

Mathematics Extension 1 Trial HSC Examination

Monday $25^{\text {th }}$ July 2016
 2 hours

General Instructions

- Reading time - 5 minutes.
- Working time -2 hours.
- Write using black pen.
- Board-approved calculators may be used.
- A Reference Sheet is provided.
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations.
| Total marks - 70

Section I Pages 2-4
10 marks

- Use the Multiple Choice Answer Sheet provided to answer Q1-10.
- Allow about 15 minutes for this section.

Section II Pages 5-9
60 marks

- Answer Questions 11-14.
- Answer each question in a new booklet.
- Label all sections clearly with your name/number and teacher's initials.
- Allow about 1 hour and 45 minutes for this section.

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 If α, β and γ are roots of the equation $x^{3}-3 x^{2}+4 x+2=0$, find the value of $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}$.
(A) 4
(B) $\frac{1}{4}$
(C) $-\frac{2}{3}$
(D) $-\frac{3}{2}$

2 O is the centre of the circle below. Which is the correct value for θ ?
(A) 25°
(B) 40°
(C) 50°
(D) 65°

NOT TO SCALE

3 What are the asymptotes of $y=\frac{1-x^{2}}{x^{2}-4}$?
(A) $x=0, x=2, \quad y=-1$
(B) $x=2, x=-2, \quad y=1$
(C) $x=2, \quad x=-2, \quad y=-1$
(D) $\quad x=2, \quad x=-2, \quad y=0$

4 The equation of the normal to the curve $x^{2}=20 y$ at the point $\left(10 p, 5 p^{2}\right)$ is:
(A) $x+p y=5 p^{3}+10 p$
(B) $x-p y=5 p^{3}-10 p$
(C) $p x+y=15 p^{2}$
(D) $p x-y+15 p^{2}=0$

5 Choose the correct value of $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{3 x}$.
(A) $\frac{1}{6}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 6

6 The angle θ satisfies $\sin \theta=\frac{1}{\sqrt{5}}$ and $\frac{\pi}{2}<\theta<\pi$.
What is the exact value of $\sin 2 \theta$?
(A) $\frac{4}{5}$
(B) $\frac{4}{\sqrt{5}}$
(C) $-\frac{4}{5}$
(D) $-\frac{4}{\sqrt{5}}$

7 A particle has displacement function $x=3 \cos 5 t$. Its acceleration can be written as:
(A) $\ddot{x}=9 x$
(B) $\ddot{x}=-9 x$
(C) $\ddot{x}=25 x$
(D) $\ddot{x}=-25 x$

8 The velocity, v metres per second, of a particle moving in simple harmonic motion along the x-axis is given by the equation $v^{2}=100-16 x^{2}$. What is the amplitude, in metres, of the motion of the particle?
(A) $\frac{2}{5}$
(B) $2 \frac{1}{2}$
(C) 4
(D) 10

9 Select the equation which could represent the graph below:
DIAGRAM NOT TO SCALE
(A) $y=(x+a)^{2}(a-x)^{3}$
(B) $y=(x-a)^{2}(x+a)^{3}$
(C) $y=(x+a)^{2}(x-a)^{3}$

(D) $y=(x-a)^{2}(a-x)^{3}$

10 Which of the following represents the derivative of $\cos ^{-1}\left(\frac{1}{x}\right)$?
(A) $\frac{1}{\sqrt{x^{2}-1}}$
(B) $\frac{-1}{\sqrt{x^{2}-1}}$
(C) $\frac{1}{x \sqrt{x^{2}-1}}$
(D) $\frac{-1}{x \sqrt{x^{2}-1}}$

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-14, you should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Find the value of k if $x^{3}+3 x^{2}-4 x+k$ is divisible by $x+2$.
(b) Solve the inequality $\frac{x}{x-5} \geq 2$.
(c) The lines $y=m x+5$ and $y=-3 x+7$ are inclined to each other at an angle of 45°.
(i) Show that $\left|\frac{m+3}{1-3 m}\right|=1$.
(ii) Hence find the possible values of m.
(d) Find the general solutions to the equation: $\sin 2 \theta=\sin \theta$.
(e) Consider the graph of the function $f(x)=x^{2}+2 x$ for $x \leq-1$.
(i) Find the equation of $y=f^{-1}(x)$ and state its domain.
(ii) Sketch the graphs of $y=f(x)$ and its inverse function $y=f^{-1}(x)$ on the same number plane.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) In the diagram, two unequal circles intersect at A and B . The line RS is tangential to the smaller circle at T. The lines TA and TB meet the larger circle at C and D respectively.

