{\frac{\pi}{6}} \sin^2 \theta d\theta$.	3

(ii) Hence find the exact value of
$$\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} dx.$$
 3

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that
$$\sqrt{3}\cos\theta + \sin\theta = 2\cos\left(\theta - \frac{\pi}{6}\right)$$
. 2

(ii) Hence solve the equation
$$\sqrt{3}\cos\theta + \sin\theta = -1$$
 for $0 \le \theta \le 2\pi$.

A particle moves in simple harmonic motion along a straight line so that its displacement, x metres, at time t seconds, is given by:

$$x = \sqrt{3} \cos\left(\frac{t}{3}\right) + \sin\left(\frac{t}{3}\right).$$

- (iii) Find the smallest positive value of t for which x = -1. 1
- (iv) Find the distance travelled by the particle in going from its initial position to the position x = -1. Justify your answer.

3

3

(b) The velocity of a particle is given by the equation $v = \frac{1}{e^x}$.

If the initial displacement is x = 0, find the equation for the displacement *x*, in terms of *t*.

(c) Prove by mathematical induction that $\sum_{r=1}^{n} \log\left(\frac{r+1}{r}\right) = \log(n+1)$. 3

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A large industrial container is in the shape of a paraboloid, which is formed by rotating part of the parabola $y = \frac{1}{4}x^2$ around the y-axis, as shown in the diagram. Liquid is poured into the container at the rate of 2 m^3 per minute.

y $y = \frac{1}{4}x^{2}$ h $y = \frac{1}{4}x^{2}$

- (i) Show that the volume $V \text{ m}^3$ of liquid in the container when the depth of liquid is *h* metres, is given by $V = 2\pi h^2$. **1**
- (ii) At what rate is the height (h) of the liquid rising when the depth is 0.5 metres? **3**
- (iii) If the container is 3 metres high, how long will it take to fill the container? 1
- (b) $P(2t, t^2)$ is a point on the parabola $x^2 = 4y$ with focus S(0, 1). The point M divides the interval SP externally in the ratio 3:1.
 - (i) Show that the coordinates of the point M are $\left(3t, \frac{3t^2-1}{2}\right)$. 2

2

(ii) Hence show that as P moves on the parabola $x^2 = 4y$, then M moves on the parabola $x^2 = 6y + 3$.

Question 14 continues on page 9

(c) A particle is projected with initial velocity $V \text{ ms}^{-1}$ at an angle of elevation θ from the origin *O*. The particle just clears two vertical chimneys of height *h* metres at horizontal distances *p* metres and *q* metres from *O*.

The diagram shows the path of this projectile where the acceleration due to gravity is taken as 10 ms^{-2} and air resistance is ignored.

You may assume that the projectile's trajectory is defined by the equations:

$$x = Vt \cos\theta$$
 and $y = Vt \sin\theta - 5t^2$ [Do not prove these.]

where x and y are the horizontal and vertical displacements of the projectile in metres at time t seconds.

(ii) Hence show that
$$\tan \theta = \frac{h(p+q)}{pq}$$
. 3

END OF PAPER

SOLUTIONS 2016 Extension 1 Maths Thial Exam

SECTION I (x2= 20y or y= x2 $\bigcirc \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\alpha \gamma}$ $dy = \frac{x}{10}$ $= \frac{\gamma + \alpha + \beta}{\alpha \beta \gamma}$ At x = 10p: $\frac{dy}{dx} = \frac{10p}{10} = p$ ". Gradient of normal = -1 $= \frac{-b_{a}}{-d_{a}} \quad \text{where } a=1$ Equation of normal is: b=-3 c=4 $y - 5p^2 = -\frac{1}{p}(x - 10p)$ d=2 = --3/ -2/1 $Py - 5p^3 = -x + 10p$ $x + py = 5p^3 + 10p$ -17 °. D ° A $5 \lim_{x \to 0} \frac{\sin^{\frac{x}{2}}}{3x}$ 2 $\Theta = 180^{\circ} - 100^{\circ}$ 260 0 100 $\lim_{x \to 0} \frac{\sin^{\frac{x}{2}}}{\frac{x}{2}} \times \frac{\frac{x}{2}}{3x}$ $\theta = 40^{\circ}$ °. B $1 \times \frac{1}{4}$ °. A + (3) $y = \frac{1 - 2c^2}{(2c - 2)(2c + 2)}$ G If sin θ = 1/5
 J5
 J5
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 x-2 7 0 2(+2 = 0 $\cos\theta = -\frac{2}{\sqrt{2}}$ so vertical Asymptotes at x===2 $\lim_{x \to \infty} \frac{1 - x^2}{x^2 - 4} = \lim_{x \to \infty} \frac{1}{x^2 - \frac{x^2}{x^2}}$ so sin 20 = 2 sin O cost = 2 × 1 × -2 JE × -2 JE $= \lim_{x \to \infty} \frac{1}{x^2 - 1}$ = -4 5 °° C 7) $x = 3\cos 5t$ = 0 - 1 $\dot{x} = -15 \sin 5t$ = -1 x = -75 cos 5t $\ddot{x} = -25(3\cos 5t)$ So Horizontal Asymptote at y=-1 $\dot{x} = -25x$ °. D °° C