NOT TO SCALE
Copy the diagram into your exam booklet.
(i) State a theorem to explain why $\angle B A T=\angle B D C$.
(ii) Prove that $R S \| C D$.
(b) Consider the equation $x^{2}-9+\log _{e} x=0$.
(i) By drawing the graph of $y=\log _{e} x$ and another appropriate graph on the same axes, explain why the equation has only one root.
(ii) Show, using calculations, that the root of the equation lies between 2 and 3 .
(iii) Taking $x_{0}=2.5$ as the first approximation, use Newton's method to find a second approximation of the root correct to 2 decimal places.
(c) (i) Use the substitution $x=\sin \theta$ to show that $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta d \theta$.
(ii) Hence find the exact value of $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that $\sqrt{3} \cos \theta+\sin \theta=2 \cos \left(\theta-\frac{\pi}{6}\right)$.
(ii) Hence solve the equation $\sqrt{3} \cos \theta+\sin \theta=-1$ for $0 \leq \theta \leq 2 \pi$.

A particle moves in simple harmonic motion along a straight line so that its displacement, x metres, at time t seconds, is given by:

$$
x=\sqrt{3} \cos \left(\frac{t}{3}\right)+\sin \left(\frac{t}{3}\right) .
$$

(iii) Find the smallest positive value of t for which $x=-1$.
(iv) Find the distance travelled by the particle in going from its initial position to the position $x=-1$. Justify your answer.
(b) The velocity of a particle is given by the equation $v=\frac{1}{e^{x}}$.

If the initial displacement is $x=0$, find the equation for the displacement x, in terms of t.
(c) Prove by mathematical induction that $\sum_{r=1}^{n} \log \left(\frac{r+1}{r}\right)=\log (n+1)$.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) A large industrial container is in the shape of a paraboloid, which is formed by rotating part of the parabola $y=\frac{1}{4} x^{2}$ around the y-axis, as shown in the diagram.
Liquid is poured into the container at the rate of $2 \mathrm{~m}^{3}$ per minute.

(i) Show that the volume $V \mathrm{~m}^{3}$ of liquid in the container when the depth of liquid is h metres, is given by $V=2 \pi h^{2}$.
(ii) At what rate is the height (h) of the liquid rising when the depth is 0.5 metres?
(iii) If the container is 3 metres high, how long will it take to fill the container?
(b) $\quad P\left(2 t, t^{2}\right)$ is a point on the parabola $x^{2}=4 y$ with focus $S(0,1)$.

The point M divides the interval $S P$ externally in the ratio $3: 1$.
(i) Show that the coordinates of the point M are $\left(3 t, \frac{3 t^{2}-1}{2}\right)$.
(ii) Hence show that as P moves on the parabola $x^{2}=4 y$, then M moves on the parabola $x^{2}=6 y+3$.

Question 14 continues on page 9

(c) A particle is projected with initial velocity $V \mathrm{~ms}^{-1}$ at an angle of elevation θ from the origin O. The particle just clears two vertical chimneys of height h metres at horizontal distances p metres and q metres from O.

The diagram shows the path of this projectile where the acceleration due to gravity is taken as $10 \mathrm{~ms}^{-2}$ and air resistance is ignored.

You may assume that the projectile's trajectory is defined by the equations:

$$
x=V t \cos \theta \quad \text { and } \quad y=V t \sin \theta-5 t^{2} \quad \text { [Do not prove these.] }
$$

where x and y are the horizontal and vertical displacements of the projectile in metres at time t seconds.

(i) Show that $V^{2}=\frac{5 p^{2}\left(1+\tan ^{2} \theta\right)}{p \tan \theta-h}$.
(ii) Hence show that $\tan \theta=\frac{h(p+q)}{p q}$.

END OF PAPER

SOLUTIONS 2016 Extension 1 Maths Trial Exam

SECTION I
(1)

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma} \\
=\frac{\gamma+\alpha+\beta}{\alpha \beta \gamma} \\
=\frac{-b / a}{-\frac{d}{a}} \text { where } \begin{array}{l}
a=1 \\
b=-3 \\
c=4 \\
\alpha=2
\end{array} \\
=\frac{-3 / 1}{-2 / 1} \\
=\frac{-3}{2} \quad \therefore D
\end{array}
\end{aligned}
$$

(2)

(3)

$$
\begin{aligned}
& y=\frac{1-x^{2}}{(x-2)(x+2)} \\
& x-2 \neq 0 \\
& x+2 \neq 0
\end{aligned}
$$

\therefore vertical Asymptotes at $x= \pm 2$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{2}-4} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-x^{2} / x^{2}}{x^{2} / x^{2}-4 / x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-1}{1-4 / x^{2}} \\
& =\frac{0-1}{1-0} \\
& =-1
\end{aligned}
$$

\therefore Horizontal Asymptote at $y=-1$

$$
\therefore c
$$

(4) $x^{2}=20 y$ ar $y=\frac{x^{2}}{20}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x}{10} \\
& \text { At } x=10 p: \quad \frac{d y}{d x}=\frac{10 p}{10}=p
\end{aligned}
$$

$$
\therefore \text { Gradient of normal }=-\frac{1}{p}
$$

Equation of normal is:

$$
\begin{aligned}
& y-5 p^{2}=\frac{-1}{p}(x-10 p) \\
& p y-5 p^{3}=-x+10 p \\
& \therefore x+p y=5 p^{3}+10 p \\
& \therefore A
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } \lim _{x \rightarrow 0} \frac{\sin x / 2}{3 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x / 2}{x / 2} \times \frac{x / 2}{3 x} \\
& =1 \times \frac{1}{6} \\
& =\frac{1}{6}
\end{aligned}
$$

$$
\therefore A
$$

(6) If $\sin \theta=\frac{1}{\sqrt{5}}$ and $\pi / 2<\theta<\pi$

$$
\cos \theta=-\frac{2}{\sqrt{5}}
$$

so

$$
\begin{align*}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2 \times \frac{1}{\sqrt{5}} \times \frac{-2}{\sqrt{5}} \\
& =\frac{-4}{5} \quad \therefore C \\
x & =3 \cos 5 t \\
\dot{x} & =-15 \sin 5 t \\
\ddot{x} & =-75 \cos 5 t \\
\ddot{x} & =-25(3 \cos 5 t) \\
\ddot{x} & =-25 x \quad \therefore D
\end{align*}
$$

(7)
(8) When $v=0$:

$$
\begin{gathered}
100-16 x^{2}=0 \\
(10-4 x)(10+4 x)=0
\end{gathered}
$$

$\therefore x= \pm \frac{5}{2}$ are endpoints
\therefore centre of motion is $x=0$ and amplitu de $=\frac{5}{2} \quad \therefore B$
(9)

$$
\begin{aligned}
y & =-(x+a)^{2}(x-a)^{3} \\
& =(x+a)^{2}(a-x)^{3} \quad \therefore A
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \frac{d}{d x}\left[\cos ^{-1}\left(x^{-1}\right)\right] \\
= & \frac{-1}{\sqrt{1-\left(x^{-1}\right)^{2}}} \times-x^{-2} \\
= & \frac{-1}{\sqrt{1-\frac{1}{x^{2}}}} \times \frac{-1}{x^{2}} \\
= & \frac{1}{x^{2} \sqrt{\frac{x^{2}-1}{x^{2}}}} \\
= & \frac{1}{x^{2}} \frac{\sqrt{x^{2}-1}}{\sqrt{x^{2}}} \\
= & \frac{1}{x \sqrt{x^{2}-1}}
\end{aligned} \therefore C .
$$