8 When
$$v=0$$
:
 $100 - 16x^{2} = 0$
 $(10 - 4x)(10 + 4x) = 0$
 $x = \pm \frac{5}{2}$ are endpoints
 v_{0} centre of mation is $x=0$
and amplitude = $\frac{5}{2}$ v_{0} B
9 $y = -(x+a)^{2}(x-a)^{3}$
 $= (x+a)^{2}(a-x)^{3}$ v_{0} A
10 $\frac{d}{dx} \left[\cos^{-1}(x^{-1}) \right]$
 $= \frac{-1}{\sqrt{1-(x^{-1})^{2}}} \times -x^{-2}$
 $= \frac{-1}{\sqrt{1-\frac{1}{x^{2}}}} \times \frac{-1}{x^{2}}$
 $= \frac{1}{x^{2}} \sqrt{\frac{x^{2}-1}{x^{2}}}$
 $= \frac{1}{x\sqrt{x^{2}-1}}$

SECTION II
Direction II
a) If
$$P(x) = x^3 + 3x^2 - 9x + k$$

then $P(-2) = O$
 $(2)^3 + 3(-2)^2 + (-2) + k = O$
 $(2)^3 + 3(-2)^2 + (-2) + k = O$
 $(2)^3 + 3(-2)^2 + (-2) + k = O$
 $(2)^3 + 3(-2)^2 - 4(-2) + k = O$
 $(2)^3 + 3(-2)^2 - 4(-2) + k = O$
 $(2)^3 + 3(-2)^2 - 4(-2) + k = O$
 $(2x - 5)^2 - 2(x - 5)^2$
 $x(x - 5) \ge 2(x - 5)^2$
 $x(x - 5) \ge 2(x - 5)^2$
 $x(x - 5) \ge 2(x - 5)^2$
 $(2(x - 5)^2 - x(x - 5) \le O$
 $(x - 5)(x - 10) = O$
 $(x - 5)(x - 10)$

(i)
$$\frac{m+3}{1-3m} = 1$$
 or $\frac{m+3}{1-3m} = -1$
 $m+3 = 1-3m$ $m+3 = -(1-3m)$
 $4m = -2$ $m+3 = -1+3m$
 $m = -\frac{1}{2}$ $m = 2$
 $\frac{1}{2}$ $m = 2$
 $\frac{1}{2}$ $\frac{m = -\frac{1}{2}}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
(d) $\sin 2\theta = \sin \theta$
 $2\sin \theta \cos \theta - \sin \theta = 0$
 $\sin \theta (2\cos \theta - 1) = 0$
 $\sin \theta = 0$ or $\cos \theta = \frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2$

$$f = -1 \neq Jx+1$$

$$y = -1 \neq Jx+1$$

but $y \leq -1$

$$f^{-1}(x) = -1 - Jx+1$$

over the domain $x \geq -1$

x) 13 700 0 -1 -1--2 $y=f^{-1}(x)$

(i) If
$$f(x) = x^2 - 9 + \log_e x$$

then $f'(x) = 2x + \frac{1}{x}$
Using: $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
where $x_0 = 2.5$,
 $x_1 = 2.5 - \frac{2.5^2 - 9 + \ln 2.5}{2(2.5) + \frac{1}{2.5}}$
 $= 2.839(....$
 $x_1 = 2.84 (2 decimal place)$
)i) If $x = \sin\theta$ then $\frac{dx}{d\theta} = \cos\theta$
i.e. $dx = \cos\theta d\theta$
 $f(x_0) = \frac{1}{\sqrt{1-x^2}} dx = \int \frac{\sin^2\theta}{\sqrt{1-\sin^2\theta}} \cos\theta d\theta$
 $= \int \frac{\sin^2\theta}{\sqrt{1-\sin^2\theta}} \cos\theta d\theta$
 $= \int \sin^2\theta d\theta$
 $= \int \sin^2\theta d\theta$
 $= \int \sin^2\theta d\theta$
 $x_0 = 7/6$
 $\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{\pi/6}{\sin^2\theta} d\theta$
 $\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{\pi/6}{2} \int 1-\cos^2\theta d\theta$
 $\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{\pi/6}{2} \int 1-\cos^2\theta d\theta$