SECTION II
Question 11
a) If $P(x)=x^{3}+3 x^{2}-4 x+k$
then $P(-2)=0$

$$
\begin{gathered}
(-2)^{3}+3(-2)^{2}-4(-2)+k=0 \\
-8+12+8+k=0 \\
\therefore \quad k=-12
\end{gathered}
$$

$$
\begin{aligned}
& \text { b) } \frac{x}{x-5} \geqslant 2 \quad[x \neq 5] \\
& \frac{x(x-5)^{2}}{x-5} \geqslant 2(x-5)^{2} \\
& x(x-5) \geqslant 2(x-5)^{2} \\
& 2(x-5)^{2}-x(x-5) \leqslant 0 \\
& (x-5)[2(x-5)-x] \leqslant 0 \\
& (x-5)(x-10) \leqslant 0 \\
& \therefore \quad 10
\end{aligned}
$$

C)
i) $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{gathered}
\tan 45^{\circ}=\left|\frac{m-3}{1+m(-3)}\right| \\
1=\left|\frac{m+3}{1-3 m}\right|
\end{gathered}
$$

$\therefore\left|\frac{m+3}{1-3 m}\right|=1$
(as required)

$$
\begin{aligned}
& \text { (i) } \frac{m+3}{1-3 m}=1 \text { or } \frac{m+3}{1-3 m}=-1 \\
& m+3=1-3 m \quad m+3=-(1-3 m) \\
& 4 m=-2 \\
& m+3=-1+3 m \\
& m=-\frac{1}{2} \\
& 4=2 m \\
& m=2 \\
& \therefore \quad m=-\frac{1}{2} \text { or } m=2
\end{aligned}
$$

d)

$$
\begin{gathered}
\sin 2 \theta=\sin \theta \\
2 \sin \theta \cos \theta-\sin \theta=0 \\
\sin \theta(2 \cos \theta-1)=0 \\
\sin \theta=0 \quad \text { or } \quad \cos \theta=\frac{1}{2}
\end{gathered}
$$

$$
\begin{array}{r}
\therefore \theta=\pi n \quad \text { or } \quad \pm \frac{\pi}{3}+2 n \pi \\
\\
(n \in \mathbb{Z})
\end{array}
$$

e) i) Let $y=f(x)$
i.e. $y=x^{2}+2 x$ where $x \leqslant-1$
\therefore Inverse: $x=y^{2}+2 y$
Completing the square...

$$
\begin{aligned}
x+1 & =y^{2}+2 y+1 \\
x+1 & =(y+1)^{2} \\
\pm \sqrt{x+1} & =y+1 \\
y & =-1 \pm \sqrt{x+1} \\
\text { but } y & \leq-1 \\
\therefore \quad f^{-1}(x) & =-1-\sqrt{x+1}
\end{aligned}
$$

over the domain $x \geqslant-1$
ii)

Question 12
a) i) The exterior L of a cyclic quadrilateral equals the interior opposite L.
ii) $\angle B A T=\angle B T S$
(L between tangent and chord)

$$
\begin{aligned}
& \therefore \angle B T S=\angle B D C \\
& \therefore R S \| C D \\
& \therefore \quad \text { (alternate } \angle S \text { equal) }
\end{aligned}
$$

b) i) $x^{2}-9+\log _{e} x=0$
or $\log _{e} x=9-x^{2}$
The solution represated by the x-value of the point of intersection of the graphs $y=\log _{e} x$ and $y=9-x^{2}$

As there is only one point of intersection, there is only one root of the equation $x^{2}-9+\log _{e} x=0$
(i)

$$
\begin{aligned}
& \text { Let } f(x)=x^{2}-9+\log _{e} x \\
& \begin{aligned}
f(2) & =2^{2}-9+\log _{e} 2 \\
& =-4.306 \ldots<0 \\
f(3) & =3^{2}-9+\log _{e} 3 \\
& =1.098 \ldots>0
\end{aligned}
\end{aligned}
$$

Since $f(2)<0$ and $f(3)>0$, the root must lie between 2 and 3, given $f(x)$
iii) If $f(x)=x^{2}-9+\log _{e} x$ then $f^{\prime}(x)=2 x+\frac{1}{x}$
Using: $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
where $x_{0}=2.5$,

$$
\begin{aligned}
x_{1} & =2.5-\frac{2.5^{2}-9+\ln 2.5}{2(2.5)+\frac{1}{2.5}} \\
& =2.839 \ldots
\end{aligned}
$$

$\therefore x_{1} \div 2.84$ (2 decimal places)
c) i) If $x=\sin \theta$ then $\frac{d x}{d \theta}=\cos \theta$

$$
\text { i.e. } d x=\cos \theta d \theta
$$

and $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\int \frac{\sin ^{2} \theta}{\sqrt{1-\sin ^{2} \theta}} \cos \theta d \theta$

$$
\begin{aligned}
& =\int \frac{\sin ^{2} \theta}{\sqrt{\cos ^{2} \theta}} \cos \theta d \theta \\
& =\int \sin ^{2} \theta d \theta
\end{aligned}
$$

Also when $x=0: \sin \theta=0$

$$
\therefore \theta=0
$$

and when $x=\frac{1}{2}: \sin \theta=\frac{1}{2}$

$$
\begin{aligned}
& \therefore \theta=\pi / 6 \\
& \int \sin ^{2} \theta d \theta
\end{aligned}
$$

ii) $\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$

$$
\begin{aligned}
=\int_{0}^{\pi / 6} \sin ^{2} \theta & d \theta=\frac{1}{2} \int_{0}^{\pi / 6} 1-\cos 2 \theta d \theta \\
& =\frac{1}{2}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 6}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{\pi}{6}-\frac{\sin (2 \times \pi / 6)}{2}-\left(0-\frac{\sin (2 \times 0)}{2}\right)\right] \\
& =\frac{1}{2}\left[\frac{\pi}{6}-\frac{\sqrt{3} / 2}{2}-0\right] \\
& =\frac{1}{2}\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right] \\
& =\frac{1}{2} \times \frac{1}{2}\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right] \\
& =\frac{1}{4}\left(\frac{2 \pi-3 \sqrt{3}}{6}\right) \text { or } \frac{\frac{2 \pi-3 \sqrt{3}}{24}}{}
\end{aligned}
$$

Question 13
a) i) Show that:

$$
\begin{aligned}
\sqrt{3} & \cos \theta+\sin \theta=2 \cos (\theta-\pi / 6) \\
\text { RUS } & =2 \cos (\theta-\pi / 6) \\
& =2(\cos \theta \cos \pi / 6+\sin \theta \sin \pi / 6) \\
& =2 \cos \theta\left(\frac{\sqrt{3}}{2}\right)+2 \sin \theta\left(\frac{1}{2}\right) \\
& =\sqrt{3} \cos \theta+\sin \theta \\
& =\text { LH }
\end{aligned}
$$

ii) Solving $\sqrt{3} \cos \theta+\sin \theta=-1$ is equivalent to solving

$$
\begin{aligned}
& 2 \cos (\theta-\pi / 6)=-1 \\
& \cos (\theta-\pi / 6)=-1 / 2
\end{aligned}
$$

related $L=\pi / 3$

$$
\begin{aligned}
& \theta-\frac{\pi}{6}=2 \pi / 3 \quad \propto \quad \theta-\pi / 6=4 \pi / 3 \\
& \theta=\frac{2 \pi}{3}+\frac{\pi}{6} \\
& \theta=4 \pi / 3+\pi / 6 \\
& \therefore \quad \theta=\frac{5 \pi}{6} \quad \text { or } \quad \theta=3 \pi / 2
\end{aligned}
$$

iii) From part ii), the smallest positive solution to

$$
\sqrt{3} \cos \theta+\sin \theta=-1 \text { is } \theta=\frac{5 \pi}{6}
$$

\therefore The smallest positive solution to $\sqrt{3} \cos \left(\frac{t}{3}\right)+\sin \left(\frac{t}{3}\right)=-1$ is when

$$
\begin{aligned}
t / 3 & =\frac{5 \pi}{6} \\
t & =\frac{5 \pi}{6} \times 3 \\
\therefore \quad & t=\frac{5 \pi}{2} \text { seconds }
\end{aligned}
$$

(v) $u \operatorname{sing} x=2 \cos \left(\frac{t}{3}-\pi / 6\right)$
when $t=0: x=2 \cos \left(\frac{0}{3}-\pi / 6\right)$

$$
\begin{aligned}
& =2 \cos (-\pi / 6) \\
& =2 \cos \pi / 6 \\
& =2 \frac{\sqrt{3}}{2}
\end{aligned}
$$