$$= \frac{1}{2} \left[\frac{\pi}{6} - \frac{\sin(2 \times T_6)}{2} - (0 - \frac{\sin(2 \times 0)}{2}) \right]$$

$$= \frac{1}{2} \left[\frac{\pi}{6} - \frac{\sqrt{3}/2}{2} - 0 \right]$$

$$= \frac{1}{2} \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right]$$

$$= \frac{1}{2} \times \frac{1}{2} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right]$$

$$= \frac{1}{4} \left(\frac{2\pi - 3\sqrt{3}}{6} \right) \text{ or } \frac{2\pi - 3\sqrt{3}}{24}$$

Question 13
a) i) show that:

$$J\overline{3} \cos\theta + \sin\theta = 2\cos(\theta - T/6)$$

 $= 2(\cos\theta \cos T/6 + \sin\theta \sin T/6)$
 $= 2(\cos\theta (3\frac{\pi}{2}) + 2\sin\theta (\frac{1}{2}))$
 $= 3\overline{3} \cos\theta + \sin\theta$
 $= LHS$
ii) Solving $J\overline{3} \cos\theta + \sin\theta$ = -1
is equivalent to solving
 $2\cos(\theta - T/6) = -1$
 $\cos(\theta - T/6) = -1/2$
related $L = T/3 \pi \frac{T/3}{T/3}$
 $\theta - T_6 = 2T_3 \quad \text{sc} \quad \theta - T/6 = 9T/3$
 $\theta = 2T_7 + T_6 \qquad \theta = 4T/3 + T/6$
 $\therefore \quad \theta = 5T_7 \qquad \text{cs} \qquad \theta = 3T_2$
iii) From part ii), the smallest
positive solution to
 $J\overline{3}\cos\theta + \sin\theta = -1$ is $\theta = 5T_6$
 $\therefore \quad The smallest positive solution to
 $J\overline{3}\cos(\frac{\pi}{3}) + \sin(\frac{\pi}{3}) = -1$ is when
 $t_3 = 5T/6$
 $t = 5T/6 \times 3$$

$$t=5\pi$$
 seconds

ir) Using x = 2 cos (= - T6) When t=0: I = 2005 (3-T/6) = 2cos(- "/6) = 2005 7/6 = 25 $\frac{1}{2}$ initial position = $\sqrt{3}$ Now we see that the amplitude = 2 : particle oscillates between $\chi = -2$ and +2However we need to find the initial direction of motion i.e. Find velocity when t=D $\dot{x} = -\frac{1}{3} \times 2\sin(\frac{1}{3} - \frac{1}{4})$ and when t=0: $\dot{x} = -\frac{2}{3}\sin(0-\frac{\pi}{6})$ = + 2 sin(T/6) 20

... Particle initially moves to the right >x -2 -1 0 53

$$\therefore$$
 Distance travelled
= $(2-\sqrt{3}) + 3$

n

b)
$$V = \frac{1}{e^{x}}$$

i.e: $\frac{dx}{dt} = \frac{1}{e^{x}}$
Taking reciprocals of both sides:
 $\frac{dt}{dx} = e^{x}$
Taking integrals of both sides:
 $\int \frac{dt}{dx} = \int e^{x} dx$
 $t = e^{x} + c$
When $t=0, x=0$
 $\therefore 0 = e^{0} + c$
 $0 = 1 + c$
 $0 = 1 + c$
 $0 = t + 1$
 $e^{x} = t + 1$
 $\ln e^{x} = \ln (t+1)$
 $\therefore x = \ln (t+1)$