\therefore initial position $=\sqrt{3}$
Now we see that the Amplitude $=2 \therefore$ particle oscillates between $x=-2$ and +2 However we need to find the initial direction of motion
i.e. Find velocity when $t=0$

$$
\dot{x}=-\frac{1}{3} \times 2 \sin \left(\frac{t}{3}-\pi / 6\right)
$$

and when $t=0$:

$$
\begin{aligned}
\dot{x}= & -\frac{2}{3} \sin (0-\pi / 6) \\
= & +\frac{2}{3} \sin (\pi / 6) \\
& >0
\end{aligned}
$$

\therefore Particle initially moves to the right

\therefore Distance travelled

$$
\begin{aligned}
& =(2-\sqrt{3})+3 \\
& =5-\sqrt{3} \text { metres }
\end{aligned}
$$

b) $\quad v=\frac{1}{e^{x}}$
i.e. $\frac{d x}{d t}=\frac{1}{e^{x}}$

Taking reciprocals of both sides:

$$
\frac{d t}{d x}=e^{x}
$$

Taking integrals of both sides:

$$
\begin{aligned}
\int \frac{d t}{d x} & =\int e^{x} d x \\
t & =e^{x}+c
\end{aligned}
$$

When $t=0, x=0$

$$
\begin{aligned}
\therefore \quad 0 & =e^{0}+c \\
0 & =1+c \\
\therefore \quad c & =-1
\end{aligned}
$$

So $t=e^{x}-1$

$$
\begin{aligned}
e^{x} & =t+1 \\
\ln e^{x} & =\ln (t+1) \\
\therefore x & =\ln (t+1)
\end{aligned}
$$

c) Prove $\sum_{r=1}^{n} \log \left(\frac{r+1}{r}\right)=\log (n+1)$ by Mathematical Induction
Prove true for $n=1$:

$$
\begin{aligned}
L H S & =\log \left(\frac{1+1}{1}\right) & \text { RHS } & =\log (1+1) \\
& =\log 2 & & =\log 2
\end{aligned}
$$

\therefore since LHS $=$ RHS, it is true for $n=1$.
Assume true for $n=k$:
i.e. $\sum_{r=1}^{k} \log \left(\frac{r+1}{r}\right)=\log (k+1)$
i.e. $\log \left(\frac{2}{1}\right)+\log \left(\frac{3}{2}\right)+\log \left(\frac{3}{4}\right)+\ldots+\log \left(\frac{k+1}{k}\right)$

$$
=\log (k+1)
$$

$\frac{\text { Prove true for } n=k+1 \text { : }}{k+1}$

$$
\text { ATP: } \left.\begin{array}{rl}
\sum_{r=1}^{k+1} \log \left(\frac{r+1}{r}\right)=\log (k+2) \\
\text { LIS } & =\log \left(\frac{2}{1}\right)+\log \left(\frac{3}{2}\right)+\ldots+\log \left(\frac{k+1}{k}\right)+\log \left(\frac{k+2}{k+1}\right) \\
= & \log (k+1)+\log \left(\frac{k+2}{k+1}\right) \quad \text { using } * \\
\text { assumption }
\end{array}\right)
$$

\therefore The proposition is proved true by Mathematical Induction.

Question 14
a) i)

$$
\begin{aligned}
y & =\frac{1}{4} x^{2} \Rightarrow 4 y=x^{2} \\
v & =\pi \int_{0}^{h} 4 y d y \\
& =\pi\left[\frac{4 y^{2}}{2}\right]_{0}^{h} \\
& =\pi\left[2 h^{2}-2(0)^{2}\right]
\end{aligned}
$$

$\therefore V=2 \pi h^{2}$ (as required)
(i) $\frac{d v}{d h}=4 \pi h$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{d h}{d v} \times \frac{d V}{d t} \\
\frac{d h}{d t} & =\frac{1}{4 \pi h} \times 2 \\
\therefore \frac{d h}{d t} & =\frac{1}{2 \pi h}
\end{aligned}
$$

when $h=0.5 \mathrm{~m}$,

$$
\begin{aligned}
\frac{d n}{d t} & =\frac{1}{2 \pi(0.5)} \\
& =\frac{1}{\pi} \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