c) Prove
$$\sum_{r=1}^{n} \log\left(\frac{r+1}{r}\right) = \log(n+1)$$

by Mathematical Induction
Prove true for n=1:
LHS = $\log\left(\frac{1+1}{1}\right)$ RHS = $\log(1+1)$
= $\log 2$ = $\log 2$
 \approx since LHS = RHS, it is true
for n=1.
Assume true for n=k:
 $i.e. \sum_{i} \log\left(\frac{r+1}{r}\right) = \log(k+1)$
 $r=1$
 $i.e. \log(\frac{2}{1}) + \log\left(\frac{3}{2}\right) + \log\left(\frac{3}{4}\right) + ... + \log\left(\frac{k+1}{k}\right)$
= $\log(k+1)$ *
Prove true for n= k+1:
ATP: $\sum_{r=1}^{k} \log\left(\frac{r+1}{r}\right) = \log(k+2)$
LHS = $\log\left(\frac{2}{1}\right) + \log\left(\frac{3}{2}\right) + ... + \log\left(\frac{k+2}{k}\right) + \log\left(\frac{k+2}{k+1}\right)$
 $= \log(k+1) + \log\left(\frac{k+2}{k+1}\right)$ using $\frac{1}{k}$
 $= \log\left((k+1) + \log\left(\frac{k+2}{k+1}\right)$ using $\frac{1}{k}$
 $= \log\left((k+1) + \log\left(\frac{k+2}{k+1}\right)$ = $\log\left((k+2) + \log\left(\frac{k+2}{k+1}\right) + \log\left(\frac{k+2}{k+1}\right)$
 $= \log\left((k+1) + \log\left(\frac{k+2}{k+1}\right)$ = $\log\left((k+1) + \log\left(\frac{k+2}{k+1}\right)$
 $= \log\left((k+1) + \log\left(\frac{k+2}{k+1}\right)$ = $\log\left((k+2) + \log\left(\frac{k+2}{k+1}\right) + \log\left(\frac{k+2}{k+1}\right)$
 $= \log\left((k+1) + \log\left(\frac{k+2}{k+1}\right) + \log\left(\frac{k+2}{k+1}\right)$

to The proposition is proved true by Mathematical Induction.

Question 14
a) i)
$$y = \frac{1}{4}x^{2} \Rightarrow 9y = x^{2}$$

 $V = \pi \int^{h} qy dy$
 $= \pi \left[\frac{qy^{2}}{2} \right]_{0}^{h}$
 $= \pi \left[2h^{2} - 2(0)^{*} \right]$
 $z_{o} V = 2\pi h^{2} (as required)$
(i) $\frac{dV}{dh} = 4\pi h$
 $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$
 $\frac{dh}{dt} = \frac{1}{4\pi h} \times 2$
 $\frac{dh}{dt} = \frac{1}{2\pi (0.5)}$
 $= \frac{1}{\pi} m/min$
(ii) Using $V = 2\pi h^{2}$
when $h = 3$:
 $V = 2\pi (3)^{2}$
 $V = 18\pi m^{2}$
Now given the fill rate
is $2m^{3}$ per minute the
time to fill the container
 $= 18\pi \div 2$
 $= \frac{q\pi}{minutes}$

b) i) Using

$$x = (x_{1} + kx_{2}) \quad \text{and} \quad y = (y_{1} + ky_{2}) \\
 k+\ell \quad k$$

.

c) i) Given x=Vt cost ... () and y= Vt sin 0 -5t2...(2) If the point (p, h) satisfies the equations, then substituting x= p into (): p = Vt cost $i.e. t = \frac{p}{Vcost}$ and substituting y=h into (2): $h = Vt sin \theta - 5t^2$ $h = V\left(\frac{P}{V\cos\theta}\right)\sin\theta - 5\left(\frac{P}{V\cos\theta}\right)^2$ $h = p \tan \theta - \frac{5p^2}{V^2} \sec^2 \theta$ $h = p + an\theta - \frac{5p^2}{\sqrt{2}} \left(1 + tan^2 \theta \right)$ $\frac{5p}{\sqrt{2}}(1+\tan^2\theta) = p \tan\theta - h$ $5p^{2}(1+\tan^{2}\theta)=V(p\tan\theta-h)$ $V^2 = \frac{5p^2(1 + \tan^2\theta)}{p \tan \theta - h}$ (as required) ii) since the point (q,h) satisfies the equations too, then $V^2 = 5q^2(1 + tan^2\theta)$ qtant-h Equating expressions for V?. $5p^{2}(1+tan^{2}\theta) = 5q^{2}(1+tan^{2}\theta)$ ptano-h qtano-h $\frac{p^2}{p \tan \theta - h} = \frac{q^2}{q \tan \theta - h}$ $p^{2}(q \tan \theta - h) = q^{2}(p \tan \theta - h)$ $p^{2}q \tan \theta - p^{2}h = pq^{2} \tan \theta - q^{2}h$ $p^{2}q \tan \theta - pq^{2} \tan \theta = p^{2}h - q^{2}h$ $pq \tan \theta (p - q) = h(p - q)(p + q)$ $pq \tan \theta = h(p + q)$ $g_{0} \tan \theta = h(p + q)$ pq $q \tan \theta = h(p + q)$ pq $q \tan \theta = h(p + q)$ pq $q \tan \theta = h(p + q)$ pq