(ii) Using $V=2 \pi h^{2}$
when $h=3$:

$$
\begin{aligned}
& V=2 \pi(3)^{2} \\
& V=18 \pi \mathrm{~m}^{2}
\end{aligned}
$$

Now given the fill rate is $2 \mathrm{~m}^{3}$ per minute the time to fill the container

$$
\begin{aligned}
& =18 \pi \div 2 \\
& =9 \pi \text { minutes }
\end{aligned}
$$

b)i) Using

$$
x=\frac{l x_{1}+k x_{2}}{k+l} \text { and } y=\frac{l y_{1}+k y_{2}}{k+l}
$$

where $k: l=3:-1$
and $\left(x, y_{1}\right)=S(0,1)$
and $\left(x_{2} y_{2}\right)=P\left(2 t, t^{2}\right)$

$$
x=\frac{-1(0)+3(2 t)}{3+-1} \quad y=\frac{-1(1)+3\left(t^{2}\right)}{3+-1}
$$

$$
x=\frac{6 t}{2}=3 t \quad \text { and } y=\frac{3 t^{2}-1}{2}
$$

$\therefore M$ is $\left(3 t, \frac{3 t^{2}-1}{2}\right)$ as required.
ii) From the coordinates of M,

$$
\begin{align*}
& x=3 t \quad \text { i.e. (2) } \tag{1}\\
& y=\frac{3 t^{2}-1}{2} \quad t=\frac{x}{3}
\end{align*}
$$

sub. (1) into (2):

$$
\begin{aligned}
& y=\frac{3\left(\frac{x}{3}\right)^{2}-1}{2} \\
& 2 y=3\left(\frac{x^{2}}{9}\right)-1 \\
& 2 y+1=\frac{x^{2}}{3} \\
& 3(2 y+1)=x^{2}
\end{aligned}
$$

$\therefore \quad x^{2}=6 y+3$ as required.
C) i) Given $x=V t \cos \theta \ldots$ (1) and $y=v t \sin \theta-5 t^{2}$
If the point (P, h) satisfies the equations, then
substituting $x=P$ into (1):

$$
\begin{gathered}
p=V t \cos \theta \\
\text { i.e. } t=\frac{p}{V \cos \theta}
\end{gathered}
$$

and sclostituting $y=h$ into (2):

$$
\begin{aligned}
& h=V t \sin \theta-5 t^{2} \\
& \therefore h=v\left(\frac{p}{V \cos \theta}\right) \sin \theta-5\left(\frac{p}{V \cos \theta}\right)^{2} \\
& h=p \tan \theta-\frac{5 p^{2}}{v^{2}} \sec ^{2} \theta \\
& h=p \tan \theta-\frac{5 p^{2}}{V^{2}}(1+\tan 2 \theta) \\
& \frac{5 p^{2}}{v^{2}}\left(1+\tan ^{2} \theta\right)=p \tan \theta-h \\
& 5 p^{2}\left(1+\tan ^{2} \theta\right)=v^{2}(p \tan \theta-h) \\
& \therefore v^{2}=\frac{5 p^{2}\left(1+\tan ^{2} \theta\right)}{p \tan \theta-h}
\end{aligned}
$$

(as required)
ii) since the point (q, h) satisfies the equations too, then $V^{2}=\frac{5 q^{2}\left(1+\tan ^{2} \theta\right)}{q \tan \theta-h}$
Equating expressions for V^{2}.

$$
\begin{aligned}
& \frac{5 p^{2}\left(1+\tan ^{2} \theta\right)}{p \tan \theta-h}=\frac{5 q^{2}\left(1+\tan ^{2} \theta\right)}{q \tan \theta-h} \\
& \frac{p^{2}}{p \tan \theta-h}=\frac{q^{2}}{q \tan \theta-h} \\
& p^{2}(q \tan \theta-h)
\end{aligned}
$$

$p^{2} q \tan \theta-p^{2} h=p q^{2} \tan \theta-q^{2} h$

$$
\begin{aligned}
& p^{2} q \tan \theta-p q^{2} \tan \theta=p^{2} h-q^{2} h \\
& p q \tan \theta(p-q)=h(p-q)(p+q) \\
& p q \tan \theta=h(p+q) \\
& \therefore \tan \theta=\frac{h(p+q)}{p q}
\end{aligned}
$$

(as required)

